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Abstract—A system capable of taking a digital image and 

painting a watercolor version on a physical canvas. The aim of the 

project is to create an image which looks naturally painted, not a 

replica of the source image. At minimum, this product will be able 

to represent simple images or match the shape of the given image. 

The resulting image should be similar in terms of color gradients 

and general appearance and contrast. The system will consist of a 

2-dimensional gantry system to physically draw the picture along 

with a software component that will handle image processing. 

 
Index Terms— Gantry, Image Processing, Painting, Robot 

 

I. INTRODUCTION 

NE of the biggest goals in robotics is to create systems 

that behave more human-like. A large amount of research 

today is focused on creating robotic systems that replicate 

human tasks such as driving, speech comprehension and vision. 

Our intent is to break down this barrier between humans and 

robots in art. Our design is inspired by the gantry systems of 3D 

printers, which we combine with image processing and control 

systems to make a robot that can receive an image and paint it 

on a canvas. The most difficult part of this is to make the 

painting look natural and not robotic, while also maintaining 

accuracy and speed. This project does not aim to replicate how 

a printer makes an image pixel-by-pixel. To accomplish this 

task, we paint the picture using a paint brush and human-like 

strokes. Our approach takes the proven efficiency and accuracy 

of 3D printers to allow us to paint a pre-processed image using 

smooth and natural strokes 

Critical to our design is the ability to paint an image which is 

an accurate representation of the source image. This is 

measured using the structural similarity (SSIM) index, where 

we aim for a score of at least 0.2. Additionally, the total time 

for painting an image should be reasonable to the scale and 

complexity of the image, limited to 8 hours in the worst case. 

These metrics are key for our project to meet our goals of 

connecting robotic systems with art through a design which 

produces a painted image of good quality and can do so in a 

reasonable amount of time. 

II. DESIGN REQUIREMENTS 

The first requirement is that a digital input image of any size 

is capable of being rendered as the target image to paint and 

displayed back to the user. This step allows for an image to be 

rejected if the rendered painting is not of acceptable quality. 

This requirement is purely digital in nature and therefore can be 

tested using an image bank of 10 images which vary in image 

size and complexity. The successful design will be able to 

create renders of consistent quality across all scales and 

complexities, and will scale images which exceed the bounds 

of the painting space. This requirement will simply be measured 

by the program’s success at processing the given input image. 

Our next requirement is that we effectively use the full range 

of the palette which is integrated into the system. When painting 

an image the palette color with the lowest difference to the 

desired color should be chosen, measured using the HSV (hue, 

saturation, value) color model. Specifically, this color 

difference will be measured using the following equation: 

 Δ = (|H0 – Hr| + f * 0.1 * |S0 – Sr| + f * 0.15 * |V0 – Vr|) () 

In this equation, Δ is the color difference, H0 is the hue of the 

original color from the image, Hr is the hue of the color chosen 

by the robot, S0 is the saturation of the original color from the 

image, Sr is the saturation of the color chosen by the robot, V0 

is the value of the original color from the image, Vr is the value 

of the color chosen by the robot, and f is the weighting factor 

for brown. In our experimentation of color picking, we found 

several difficulties and realized it was a much more complicated 

process than initially expected. Hue, saturation, and value can 

not be weighted equally when determining the closest color. As 

a result, we choose to weight saturation and value less than hue 

by multiplying them with the constants of 0.1 and 0.15 

respectively. In addition, we introduced f, a weighting factor for 

brown. Unlike other colors, brown is not determined by a 

unique hue. Rather, its hue is orange, and it is defined by having 

a low value. As a result, when the normalized hue of the color 

is between 0 and 0.125, which is a region of orange-like hues, 

we define f to be 1.5, while normally it is 1, in order to more 

heavily weight value and saturation to more accurately pick out 

brown from orange. Another important consideration was that 

a hue of 0 and 1 both corresponded to red, as HSV values are 

depicted as a cylinder which wrap around. This was accounted 

for when writing the code that performed this algorithm and 

calculation. Finally, white, black, and gray are tested for 

initially before (1) is used, as those colors occur at extreme 

values of saturation and value. 

