
18-500 Final Project Report: 05/08/2019

1

Abstract— Our project is to design and build a robot that can

autonomously navigate a room to serve appetizers to guests.

While there are currently robots that autonomously clean floors

and cut grass, we aim to bring robots to the cocktail hour scene.

Utilizing thermal image processing and object detection, our

YoServe Appetizer Bot will make serving guests as easy as

loading up a tray and pressing go.

Index Terms— Appetizers, Human Detection, Motors, Object

Detection, Robot, Thermal Camera, Ultrasonic Sensors

I. INTRODUCTION

ave you ever been at an event or cocktail hour hungry for

some delicious appetizers yet engaged in a conversation

without any opportunity for escape? Have you found yourself

wishing the food might just come right to you? Well our project

will leave your mingle time undisturbed and your stomach

satisfied! Our project is to design and build a robot that can

autonomously navigate a room to serve appetizers to guests.

The domain of function is an open, smooth-floored room

without furniture but full of people, who may be moving around

themselves. We aim for it to operate at a human walking pace

and safely approach guests. It will detect and stop operation

when its tray is empty.

The food industry currently employs a variety of robotic

technology. However, even in smaller restaurants and food

locations, these robots are typically stationary and perform one

repetitive task. Yet similar to our YoServe Bot, some

companies have started developing mobile food service robots,

such as PepsiCo’s snackbot. Our robot will differ from theirs in

that we will be serving food on an open tray that will increase

accessibility for our guests. We will also be working in an

indoor environment, which will require less reliance on outdoor

paths and roads. Instead we will focus on finding heat sources

within the room in order to directly approach humans. Finally,

while other snack delivering robot projects have been

documented, they are, in general, meant to carry small treats

and designed for personal usage. Our robot will be large enough

to support a number of appetizers and serve a variety of guests.

II. DESIGN REQUIREMENTS

In terms of mobility, the robot will move at a rate of 2 mph,

average human walking speed. It will also be stable enough that

food carried on its tray will not roll/fall off upon stopping or

starting. We will test this by conducting a “room test”. During

this test, the robot will drive in an empty room and carry a

completely full tray of food, accelerate to 2 mph, and then come

to a full stop. We will then evaluate if any food has fallen off

the robot.

 The robot will be able to operate for an hour in its party

environment. While power usage can vary depending on room

situation, we can calculate a worst-case scenario where the

robot is constantly moving and drawing current through the

motors. Later calculations can be done by averaging idle

current and moving current based on the percent time in each

state.

For human detection, we require the thermal camera and

image processing algorithm to detect people within 8 meters of

the robot. We want to be able to detect just one guest all the way

through a group of guests clustered together. We plan on testing

this by positioning 1 person to the left, right, and center of the

thermal camera’s frame, at approximately 8 meters away and

evaluating if the robot is able to detect the person. Then, we will

repeat the test with a group of humans in the same positions.

 For safety, we want the robot to be able to detect when

humans are within 5 feet of the front of the robot and then stop

by the time they are 1 foot away from the robot. To test this, we

will conduct a stop test. This test will be conducted two

different ways. In the first, a person will walk towards the front

of the robot. We will measure both when it detects the person

and when it finally stops. In the second way, we will put a

person, within a 5 feet radius, to the side of the robot as it turns.

The robot should be able to detect the human as it turns and

make the decision to not travel in that direction. In addition to

these safety tests, we will also have an emergency button on the

back of the robot, which will immediately stop the motors. In

this case, the stability requirement of not having food fall off

the tray will not be enforced. Also, we will have the robot play

music or make some sort of noise, so that its presence will be

noticed by guests.

The robot shall detect when it has run out of food. We will

complete this test by filling up the tray completely, taking all

the items off, and then refilling it. The robot should stop moving

when all of the food is removed and resume moving when the

tray is refilled.

Team D1: YoServe

Authors: Isabel Murdock, Kashish Garg, and Matteo Longo: Electrical and Computer Engineering,

Carnegie Mellon University

H

18-500 Final Project Report: 05/08/2019

2

In terms of sensor and image processing, we want the time to

find if an image contains a heat signature worth following to be

under 100 milliseconds. We also want our software algorithm

to know within 10 milliseconds if an object is detected.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our YoServe robot is designed to meet this use in several

ways. It utilizes a Raspberry Pi for sensor data processing, and

Arduino for motor control, and has a wooden frame suited for

navigation and tight turns. As shown in figure 1, the Raspberry

Pi takes in input from three different types of sensors: the

ultrasonic sensors, the thermal camera, and the load sensor in

order to determine the motion required from the robot. It then

passes the driving instructions to the Arduino, which uses a

motor shield to control the motors and navigate as per the

instructions provided.

