
18-500 Final Project Report: 03/04/2019

1

Abstract— Our project is to design and build a robot that

can autonomously navigate a room to serve appetizers to
guests. While there are currently robots that autonomously
clean floors and cut grass, we aim to bring robots to the
cocktail hour scene. Utilizing thermal image processing and
object detection, our YoServe Appetizer Bot will make
serving guests as easy as loading up a tray and pressing go.

Index Terms— Appetizers, Human Detection, Motors, Object
Detection, Robot, Thermal Camera, Ultrasonic Sensors

I. INTRODUCTION

ave you ever been at an event or cocktail hour hungry for

some delicious appetizers yet engaged in a conversation
without any opportunity for escape? Have you found yourself
wishing the food might just come right to you? Well our
project will leave your mingle time undisturbed and your
stomach satisfied! Our project is to design and build a robot
that can autonomously navigate a room to serve appetizers to
guests. The domain of function is an open, smooth-floored
room without furniture but full of people, who may be moving
around themselves. We aim for it to operate at a human
walking pace and safely approach guests. It will detect and
stop operation when its tray is empty.

The food industry currently employs a variety of robotic
technology. However, even in smaller restaurants and food
locations, these robots are typically stationary and perform one
repetitive task. Yet similar to our YoServe Bot, some
companies have started developing mobile food service
robots, such as PepsiCo’s snackbot. Our robot will differ from
theirs in that we will be serving food on an open tray that will
increase accessibility for our guests. We will also be working
in an indoor environment, which will require less reliance on
outdoor paths and roads. Instead we will focus on finding heat
sources within the room in order to directly approach humans.
Finally, while other snack delivering robot projects have been
documented, they are, in general, meant to carry small treats
and designed for personal usage. Our robot will be large
enough to support a number of appetizers and serve a variety
of guests.

II. DESIGN REQUIREMENTS

In terms of mobility, the robot will move at a rate of 2 mph,
average human walking speed. It will also be stable enough
that food carried on its tray will not roll/fall off upon stopping
or starting. We will test this by conducting a “room test”.
During this test, the robot will drive in an empty room and
carry a completely full tray of food, accelerate to 2 mph, and
then come to a full stop. We will then evaluate if any food has
fallen off the robot.

 The robot will be able to operate for an hour in its party
environment. While power usage can vary depending on
room situation, we can calculate a worst-case scenario where
the robot is constantly moving and drawing current through
the motors. Later calculations can be done by averaging idle
current and moving current based on the percent time in each
state.

For human detection, we require the thermal camera and
image processing algorithm to detect people within 8 meters
of the robot. We want to be able to detect just one guest all the
way through a group of guests clustered together. We plan on
testing this by positioning 1 person to the left, right, and center
of the thermal camera’s frame, at approximately 8 meters
away and evaluating if the robot is able to detect the person.
Then, we will repeat the test with a group of humans in the
same positions.

 For safety, we want the robot to be able to detect when
humans are within 5 feet of the front of the robot and then stop
by the time they are 1 foot away from the robot. To test this,
we will conduct a stop test. This test will be conducted two
different ways. In the first, a person will walk towards the
front of the robot. We will measure both when it detects the
person and when it finally stops. In the second way, we will
put a person, within a 5 feet radius, to the side of the robot as
it turns. The robot should be able to detect the human as it
turns and make the decision to not travel in that direction. In
addition to these safety tests, we will also have an emergency
button on the back of the robot, which will immediately stop
the motors. In this case, the stability requirement of not having
food fall off the tray will not be enforced. Also, we will have
the robot play music or make some sort of noise, so that its
presence will be noticed by guests.

The robot shall detect when it has run out of food. We will
complete this test by filling up the tray completely, taking all
the items off, and then refilling it. The robot should stop
moving when all of the food is removed and resume moving

Team D1: YoServe

Authors: Isabel Murdock, Kashish Garg, and Matteo Longo: Electrical and Computer Engineering,
Carnegie Mellon University

H

18-500 Final Project Report: 03/04/2019

2

when the tray is refilled.
In terms of sensor and image processing, we want the time

to find if an image contains a heat signature worth following
to be under 100 milliseconds. We also want our software
algorithm to know within 10 milliseconds if an object is
detected.

For planning and motion, the robot should spin at most 360o
before deciding a direction to move in or making the decision
to remain where it is. We will monitor this throughout all of
our testing, as well as test the robot both in an empty room and
with people completely surrounding it in order to ensure that it
never continuously spins.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our YoServe robot will be designed to meet this use in
several ways. It will utilize a Raspberry Pi for sensor data
processing, and Arduino for motor control, and have a wooden
frame suited for navigation and tight turns. As shown in figure
1, the Raspberry Pi will take in input from three different
sensors: the ultrasonic sensors, the thermal camera, and the
load sensor in order to determine the motion required from the
robot. It will pass the driving instructions to the Arduino,
which will use the motor shields to control the motors and
navigate as per the instructions provided.