This color requirement can be tested using an image of our 

own palette; the pigment in the palette image should always be 

painted with that pigment. The image of our palette we will use 

is shown in Fig. 1, which will be used to verify the accuracy of 

our color picking. 
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Fig. 1. An image of our plaette which will be used to test our robot’s color 

selection. 

Our third requirement is that our product will create paintings 

that are visually similar to the original image. We require that 

our output painted image has a score of at least 0.2 according to 

the structural similarity (SSIM) index. This is a metric which is 

used to measure the perceived similarity of an image to the 

source and is commonly used for film and television [4]. We 

use this metric for this reason as it corresponds closely to the 

goal of our project. After testing the SSIM for various images, 

we found that professionally done water painting images of 

customer supplied images was roughly 0.4 on average. We will 

test our performance using an image bank of 10 images, shown 

in Fig. 2, which features images which grow in complexity. 

Using this bank, we will paint the images and test that the SSIM 

score is at least 0.2 for the first 8 images. The final two images 

are more complicated and are our stretch goals once we reach 

the scores for the first 8, so they will not necessarily be tested. 

Our final requirement is that our design operates in a 

reasonable amount of time as a function of image size and 

complexity, which we define using the following equation: 

 t = (1 + 𝝰) * (𝛃 * s) () 

In this equation, t is the estimated time, 𝝰 is a measure of image 

complexity, measured as 4 * (uncompressed image size / JPEG 

compressed size), s is the size of the painted image in square 

inches, and 𝛃 is a constant scaling factor of 4 (translating to 4 

minutes to paint each square inch). The equation for 𝝰 follows 

the logic that JPEG compression uses DCT-II coefficients to 

compress the image from a raw uncompressed size of the total 

image size and dimensions, meaning that the JPEG compressed 

size of an image gives rough estimate of how much information 

is contained in an image [5]. The image size painted can be 

variable, but is limited to 7.5x10 inches, and  from experimental 

testing 𝝰 can be up to 0.70 for a very complex landscape image, 

and as low as 0.04 for a single line. Equation (2) gives a rough 

estimate of the upper limit of the testing time, and is designed 

to have a limit of roughly 8 hours for the largest and most 

complex image. We will test our design using the same image 

bank from Fig. 2, which contains variably sized images as well, 

and will ensure that they all print in a time corresponding to (2). 

 

 

 

 

 Fig. 2. The test image bank we will use in testing. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

Our project will primarily be split into a physical hardware 

component and a software image processing component. The 

overall architecture of our project is represented in the block 

diagram depicted in Fig. 3. The physical component will be the 

robot itself, which includes the base and frame that supports the 

2D gantry system. The gantry system is supported by a frame 

that lies on the base of the robot. The gantry system’s purpose 

is to move a painting head around the XY coordinate space 

above the paper, water, and palette which are lying on the base. 

The painting head will control a paintbrush which is attached 

by a servomotor, and the head will be moved around by two 

stepper motors. These motors will be controlled by a Raspberry 

Pi. The servomotor is connected to the Raspberry Pi through a 

GPIO pin. In our original design, the stepper motors were 

controlled through a motor shield attached to the Pi, but in our 

final design these were controlled by stepper motor drivers in a 

cnc shield attached to an Arduino. The Pi sends commands to 

the Arduino which then controls the motors. 

The software component of our project centers on using 

image processing to convert a digital input image into 

instructions for our motors in order to successfully paint an 

image. A monitor will be connected to the Raspberry Pi which 

will allow the user to submit the digital image they wish to be 

painted. The monitor will also be used to display the result of 

the image segmentation process to the user, in order to show the 

user what the approximate final result of the painting will be. 

The input image will go through our image processing 

algorithm, which will first modify the image to be easier to 

paint, in the process of image segmentation. This process will 

reduce details and cluster colors together to create a simpler 

image for painting, which is what will be displayed to the user 

on the monitor. The image segmentation process will output 

data and information such as edges and colors, which will then 

be used in our stroke creation algorithm. This process will 

generate the sequence of strokes that our robot will need to 

perform in order to paint the image, with information such as 

color, length, and direction encoded. 