 Figure 1: Overall system block diagram

A. Physical Structure

The overall shape of the robot, as shown in Figures 2 and 3

on the next page, is tall and cylindrical. The top level is

approximately 38 inches high to ease the retrieval of food by

standing patrons. The round chassis allows the robot to turn

without changing its profile, which means turning is guaranteed

to cause no collisions and robot will not get stuck in tight

corners. The two wheels are centered on one axis, while two

tennis balls provide orthogonal support and can slide as the

robot moves across hard floor. The choice of tennis balls

provides additional stability to the robot as the rubber will

absorb some of the oscillation in speeding up or slowing down.

The frame is made up of wood to ease in mechanical

construction and keep the overall weight of the robot down,

lessening the work done by the motors and minimizing

momentum in the rare event of a collision. The overall balanced

structure of the robot makes it more stable and less likely to fall

in a specific direction. Additionally, the battery and hardware

are stored on the lower circle of the robot. Since the battery is

the heaviest part of the robot, placing it at the base of the robot

helps to reduce any oscillation of the robot. We also oriented

the battery so that its weight is balanced between the two wheels

and the back tennis ball in order to reduce static friction upon

accelerating.

B. Motion Control

In order to further support robot stability, we first

implementing a trapezoidal velocity profile with a low constant

of acceleration. This was because it would cause less oscillation

of the robot upon stopping and starting. Upon testing, we

discovered that for driving forward, we needed a higher initial

speed in order to overcome the static friction. Once the robot

started moving though, we could back off to a slower speed.

Through these tests we determined the speed necessary to

reliably get the robot moving and set that as the initial speed

and then backed down to our desired forward driving. For

stopping, however, we did implement an incremental, linear

slope for decreasing the speed of the robot. This did help with

robot stability and minimize the oscillation of the robot. This,

in combination with the physical structure, helped keep the

robot stable and prevent food from rolling/falling off of the tray.

C. Sensors Signal Processing

A Raspberry Pi is used to process sensor input from our three

different sensors: one thermal camera, three ultrasonic sensors,

and one load sensor. First, a load sensor is used to detect

whether the food tray is empty. If so, the robot stops moving,

and waits for the tray to be refilled. Then, we use the thermal

sensor to get a thermal image of the room and detect any warm

bodies. The raspberry pi sends turning instructions to the

Arduino until the camera shows that the robot is centered

towards a warm body. Then the ultrasonic sensors are used to

determine the distance to the object, and driving instructions are

passed on to the Arduino.

18-500 Final Project Report: 05/08/2019

3

Figure 2: CAD for the robot structure Figure 3: Final design of robot

IV. DESIGN TRADE STUDIES

A. Crowd Detection

For the crowd detection part of the project, we considered

two general approaches: training a neural network using input

video feed from a camera, and using OpenCV color thresholds

to detect humans from thermal camera imagery. As discussed

in the design report, on a Raspberry Pi 3 B+ running at 1.47

GHz, the first approach would be too slow for our robot to meet

any system requirements. So we chose to implement the second

approach, by looking for pixels within a fixed temperature

threshold that we calibrated based on the environment. The

drawback for this approach was the limitation of a thermal

camera in identifying humans. For example, with a thermal

sensor, any heating in the walls could also be detected by our

algorithm as a human. However, this is not particularly

troublesome for our application area, because on detecting a

wall as a human, our robot would simply stop for a little bit, and

then turn away and move on to another heat-emitting-object.

This case was validated during our testing, when we were in a

room that had heaters near the walls. The robot detect the warm

“body”, but successfully stopped away from the heater, and

then turned away after some time. We also performed tests with

having one person/group stand at different locations in the

camera frame (at the very edge, about one-third of the way in,

or completely centered) to ensure that this module detects

people as expected. Table 1 to the right shows some of the

timing metrics for this implementation. These were calculated

by using python’s built-in time() functionality to get the exact

time metrics.

Hardware

Type
Module tested Expected

Time (ms)
Actual

Time (ms)

2.5 GHz

Macbook

Pro

Original (leftmost) 10 15.7

Final (is_centered) n/a 9.6

Raspberry

Pi 3 B+
Original (leftmost) 100 1226

Final (is_centered) n/a 881

Table 1: Timing metrics for the crowd detection module

The original design involved returning the coordinates of the

leftmost warm body in thermal image. However, because the

thermal camera had a narrower range than we expected, and the

robot needed some time to stop turning. So, we changed our

final approach to just use the image to determine if the robot

was almost centered towards a warm body, and then turn in

increments as required. Of course, this module reduced the

amount of computation required, and therefore, resulted in

some speed-up.