 Figure 1: Overall system block diagram

A. Physical Structure

The overall shape of the robot, as shown in Figure 2 on the
next page, is tall and cylindrical. The top level is
approximately 38 inches high to ease the retrieval of food by
standing patrons. The round chassis allows the robot to turn
without changing its profile, which means turning is
guaranteed to cause no collisions and robot will not get stuck
in tight corners. The two wheels are centered on one axis,
while two tennis balls provide orthogonal support and can
slide as the robot moves across hard floor. The choice of

tennis balls will provide additional stability to the robot as the
rubber will absorb some of the oscillation in speeding up or
slowing down. The frame will be made up of wood to ease in
mechanical construction and keep the overall weight of the
robot down, lessening the work done by the motors and
minimizing momentum in the rare event of a collision. The
overall balanced structure of the robot will make it more stable
and less likely to fall in a specific direction. Additionally, the
battery and hardware will be stored on the lower circle of the
robot. Since the battery is the heaviest part of the robot,
placing it at the base of the robot will help to reduce any
oscillation of the robot. We will also orient the battery so that
its weight is balanced over the two wheels rather than the
tennis balls so that the robot will not have to overcome as
much static friction upon starting.

B. Motion Control

In order to further support robot stability, we will
implement a trapezoidal velocity profile with a low constant of
acceleration. This will cause less oscillation of the robot upon
stopping and starting. We will conduct tests in order to
determine the slope of the velocity profile. Additionally, if we
continue to find oscillation in the robot, we will round the
corners of the trapezoidal velocity profile until there is
minimal oscillation. This, in combination with the physical

structure, should keep the robot stable and prevent food from
rolling/falling off of the tray.

C. Sensors Signal Processing

Looking closely at the sensor input processing, a Raspberry
Pi 3 would be used to process the input from our three
different sensors: the thermal camera, the ultrasonic sensors,
and the load sensor. First, a load sensor is used to detect
whether the food is tray empty. If so, the robot stops moving,
and waits for the tray to be filled. Then we would use the
thermal sensor to get a thermal image, which can be processed

18-500 Final Project Report: 03/04/2019

3

by OpenCV in Python to figure out areas of crowd in the
room. Using OpenCV’s inRange function for identifying areas
falling with a particular color threshold, we can get the general
direction the robot needs to move in order to reach a person or
a group of people. Then, we use the ultrasonic sensors to
detect the distance from that crowd, and stop the robot when
that distance becomes less than 1 foot. Once the distance and
direction has been determined, the Raspberry Pi would then
send over these driving instructions to the Arduino for
controlling the motors.

Figure 2: CAD design for the robot structure

IV. DESIGN TRADE STUDIES

A. Crowd Detection
For the crowd detection part of the project, we considered

two general approaches: training a neural network using input
video feed from a camera, and using OpenCV color thresholds
to detect humans from thermal camera imagery. One of the
biggest advantages of the first approach is the availability of
widely used frameworks that can be used for implementing
human detection. This would have meant a lot of online
support for bug fixes and improvements. The problem with
this approach is the time it takes; each frame of the video feed
would have to be fed into the neural net in order to detect a
human. Kashish had previously worked on a similar project on
her 2.4 GHz Macbook Pro, and it was quite slow. On a
Raspberry Pi 3 B+ running at 1.47 GHz, this approach would

be too slow for our robot to meet any system requirements. If
we wanted to run the algorithm faster, we would need to buy
much faster hardware options, which usually cost well more
than our allocated budget. The second approach works very
well in terms of speed, since it is only looking for pixels
within a fixed range. On the 2.4 GHz Macbook Pro, this takes
less than 10 milliseconds, so it should still be fast enough for
our requirements on the Raspberry Pi. The drawback for this
approach is the limitation of a thermal camera in identifying
humans. For example, with a thermal sensor, any heating in
the walls could also be detected by as a human. However, this
is not particularly troublesome for our application area,
because on detecting a wall as a human, our robot would
simply stop for a little bit, and then turn away and move on to
another heat-emitting-object. Since the second approach works
for our requirements, and is well within our budget, that’s the
approach we chose to implement.