This sequence of strokes will be given to the stroke routine, 

which will control the motors. A list of strokes with a specified 

color and location are provided to the stroke routine, and the 

routine will instruct the motors of our robot to dip the brush into 

the water, paint, and finally onto the paper. Our motor control 

routines are the bridge between the software containing 

information of what to paint and the hardware which is capable 

of painting. The interface from the lowest level of motor drivers 

allow the stepper motors to rotate a set number of steps in a set 

delay time between each step. This functionality is provided 

through the use of an open source CNC control software called 

GRBL. Communication between the Pi and the Arduino is over 

the Arduino’s serial port, and GCode formatted instructions are 

sent which contain destinations for the X and Y components 

along with a set speed. This is an improvement over our original 

design review, which involved controlling the motors through 

a motor shield using code provided by the manufacturer. This 

change in the system gave us greater control of the movement 

of the motors for smooth acceleration and deceleration, and 

allowed us to provide the necessary power at times to overcome 

friction in our physical system. The servomotor is controlled 

through PWM, and its driver has an interface that allows the 

motor to be set to a certain angle. These interfaces are used by 

the control routines to abstract to higher level concepts such as 

dipping the brush to grab pigment or performing a stroke at set 

locations. These control routines receive input from the painting 

and stroke generation algorithms. 

 

Fig. 3. The block diagram showing our project’s archiecture and subsystems. 

 



18-500 Final Project Report: 05/08/2019 

 

4 

IV.  DESIGN TRADE STUDIES 

The four main requirements of our project were successful 

image rendering, accurate color picking from the available 

palette, visual similarity between the painted image and the 

original input, and a reasonable time taken for painting. We 

evaluated our design using the tests described earlier in the 

paper, and compared and analyzed these results against our 

expectations. These details will be outlined more 

comprehensively below in a section dedicated to each 

specification and metric. 

In designing our project, there were numerous trade-offs and 

options to consider when finalizing decisions. Two of the most 

important aspects of our design were the 2D gantry system, 

which is the primary physical and hardware component of our 

robot, and the image segmentation algorithm, which is the first 

step of our software component. A significant amount of 

testing, research, and experimentation was conducted in order 

to choose the best option to proceed with in these two 

subsystems. More information about this is included below, in 

two sections centered around the design decisions we made 

when creating the gantry system and choosing the image 

segmentation algorithm. 

A. Specification – Successful Rendering 

Our first specification was that our robot could, given any 

input image of any size, successfully process and render the 

image and display the result back to the user. This 

specification was not explicitly tested with a strict 

methodology, as any issues arising from a failed render would 

be quickly fixed. However, by the end of the project, we have 

used numerous images as input to our program, including all 

ten images in our image test bank, and all can be successfully 

rendered. As a result, we believe our program’s ability to 

process any input is fairly robust and comprehensive. 

B. Specification – Color Picking 

The next requirement was accurately choosing colors for 

each segmented region in the input image. Table I shows the 

results of a test involving the image of our palette from Fig. 1. 

As Table I shows, our color picking algorithm was not 

completely accurate. This was due to several complications 

which were mentioned previously; black, gray, white, red, and 

brown have unusual or extreme values in their HSV 

representation, which is why (1) went through many revisions. 

Ultimately, the algorithm we created satisfied us by being 

accurate in many scenarios. Although there were some colors 

which were not fully correct, as in the exact same pigment 

from the palette was not chosen for itself, all the incorrect 

colors were close in terms of being the same hue. Because of 

the similarity in many of the hues on our palette, for example 

there are several reds and blues on our palette which all look 

very visually similar, we did not think it was necessary to 

dedicate more time and effort to refining the algorithm even 

more. 

C. Specification – Visual Similarity 

The next specification of our system was that each painted 

image is visually similar to the original input image. As 

previously stated, this was tested using the structural similarity  

TABLE I.  CORRECTNESS OF OUR COLOR PICKING ALGORITHM AS 

TESTED BY AN IMAGE OF OUR PALETTE 

Category Number of Colors 

Correct 15 

Close 9 

Incorrect 0 

 

 (SSIM) index. This requirement was tested against our image 

bank of ten images, with the results shown in Table II. A small 

description of each image is included for reference. Images 9 

and 10 were not tested due to concerns over complexity and 

time, as those two images were originally stretch goals as 

well. As can be seen from the results in the table, the first 8 

images in our image bank all had an SSIM higher than 0.2, 

which was the threshold we determined when planning our 

tests and metrics. In fact, the results of the structural similarity 

tests were much higher than we expected, with every image in 

the first 8 having an SSIM of above 0.4. The results of some 

select images from the test bank are shown in Fig. 4, which 

displays our robot’s drawings of a rocket (image 6), tomatoes 

(image 7), and a fruit basket (image 8). 