B. Sensors for Object Detection

As discussed in our design report, we considered two

different sensors: IR sensors, and ultrasonic sensors. We

decided to go with ultrasonic sensors, because IR sensors do not

work well in dark environments, and our application area is of

a cocktail hour reception, which is usually dimly lighted.

However, since ultrasonic sensors work by reflecting sound

waves, we faced some difficulty in detecting people wearing

soft clothing. We tested our object detection module by having

people and objects stationed 10 cm to 300 cm distances away,

for each of the three ultrasonic sensors. We also tested the side

ultrasonic sensors by testing the case where people could be

standing diagonally from the robot, and the robot could

potentially hit them, if it tried to go forward. By calibrating our

thresholds to be lower than the thresholds for the center sensor,

we passed these tests. Overall, we expected this entire module

to be take about 10 ms to return the object distance.

Unfortunately, it took much longer than that, because we had

setup the pins for communication with the raspi for each of the

three different sensors. To improve our performance, we

decided to only check the center sensor first, and then if there is

no obstacle up to 120 cm in front of it, we would check the other

two sensors. This significantly reduced our time for the case

when obstacles are far away. However, we would still need to

check all three sensors in order to determine if the robot needs

to stop.

18-500 Final Project Report: 05/08/2019

4

Module Time Taken (s)

get_dist_all 1.54

get_dist_mid 0.54

Table 2: Timing metrics for the object detection module

C. Motors

We originally considered selecting CIM motors for their

power and wide selection of gearboxes. However, upon further

calculations and a lower weight estimate for the robot, we

ultimately decided to purchase 12V Pololu motors. There were

a number of reasons why the Pololu motors were more

appealing. First of all, they were simpler because they came

with encoders and gearboxes already integrated with the

motors. This also meant that the Pololu motors were cheaper

than the original CIM motors/gearboxes. We saved roughly $70

per motor by not having to purchase separate gearboxes. In

addition, the Pololu motors can be controlled by a single motor

shield that works directly with an Arduino. The library is

straightforward with basic example code provided from the

manufacturer. This is much simpler than the process that the

CIM motors would have required. While the weight of the

battery may cause the motors to not be strong enough to drive

the whole robot, we can cheaply acquire a lighter/less powerful

battery that should still be able to power the Pololu motors since

they require far less power than the CIM ones. The only

downside to selecting the Pololu motors is that they will not be

able to overcome as many environmental factors, such as

bumps and ramps, since they are not as strong as the CIM

motors. Yet, due to all of their benefits and the scope of our

project, the Pololu motors were ultimately the better choice.

D. Power

The 18 Ah battery selected for our design was initially to

support stronger motors. However, since the motors were

switched for much cheaper counterparts, the battery can supply

power to the system for much longer than anticipated. Jumping

from about 30 min of movement to over 1.5 hrs, we can easily

sustain operation for the duration desired in our scope. A

smaller battery, a 11.1V 5Ah Gens ace LiPo battery, was found

to replace our original one. The new battery supplies 5Ah,

which still allows for our desired duration, but also lowers the

total weight of the robot significantly. With a lower weight, the

motors don’t have to work as hard, benefitting mobility. We

also used a separate battery, a 3.7V 3800mAh battery pack, to

power the Raspberry Pi so that it could be powered

independently from the motors.

In testing, we found some non-ideal factors caused runtime to

be slightly lower than the calculated 5 hrs (in worst case of

constant movement). As the battery depleted, the voltage

would drop, causing the motors to become slightly weaker.

This is only noticeable after about an hour of performance,

when the motors begin to slow when going over uneven parts

of the floor. Even still, the robot can easily have its main

battery replaced along with food, or be recharged during

downtime
.

V. SYSTEM DESCRIPTION

A. Software Design

We use a Raspberry Pi 3 Model B+ to determine robot

motion using input from the three different types of sensors.