B. Sensors for Object Detection
For the object detection part of the project, we considered

two different sensors: IR sensors, and ultrasonic sensors. IR
sensors work by reflecting light waves to figure out the
proximity or distance to objects. In general, they work better
at defining edges of an area than ultrasonic sensors. However,
IR sensors are more sensitive to variant light conditions. In
particular, they do not work well in dark environments.
Ultrasonic sensors, on the other hand, are usually insensitive
to hindering factors like light. However, since they work by
reflecting sound waves, they cannot really detect people
wearing soft clothing like fur coats etc. For our application
area of a cocktail hour, appetizer-serving robot, we can expect
the lighting to be pretty dim in the room. We can also expect
that, in general, we would be in an enclosed room, which
would mean that people would not be wearing their coats.
Therefore, we chose to go with the ultrasonic sensors.

C. Motors
We originally considered selecting CIM motors for their

power and wide selection of gearboxes. However, upon
further calculations and a lower weight estimate for the robot,
we ultimately decided to purchase 12V Pololu motors. There
were a number of reasons why the Pololu motors were more
appealing. First of all, they were simpler because they came
with encoders and gearboxes already integrated with the
motors. This also meant that the Pololu motors were cheaper
than the original CIM motors/gearboxes. We saved roughly
$70 per motor by not having to purchase separate gearboxes.
In addition, the Pololu motors can be controlled by a single
motor shield that works directly with an Arduino. The library
is straightforward with basic example code provided from the
manufacturer. This is much simpler than the process that the
CIM motors would have required. While the weight of the
battery may cause the motors to not be strong enough to drive
the whole robot, we can cheaply acquire a lighter/less
powerful battery that should still be able to power the Pololu

18-500 Final Project Report: 03/04/2019

4

motors since they require far less power than the CIM ones.
The only downside to selecting the Pololu motors is that they
will not be able to overcome as many environmental factors,
such as bumps and ramps, since they are not as strong as the
CIM motors. Yet, due to all of their benefits and the scope of
our project, the Pololu motors were ultimately the better
choice.

D. Power
The 18 Ah battery selected for our design was initially to

support stronger motors. However, since the motors were
switched for much cheaper counterparts, the battery can
supply power to the system for much longer than
anticipated. Jumping from about 30 min of movement to over
1.5 hrs, we can easily sustain operation for the duration
desired in our scope. A smaller battery may also be able to
replace our current one. The new battery could supply around
5-10 Ah, which would still allow for desired duration, but also
lower the total weight of the robot significantly. With a lower
weight, the motors wouldn’t have to work as hard, benefitting
mobility.

V. SYSTEM DESCRIPTION

A. Software Design

Figure 3: Software System Flow Chart with blue representing the robot
control module, red representing the crowd detection module, and yellow
representing the load and ultrasonic sensor processing module

We use a Raspberry Pi 3 Model B+ to determine robot
motion using input from the three different sensors. This
particular microprocessor was chosen, because the Raspberry
Pi 3 Model B series works well with OpenCV, and it is one of
the fastest options running at 1.47 GHz. Fast processor speed
is crucial for our project given our time requirements for
crowd detection. Looking closely at Figure 3, first, a
KNACRO load sensor will be used to detect whether the food
tray has a weight higher than our calibrated threshold. If not,
we would assume the tray is empty and the robot control
module would be signaled to stop the motors. This check
would be performed in a loop, and the robot would wait until
the tray has been loaded again. Once we have determined that
the robot is loaded with food, we would use an Adafruit
AMG8833 8x8 Thermal Camera Sensor to capture the thermal
image, and pass it in to our thermal image processing module.

In particular, for the thermal image processing module, we
decided on using OpenCV to identify areas of crowd, and get
their direction. First, we de-noise the input frame by applying
a Gaussian blur. Then, we convert the RGB (red-green-blue)
pixel values into HSV (hue-saturation-value), and apply a
predetermined threshold such that, the result is a black and
white image in which all pixels within the threshold are white,
and the rest are black. Then the erode function is applied to the

black and white image in order combine the white areas that
are very close to each other. Once this is done, we find the
enclosed contour for each white area. If no contour is present

18-500 Final Project Report: 03/04/2019

5

i.e. the image has no pixels that fall within our threshold, then
it is determined that no crowd is present, and a negative value
is returned from this module. However, if more than one
contour is present, we get the centroid for the leftmost
contour. This is done because our robot always spins to the
right, and we want to move towards the person nearest to the
robot in angle. Using the centroid (x,y), we can calculate the
direction the robot needs to head in. Figure 3.1 shows a flow
chart summarizing this module.