D. Specification – Time Taken 

The final specification of our system was that it operated in a 

reasonable amount of time. Again referring to the results in 

Table II, the time it takes for the robot to paint an image 

increases as the complexity and size of the image increases. In 

addition, no image so far has taken over eight hours to paint, 

which was the maximum amount of time we wished our robot 

to perform in. However, images 9 and 10 are highly detailed 

and complex, and may possibly have taken over eight hours to 

paint. This was one of the reasons why we did not test images 

9 and 10, due to the interest of time. 

TABLE II.  STRUCTURAL SIMILARITY AND TIME TAKEN OF IMAGES IN 

OUR TEST BANK 

Image 

Description 

Image 

Number 

SSIM Time Taken 

Line 1 0.683 2 min 6 s 

Triangle 2 0.655 5 min 14 s 

Circle 3 0.691 5 min 3 s 

Shapes 4 0.465 8 min 29 s 

Colored Shapes 5 0.436 42 min 11 s 

Rocket 6 0.404 37 min 40 s 

Tomatoes 7 0.434 5 hrs 56 min 17 s 

Fruit Basket 8 0.552 2 hrs 32 min 34 s 

 

 

Fig. 4. The robot’s drawings of a rocket, tomatoes, and a fruit basket. Original 

images are images 6, 7, and 8 in the test image bank respectively. 
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E. Subsystem - 2D Gantry System 

There were several possible implementation paths available 

for designing the 2D gantry, and all would meet the major 

constraints of our project which are having a large enough 

workspace and a fine enough granularity. Because of this, the 

main considerations made when choosing the gantry design 

were complexity, cost, and risk. Our original plan was to use 

threaded rods which would support the carriage, allowing 

rotation of the threads to carry the device. We found that these 

designs were generally used for much larger constructions, as it 

can support a much heavier payload. For this reason, we chose 

to use a belt-based design as is commonly used in 3D printers, 

as these designs are commonly used for lighter loads and there 

are plenty of reference implementations available in the form of 

3D printers. 

When considering possible belt-based gantry designs, we 

found some of the most common designs are the Hbot system 

(depicted in Fig. 5), CoreXY (depicted in Fig. 6), and the 

Ultimaker style [2]. The Hbot uses a single very long belt 

arranged in the shape of an H, but the force applied is uneven 

and results in a moment created on the edge of the print head. 

The CoreXY system solves this problem using two belts 

arranged in an H shape which cross near the top. This design is 

fairly complicated, and the exact arrangement of the belts and 

pulleys required leaves a lot of room for error. Based on these 

factors, we chose the design used by the Ultimaker printers. 

This design uses several sets of belts which run in one direction 

and is almost entirely symmetric, making it simpler to 

implement. Additionally, Ultimaker is open source, allowing us  

to leverage their proven system with small modifications to 

work in our own design. We selected the gantry specification 

based on the simplicity of the Ultimaker style and the low risk 

due to the open-source nature of Ultimaker. 

 The final aspect of our design decision with respect to the 

gantry was to use existing parts or design our own. By designing 

and 3D printing our own parts, we allow for a more custom  

design, fast part availability, and an overall lower cost than 

purchasing the Ultimaker parts. The drawbacks are that this 

allows room for error by modifying an existing design which is 

known to work well. The Ultimaker parts were not available  

Fig. 5. The Hbot gantry design. 

Fig. 6. The CoreXY gantry design. 

from any major retailers in the US, and additionally the 

replacement part packs were expensive and contained many 

parts we wouldn’t need. For these reasons we chose to design 

our own parts and have them 3D printed. This design choice has 

allowed us to save over $100 of our budget, and allowed us to 

expand the working space of the head considerably. Inevitably 

the print head would have to be a custom part as well, and by 

modifying all of the other parts we reduced the number of 

constraints on the geometry of the print head which allowed us 

to pursue a clean and simple design.  