This particular microprocessor was chosen, because the

Raspberry Pi 3 Model B series works well with OpenCV, and

it is one of the fastest options running at 1.47 GHz. Fast

processor speed is crucial for our project given our time

requirements for crowd detection. Looking closely at Figure 4,

first, a HX711 load sensor is used to detect whether the food

tray has a weight higher than our calibrated threshold. If not, we

assume the tray is empty and the robot would wait and do

nothing until it is refilled again. Once we determine that the

robot is loaded with food, we use an Adafruit AMG8833 8x8

Thermal Camera Sensor to capture the thermal image, and pass

it in to our thermal image processing module.

Figure 4.1: Software System Flow Chart with blue representing the robot

control module, red representing the crowd detection module, and yellow

representing the object detection module

The 8x8 image produced by the thermal camera is very

difficult to process. So, the thermal image processing module

first applies bicubic interpolation to convert the small image

into a 1024 pixel (32x32) image. This smooths the input image

and makes it easier to detect crowds using OpenCV. First, we

denoise the input frame by applying a Gaussian blur. Then, we

convert the RGB (red-green-blue) pixel values into HSV (hue-

saturation-value), and apply a predetermined threshold such

that, the result is a black and white image in which all pixels

within the threshold are white, and the rest are black. Then the

18-500 Final Project Report: 05/08/2019

5

erode function is applied to the black and white image in order

combine the white areas that are very close to each other. Once

this is done, we find the enclosed contour for each white area.

If no contour is present i.e. the image has no pixels that fall

within our threshold, then it is determined that no crowd is

present, and the human_centered function returns false. Note

that because our thermal camera has a very narrow input range,

we do not have to worry about two groups of people being seen

in the same thermal image frame. Therefore, we can just get the

centroid of the contour with the largest area. If the x-value of

this centroid is less than 20 pixels into the frame from either the

left or the right, the robot is not centered to the robot, and again

a false value is returned. Otherwise, the function returns true.

Figure 4.2 shows a flow chart summarizing this module.

Figure 4.2: A flow chart zooming into the crowd detection module

If the crowd detection module’s centered function returns

false, the raspberry pi sends a turn signal to the arduino, and

then takes a picture again after it has turned by an increment. If

the robot is centered, we then process the three HC-SR04

Ultrasonic Sensors to detect the distance from that crowd, and

any other obstacles if applicable. These sensors were used

because they have a good range for our requirements (i.e.

greater than about 8 feet), and are pretty standard-use when

working with Arduino or Raspberry Pi. Unfortunately, these

sensors only have a range of 15 degrees, so we have to process

data from all three of them in order to be sure that the robot

would not run into obstacles. First, we get the distance to an

obstacle from the ultrasonic sensor located at the center of the

robot. If that distance is greater than a fixed threshold (currently

120 cm), we check the side sensors (with a threshold of 50 cm)

to be sure that the robot can move forward without hitting an

object. If the crowd is out of range of the ultrasonic sensors, or

the crowd is nearby but further than 120 cm away, the robot

control module would be signaled to move forward. Once the

ultrasonic sensors detect a distance less than 120 cm, the robot

control module is signaled to stop the motors. As the robot

slows down, it ends up stopping about 1 foot away from people.

Currently we have set a stop time value of 5 seconds to give

people enough time to pick up their food. Once the 5 seconds

time is up, the robot would spin again to find the next warm

body, and perform all of the aforementioned tasks again.

As an additional feature, the robot also makes auditory

announcements when completing certain actions. This is

controlled in the software, which plays specific announcements

before the robot begins spinning or driving forward in order to

alert any guests close to the robot. It also invites guests to take

food when it stops close to it. These announcements help to

make humans near the robot aware of its presence and helped

with debugging.
.

B. Motor Control and Communication Design

The two motors are controlled by an Arduino via a Pololu

Dual VNH5019 Motor Shield. This motor shield is specifically

designed to interface with the Pololu motors and comes with an

easy to use Arduino library for controlling the motors. In order

to facilitate the robot’s motion, we wrote functions to handle

each of the primary driving instructions: forward, turn, and

stop.

The Arduino communicates through a serial connection to

the raspberry pi. Upon powering up, the Arduino sends a serial

message to the raspberry pi indicating that it is ready to begin

receiving instructions and waits for a response from the

raspberry pi. Once the pi ensures its systems are ready, it waits

for and then receives the initial message from the Arduino. At

which point, it begins the process outlined in the previous

section and decides which driving instruction should be

executed. Once the instruction is determined, the raspberry pi

writes the instruction to the serial line and waits a fixed amount

of time for the instruction to be executed. Meanwhile, the

Arduino reads the message, updates its driving state, and

executes the specified command.