Figure 3.1: A flow chart zooming into the thermal image processing module

Once we have the direction from the thermal image
processing module, it would be passed on to the robot control
module that would spin the wheels accordingly. Then, we use
a HC-SR04 Ultrasonic Sensor to detect the distance from that
crowd. These sensors were used because they have a good
range for our requirements (i.e. greater than about 8 feet), and
are pretty standard-use when working with Arduino or
Raspberry Pi. In this case, because we are connecting them to
the Raspberry Pi, we would use the CircuitPyton library (free
and easy to install) to interact with the sensor output. If the
crowd is out of range of the ultrasonic sensors, or the crowd is
nearby but further than 1 foot away, the robot control module
would be signaled to move forward. This is a wait loop similar
to the one used for the load sensor, in that, once the ultrasonic
sensors detect a distance less than 1 foot, the robot control
module would be signaled to stop the motors for a
predetermined time threshold. This threshold can be changed

as necessary, but has currently been set to 1 minute, giving
people enough time to pick up their food.

Once the minute is up, or in the case where the image
processing module return an error, we want to add a random
spin to our robot a little, so it doesn’t detect the same
person/group again. However, we do not want our robot to
keep spinning in case there are no people around it, so we
keep a counter to check its rotation, and stop for a
predetermined time, in this case 3 minutes, before checking
for the tray weight again.

B. Circuit Design
All sensors will be run by the Raspberry Pi, while the

Arduino controls the motor shields and thus the motors. The
motor shields will be controlled by how much current passes
through them, separate from the Arduino so as to not fry the
board; the motors pull by far the most current. With an 18 Ah
battery, the robot can function for over 1.6 hours. Since both
boards and motors need 12V to operate, we will wire them in
parallel. The battery may show 13V between nodes, so a
small resistor can be placed at either the anode or
cathode. See Figure 4 for circuit diagram attached at the end
of this document.

VI. PROJECT MANAGEMENT

A. Schedule
The schedule is included at the end of the document labeled

Figure 5. Each task in our schedule is marked with a task
number T1 through T28, and its dependencies are listed in
parentheses. For example, “T28. Test empty tray” is
dependent on “T15. Build tray for food”, and “T27. Write
framework for empty tray”. Our schedule also shows the tasks
by person. Matteo is in green, Isabel is in blue, and Kashish is
in orange.

B. Team Member Responsibilities
Responsibilities were easily divided based on course

backgrounds. Kashish is taking charge of software
development and writing scripts for human detection,
movement, etc. Isabel is leading efforts in the physical
structure of the robot, from the chassis to the motors and
putting it all together. Matteo is handling power constraints,
circuit design, and any peripheral features, such as the load
cell and playing music. The whole team is responsible for
budget, appearance, and any course-related tasks.

18-500 Final Project Report: 03/04/2019

6

C. Budget

Product Name Qty Price/unit Total

Motors + Gearboxes 2 36.95 73.9

Wheels 1 9.95 9.95

Motor Shield 1 49.95 49.95

Brackets for motors 1 7.45 7.45

Hubs 1 6.95 6.95

Power Supply 2 24 48

Thermal Sensor 1 40 40

Ultrasonic 2 5 10

Load cell 1 8.5 8.5

Tennis balls 2 3 5.99

Raspberry Pi 1 35 35

Arduino 1 16.98 16.98

Shipping Adafruit 1 8 8

Shipping Pololu 1 6.72 6.72

Shipping BatteryShark 1 26 26

Total: 327.39

Table 1: Parts Ordered and Budget Tracking

D. Risk Management
Should there be significant delays in the ultrasonic sensor

ping and the robot response, the robot would face risks in
stopping in time. There could even be instances where the
ultrasonic sensors fail to detect an object at all, especially if
it’s covered in loose cloth and has no hard surface. To
accommodate this risk, we have chosen to keep a low
maximum speed for the robot. Even in the event of a
collision, the robot of this weight class and low speed will do
little to no harm.

 If those undetected obstacles are people, there will be
further safeguards. The robot will be continuously playing
pleasant music, so patrons will be made aware that the robot is
approaching. If the robot was to get too close, patrons would
be able to move out of the way. There will also be an
emergency stop button on the robot itself. When pressed, this
button will cut power to the motors and stop the robot
immediately.

 There is also a risk of the robot being unbalanced and
shake during acceleration. We currently have no reason to
believe this shakiness will result in food spillage, since the
base has four solid points of contact. However, the battery
and hardware will be attached at the base to prevent top-

heaviness. If testing shows that the robot still shakes too
much, we will look into methods of providing feedback to the
motor system.

18-500 Final Project Report: 03/04/2019

7

Figure 4: Block Diagram for robot circuit

18-500 Final Project Report: 03/04/2019

8

Figure 5: Schedule