 Overall, our gantry design decision diverged first between 

a threaded rod or belt design, between several different belt 

designs, and finally on using custom or premade parts. We 

made the choice of a belt-based design for its prevalence in an 

area which is very similar to our goal, allowing us to keep risk 

low and manage complexity by using well documented existing  

designs. The Ultimaker design was chosen among other belt-

based designs again for its simpler design and proven 

effectiveness, which greatly lower our risk. Finally, the decision 

to modify the parts came at the price of a small increase in risk 

for the benefit of a significantly less constrained design space 

and lower cost. 

F. Subsystem - Image Segmentation Algorithm 

There were a few methods we considered for implementing 

an algorithm to pre-process the image. The reason that we 

needed to pre-process was because of the limitations of the 

physical system. The brush width must stay constant throughout 

the entire painting process, and thus we cannot draw something 

thinner than this width. The second limitation is that we have 

24 colors available. This means that all colors have to be 

approximated to those 24 colors. The third limitation is time. 

Since this is a physical system where motors have to move  

everything around, there are time constraints. To tackle these 

constraints, we considered the following pre-processing 

algorithms: blurring, edge drawing, k-means image 

segmentation, and mean shift segmentation. After some 

consideration, we decided to discard the idea of blurring. The 

original image used to test all of these image segmentation 

algorithms, depicting a fruit basket, is shown in Fig. 7. The 
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result of blurring it is shown in Fig. 8. 

Although blurring removes the detailed parts of the image, it 

still has gradients, which are very difficult to produce. It also 

becomes difficult to see where one object ends and another 

begins. Therefore, we decided to further explore drawing only 

the edges and image segmentation. To choose between these 

three methods, we calculated the accuracy of the output along 

with how complex the output image was. For accuracy, we 

looked at the output image and used the Structural Similarity 

Index to classify the methods. For complexity, we took the 

output JPEG file and compared it with the original JPEG file in 

terms of file size. As stated earlier, the JPEG file format 

compression is correlated to how complex an image is, so the 

more compressed the output file is, the less complex it is [5]. 

Table III shows the complexity and similarity for the three 

methods. 

The conclusions we can draw are that the k-means clustering 

and mean shift clustering are far better than edge drawing in 

both accuracy and complexity. Mean shift clustering is 27% 

less complex than k-means clustering but still manages to beat 

out k-means in terms of accuracy. It also returns objects of 

defined edges and uniform color, which is much easier for the 

physical system to draw than what k-means returns. The 

following images show the output of edge detection, k-means 

clustering, and mean shift segmentation. Fig. 9 shows the 

output of the original image after running edge detection, Fig. 

10 shows the result of running k-means, and Fig. 11 shows the 

result of running mean shift segmentation. All these images use 

the original fruit basket image in Fig. 7 as input. 

TABLE III.  STRUCTURAL SIMILARITY AND COMPLEXITY RATIO OF 

DIFFERENT IMAGE SEGMENTATION ALGORITHMS 

 SSIM Complexity Ratio 

Edge detection 0.0335 1.8982 

Mean shift 0.9432 0.7654 

k-means 0.9352 1.0471 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The original image of a fruit basket used in our image processing 

experimentation. 

Fig. 8. The result of blurring the image in Fig. 7. 

Fig. 9. The result of running edge detection on the image in Fig. 7. 

Fig. 10. The result of running k-means on the image in Fig. 7. 

Fig. 11.  The result of running mean shift segmentation on the image in Fig. 7. 
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V. SYSTEM DESCRIPTION 

Our project is split into three main subsystems: the 2D gantry 

system, which is the physical component that controls 

movement of the brush; the gantry control layer, which controls 

the motors of the gantry; and image processing and stroke 

generation, which is the software component of our project. An 

image of our robot as a whole can be seen in Fig. 12. 

A. 2D Gantry System 

The gantry system forms the physical portion of the project. 

This is a system of shafts, pulleys, and motors which allow the 

robot to dip a paintbrush in water, collect pigment from a 

palette, and perform a stroke on the paper. The design for our 

gantry follows the gantry design used in the Ultimaker line of 

3D printers, which is proven to be effective and accurate. 