For forward, the Arduino sets the motors speed to a defined

maximum speed. This speed was determined through extensive

testing and is the minimum speed required to reliably overcome

initial friction and get the robot moving forward. After a brief

time at this speed, the robot slowly backs down to a slightly

smaller speed. Driving at this speed gives the robot more time

to sense obstacles and stop before hitting them. For this state,

the Arduino checks for incoming commands from the raspberry

pi after each change in speed in order to catch all stop

commands as quickly as possible.

For stopping, the Arduino incrementally decreases its

operating speed until the robot is no longer moving. This

18-500 Final Project Report: 05/08/2019

6

happens without any checking for incoming commands from

the raspberry pi in order to make sure the robot stops as quickly

as possible to prevent hitting people or obstacles. We decrease

the speed incrementally in order to minimize the oscillation of

the robot upon deceleration.

For turning, we set the motors to a defined speed for a fixed

amount of time and then set them to zero. Due to the

construction of the robot and the placement of the tray on the

load cell, we were able to make these immediate changes in

acceleration without causing significant jarring of the food tray.

The time interval used for turning was based on

experimentation and results in the robot turning 30-45 degrees

each time. The speed was determined through testing as well

and is the minimum amount of speed required to reliably cause

rotation of the robot. Once a turn is completed, the Arduino

waits for the next command from the raspberry pi.

C. Circuit Design

All sensors are controlled by the Raspberry Pi, while the

Arduino controls the motor shields and thus the motors. The

Arduino is powered by the Raspberry Pi since the Pi

communicates to the Arduino through the serial connection

anyway. The motors are powered by the external 12V battery

through the motor shield. The motor shield is controlled by the

Arduino which determines how much current passes through

shield. The motors by far draw the most current. With a 5Ah

battery, the robot can function for well over 1 hour. The motors

draw 0.5A each when driving forward or turning, and 2mA

when idle. The motor shield connects the motors in parallel

since both motors need 12V to operate. The battery used is rated

for 11.1V, but when fully charged is measured at 12V. See

Figure 5 for circuit diagram.

Figure 5: Block diagram for robot circuit

VI. PROJECT MANAGEMENT

A. Schedule

The schedule is included at the end of the document labeled

Figure 6. Each task in our schedule is marked with a task

number T1 through T51, and its dependencies are listed in

parentheses. For example, “T32. Integrate the load sensor with

the rest of the code” is dependent on “T7. Assemble tray with

load cell”, and “T30. Write framework for empty tray”. Our

schedule also shows the tasks by person. Matteo is in green,

Isabel is in blue, and Kashish is in orange. Purple tasks are team

efforts where multiple members worked to complete it.

B. Team Member Responsibilities

Responsibilities were divided based on course backgrounds.

Kashish took charge of software development and writing the

program for human detection, movement, etc. This involved all

work with configuring and communicating with the Raspberry

Pi and developing our movement control algorithm. Isabel lead

efforts in the physical structure of the robot, from the chassis to

the motors and putting it all together. In addition, she worked

on the Arduino code for controlling the motors and

communicating with the Raspberry Pi. Matteo handled power

constraints, circuit design, and the selection of peripheral

features, such as the load cell and music speaker. The whole

team was responsible for budget, appearance, and any course-

related tasks.

C. Budget

A list of all the parts we bought is attached at the end of this

report in Table 3.

D. Risk Management

Significant delays in the ultrasonic sensor ping and the robot

response introduced risks in the robot stopping in time to avoid

hitting obstacles. There were even be instances where the

ultrasonic sensors fail to detect an object at all, especially when

it was covered in loose/soft clothing and had no hard surface.

To first accommodate this risk, we decided to drive the robot as

the slowest speed possible that would still reliably result in the

robot moving in the desired direction. This ended up being

roughly 1 ft/s. This gave us the maximum amount of time

possible to get feedback from the sensors and act on it before

colliding with the obstacle. We also increased the rate of

deceleration for stopping to shorten the time required to

completely stop. Additionally, we designed the robot to make

auditory announcements, so that patrons would be aware of the

robot’s presence and its actions.

Even with these risk reduction measures, we encountered an

issue with the ultrasonic sensors not detecting certain types of

18-500 Final Project Report: 05/08/2019

7

clothing. To mitigate this during the demo, we had participants

hold an 8”x8” wooden board at the height of the ultrasonic

sensors to ensure they would detect the human. We also put stop

buttons on the front and back of the robot that immediately cut

off power to the motors, in case we, or any guests, needed to

shut it off immediately. All this considered, even in the event of

a collision, the robot did little harm due to its light weight and

slow speed. It would come to a stop with minimal applied

resistance.