Ultimaker is also entirely open source, and we were able to 

modify their CAD files as well as design our own which match 

our design more precisely. Our design does not use the 

Ultimaker parts, although they are available for purchase online 

through 3D printer repair sites. This is because by modifying 

the Ultimaker designs or creating our own we are able to keep 

costs low by 3D printing these parts, as well as make custom 

parts which match our design requirements more precisely. For 

example, the carriages were redesigned to fit an axes 

arrangement which was simpler for us to execute, as well as to 

carry the print head with the crossbar shafts in a different 

arrangement than the original design. 

The core of the gantry design is outlined in Fig. 13. Two 

stepper motors are located at one corner of the gantry and can 

be positioned anywhere in the z plane below the axes. Two sets 

of parallel axes are positioned to form a square, mounted in a 

bearing allowing the shafts to rotate easily. Both the stepper 

motors and the axes have a pulley around them, and are 

connected by a timing belt, labelled purple. This translates the 

rotation of the stepper motor to the axes. Each set of parallel  

Fig. 12. An image displaying the main portion of our robot. 

Fig. 13. The Ultimaker gantry design. 

axes are connected by two belts as well, labelled red and blue, 

which coordinate their rotations. A carriage rests on the axes 

and is attached to the belts, which allows the rotational motion 

of the opposite axes to be transferred into translational motion  

on the carriage. The carriages carry shafts which support a paint 

head in the center space, allowing the head to be coordinated in 

two dimensions. The paint head carries a servomotor which has 

a brush connected, allowing the brush to be raised from the page 

or lowered to make contact. This is suspended via a frame of T-

slotted aluminum, allowing the paint head to travel a fixed 

distance above the base. The implementation of our design is 

shown in Fig. 14.  

The major constraints on this system are that the brush head 

have a movable space which is large enough and that the brush 

can be controlled with sufficient precision. The working space 

must fit our canvas, 4x6 inches, our watercolor palette, about 

3.5x8.5 inches, and a cup of water, about 2x2 inches. This totals 

a working space requirement of about 8.5x8.5 inches. Our 

design consists of a frame of aluminum with inner dimensions 

of 16x16 inches. The entire inner dimension is not usable 

however, due to the space required within the frame for  

Fig. 14. A CAD model of our gantry system. 
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the axes to run uninterrupted. Considering the space required 

for the axes, as well as the pulleys and carriages mounted on the 

axes, the dimensions of the working space are 14x14 inches. 

Then this meets our requirement for the brush to be able to 

move over a sufficiently large area. This also leaves enough 

room for us to add a mechanism to stabilize the position of the 

paint head. By surrounding the shafts of the gantry with plastic 

tubing, we can further restrict the area the paint head can travel 

within. This allows us to place zero points near the components 

on the board which are frequently visited, and by driving the 

paint head into these tubes we can effectively guarantee the 

current position of the paint head. For our design with no 

feedback mechanisms, this design choice was critical to 

creating a system which could account for error. Additionally, 

the mounting height of the entire gantry is adjustable, but fixed 

during operation. This allows us to modify the height to fine 

tune the amount of contact the brush makes with the paper as it 

is rotated by the servomotor. This is the advantage of using T-

slotted aluminum as well as our own designed mounts for the 

axes.  

To address the precision allowed by this design, we must 

consider the precision of the stepper motors and the dimensions 

of the pulleys and timing belts. The stepper motors step size 

translates to a rotation of the axes by the same amount, as they 

are coupled by a timing belt. The rotation of the axes will result 

in a translational movement of the belt which carries the 

carriage according to the degree change and the radius of the 

pulley. From this we can form the equation x = 2𝜋r * (𝜃 / 360), 

where x is the translation of the carriage, r is the radius of the  

pulley, and 𝜃 is the change in angle of the axes. The pulley used 

in the Ultimaker, which we use in our design with a small  

change to the inner radius, has a radius of 0.25 in. Our stepper  

motors have 200 steps / revolution, which translates to a 1.8  

degree step size. Of all the cost-effective stepper motors we 

considered, this step size was standard. This gives us a 

minimum horizontal translation x = 2𝜋 * (0.25 in) * (1.8 / 360) 

≈ 0.008 in. or 0.2 mm. This means we can operate the paint head 

with a granularity of 0.008 inches, which is more than sufficient 

to carry out all the requisite strokes and operations. 

The integration of the gantry into our overall design is at the 

motors. The two stepper motors are connected to CNC shield 

mounted on the Arduino, and the servomotor are connected 

directly to the Raspberry Pi. Low level drivers are used for basic 

control of these devices, allowing their rotations to be 

orchestrated into an operating gantry system. 

The design of our gantry did not change much throughout our 

project, as we successfully leveraged the working designs of the 

Ultimaker. The major parts which were revised were the 3D 

printed parts, in order to allow for easier assembly and 

operation. The carriages were redesigned multiple times to 

create something which could connect easier than the Ultimaker 

design and be much more sturdy. Additionally, the pulleys were 

redesigned to allow for 4 screws rather than one for fixing onto 

the shafts. This allowed us to perfectly center the pulleys and 

reduce the amount of wobble in our gantry. 

B. Gantry Control Layer 

The gantry control layer consists of the motors that will 

control the 2D gantry system as well as the software in the 

Raspberry Pi that controls the motors. The code for this 

subsystem will be written in Python, and will use libraries to 

help interface the motors with the Pi. The servomotor, which 

controls the painting head, will be wired to the Raspberry Pi 

through a GPIO pin. We will be using the library gpiozero to 

interface with the servomotor, specifically the AngularServo 

class, which extends the Servo class [6]. This class allows 

control of a rotational PWM-controlled servomotor, and gives 

us the ability to set it to specific angles. For the library to work, 

we must set the servo to its maximum position and its minimum 

position and measure its angles, and input these angles as the 

constructor for an instance of the class. This setup will let us 

move the servomotor to any angle in between. 

The two stepper motors are controlled by stepper motor 

drivers, A4988, which are mounted into a CNC shield on the 

Arduino. This allows for precise control of the motors through 

the open source CNC software GRBL. The drivers allow us to 

precisely control the power which goes to the motors, and have 

a sufficiently high current rating to allow for the friction in the 

system to be overcome. The painting routine algorithm 

generates GCode instructions which are sent to the Arduino 

over the serial port. The GCode sent is very simple, with lines 

consisting solely of X and Y positioning arguments and a speed. 

During initialization of the gantry control layer, GRBL is 

configured to match the rotations needed to translate a single 

inch. 

 The original design used a motor shield which connected 

directly to the Pi. While this design gave us access to the motors 

directly, it proved ineffective at supplying power as there was 

no way to set current limits to the motors. By using stepper 

motor drivers we were able to ensure that the motors would 

always receive sufficient power and not draw a dangerous 

amount. Additionally the GRBL software allowed smoother 

accelerations and decelerations which allowed for smoother 

control of the gantry. 

With this, an interface was created for use by the painting 

routines. The gantry control layer will act as the intermediary 

between the software and hardware components of our project, 

allowing our code to easily call functions that will move the 

motors how we desire. This layer exposes a single interface 

which is the stroke routine, which can receive a list of xy 

coordinates which define a series of straight line segments and 

a number corresponding to one of the available colors in the 

palette. This function will then paint the entire stroke and return 

when completed. Doing so will require the paint head be moved 

to wash the brush, grab pigment from the palette, and trace the 

line segments on the page. It may be necessary to gather more 

water and more pigment while painting a single stroke, which 

is the responsibility of this layer to control. The layer above 

provides no information on how frequently to collect pigment. 

In addition to this single routine, a software model of how this 

layer should behave was created. This layer exposes an API 

which is exactly the same as the gantry control layer, but instead 

of sending the strokes to the gantry to be executed, they are 
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instead used to create an image of the lines in the stroke. This 

model is used to show an in-progress view of the painting, and 

also allowed for easy debugging as we had a comparison for 

exactly how the gantry should behave. 

In creating the stroke routine which is exposed to the layer 

above, routines for washing the brush and collecting a specific 

pigment are required. These routines are also a part of the motor 

control layer but are not exposed to the layer above. These are 

used internally by the stroke routine when it is necessary to wet 

the brush and collect pigment. As the locations of all of the 

needed objects to carry out these routines are fixed, much of the 

control routines will be moving to hard-coded locations, not 

operating by some feedback informing the head where the 

objects are. For this to work this layer must also always keep 

track of the precise location of where the head is. An additional 

challenge is that the coordinate systems used by the image must 

match the coordinate system used by the control layer. To 

address this the layer also exposes an initialization routine 

which will receive information from the above layer regarding 

the image size and desired output size, in inches. This 

information allows the future routines to normalize the pixels 

received and translate to its own coordinate system which is 

rooted in the physical space rather than a digital space. 