 There was also the risk of the robot being unbalanced and

shaking during acceleration. While the robot did oscillate upon

changes of acceleration, the physical construction of the robot,

with the tennis balls on the front and back, prevented the robot

from falling in either direction. They also acted as small shock

absorbers in those instances. In addition, we incrementally

decreased the speed of the robot during deceleration which

decreased the overall oscillation of the robot. We also attached

the battery and hardware to the base to prevent top-heaviness.

We further stabilized the tray with foam to prevent it from

wobbling. In the end, the food did not shake off the tray during

the demo and stayed securely in place.

VII. RELATED WORK

There are several products in market, such as the Rumba, that

have mobility similar to our robot. Many such products also are

capable of object detection through the use of various sensors.

Even within our design class, there were projects dealing with

floor mapping and crowd detection, all using a similar set of

sensors. Should the projects be combined, we could design a

robot with smarter pathfinding through groups of guests, as well

as more functions for interacting with guests, such as taking

pictures.

VIII. SUMMARY

Overall, our system was able to meet the general expectations

we had for it. That being said, we were not able to meet all of

our design specifications. In terms of mobility, we decided to

have the robot move at a speed of roughly 1 mph instead of 2

mph in order to increase safety. Our robot was able to move at

2 mph, however. Also, YoServe was able to meet the

specification of not having food fall off upon starting, turning,

or stopping.

In terms of performance, the robot was able to operate for an

hour. For human detection, the thermal camera is able to detect

people, both individuals and groups of people, within 8 meters

of the robot, however it does need to be calibrated for the

temperature of the environment in order to do so.

With respect to safety, while the ultrasonic sensors can detect

hard objects within 12 feet of the front of the robot, this is not

reliable, especially for humans and different types of soft

obstacles. If an object is detected while it is 4 feet away from

the robot, it is able to stop before it is 1 foot away from the

obstacle. Although, this is not guaranteed if the obstacle is

detected much closer than 4 feet. We did meet the requirement

of having an emergency button on the front and back of the

robot which immediately stop the motors. We also managed to

have the robot make auditory announcements so its presence

was noticed by guests, however the speaker ended up being too

quiet to be heard in the demo space.

In terms of sensing, the load cell can detect food items on the

tray and recognize when it is empty. When it does so, it stops

moving until the tray is refilled. We were not able to meet our

sensing time requirements. Our original goal for taking and

processing a thermal image was 100ms. It ended up taking us

roughly 900ms to detect humans. As for the time taken for the

software algorithm to know if an object is detected, we

originally hoped for it to be 10ms and it turned out to be ~1.5s.

While not addressed in the specifications, the ‘start moving

forward’ command takes ~0.9s to execute and the motor stop

sequence takes 1.2s for the robot to come to a complete stop.

A. Future Work

While we do not plan to continue this project, we have

thoughts on how we would do so. We would hope to find

solutions to shorten the time needed to check surroundings as

the robot turns to look for more people. To do this, we would

use higher quality sensors and a processor faster than our

Raspberry Pi, or at least find a way to thread sensor processing

to do it in parallel.

B. Lessons Learned

Integration of tasks, both hardware and software, takes time,

often more than is anticipated. Budget the schedule for lots of

debugging. Sometimes this requires joint effort and can’t be

done in parallel, tasks that may seem independent are often

related and need to work together at some point. Everyone

needs to be involved in order for this process to go as smoothly

as possible. Additionally, purchase extra boards and materials

ahead of time, as they will probably break. Make sure to

communicate and know what your partners are doing and

working on, you never know when you might be able to help

them with an issue to need to fill in for them. Also, it just helps

to make you feel like a team and prevent animosity.

18-500 Final Project Report: 05/08/2019

8

REFERENCES

[1] Fernández-Caballero, A., Castillo, J., Martínez-Cantos, J. and Martínez-
Tomás, R. (2010). Optical flow or image subtraction in human detection from

infrared camera on mobile robot. Robotics and Autonomous Systems,

58(12), pp.1273-1281.

[2] Keys, R. (1981). Cubic convolution interpolation for digital image

processing. IEEE Transactions on Acoustics, Speech, and Signal Processing,
29(6), pp.1153-1160.

18-500 Final Project Report: 05/08/2019

9

Figure 5

Table 3: Parts Ordered and Budget Tracking

18-500 Final Project Report: 05/08/2019

10

Figure 6. Complete Schedule