This layer bridges the gap between the hardware and 

software in our design. Built up from the provided device 

drivers for the motors, this layer offers a single control routine 

for painting a desired stroke with a specified color. This 

abstraction allows the painting to be easily performed from the 

above layer after a list of strokes representing the image has 

been created. 

C. Image Processing and Stroke Generation 

The Image Processing and Stroke Generation algorithms 

form the software component of this project. The first part is the 

Image Processing algorithm. This converts the original digital 

image into something that the physical apparatus can draw. The 

reason this is required is that the physical part of the robot has 

3 main constraints: brush width, number of colors, and time. 

The width of the brush is constant from the beginning to the end 

of the painting process, since we won’t swap out brushes during 

a painting. We are using 24 colors, so the robot will have to 

select the closest color to the 24 colors. There is also a time 

limitation. Therefore an image clustering algorithm called 

Mean Shift Segmentation was used. This algorithm takes 

regions of similar color that are close together and turns them 

into regions of uniform color. Three parameters are used to 

toggle the properties of the segmentation algorithm. The first 

parameter is the distance from the center that a point can be such 

that it is still able to be part of that segment. This is called the 

spatial radius. The second parameter is the range radius, which 

specifies the range of colors that can be in the segment. The 

third parameter is the minimum density of points, which 

indicates the number of pixels that can be inside one segment, 

thereby dictating the size of the largest segment. These 

parameters ensure that the objects are wide enough to be drawn 

by the brush. This algorithm reduces the complexity of the 

image significantly (about 24%) while keeping the accuracy 

close to the original. The second benefit is that the algorithm 

outputs a map with the labeled regions for each pixel, which 

allows us to have objects with defined edges and uniform color. 

This makes it simple for the next part of the software 

component, namely the Stroke Generation algorithm.  

The Mean Shift Segmentation algorithm is an open source 

function implemented in the pymeanshift library [8]. By 

changing the parameters, we are able to segment an image in 

whichever way the problem requires. Fig. 15 shows the result 

of running light segmentation while Fig. 16 shows the result of 

running stronger segmentation. 

The second part of the software component is Stroke 

Generation. Once the segmented image has been created, the 

segments are separated into lists of strokes. There are two 

different kinds of strokes: perimeter strokes and fill-in strokes. 

Each object in the segmented image is made up of one perimeter 

stroke and one fill-in stroke. The perimeter strokes trace the 

outline of an object with the color of that object. The fill-in 

strokes fill in the object with horizontal straight lines of that 

color. First the perimeter stroke is drawn for one object, and 

then that object is filled in with fill-in strokes. The order of 

objects to be drawn is based on the length of the perimeter 

stroke, to make sure that the lowest detailed objects are drawn 

first. A perimeter stroke is made up of several very small line 

segments which trace the outline of the object. A fill-in stroke 

is made up of several horizontal line segments which go from 

the top of the object to the bottom.  

Once the strokes have been created and ordered, they are 

broken up into line segments which are defined by a starting  

Fig. 15. The result of light segmentation on the image in Fig. 7. 

Fig. 16. The result of stronger segmentation on the image in Fig. 7. 
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coordinate, ending coordinate, and color. 

 The color chosen from a region uses a weighted cost 

function of HSV values. Some special colors, white, gray and 

black, have special logic related to the saturation and the value 

HSV fields. A weighted sum allows us to place more emphasis 

on the hue of the color when relevant, as this is the most 

important factor in matching the color. The color choosing 

algorithm also considers the neighbors of a region, and is biased 

towards choosing colors which are different than its neighbors. 

This allows the rendered image to maintain the contrast present 

in the original image. The algorithm will consider using the 

second best color match over the best color match when the best 

match is used by a neighbor. The second best color will only be 

used if the loss of color accuracy is below some threshold. 

The order the regions are drawn in mostly follow the order 

that they are created by default using the library. However, we 

made one small optimization. When testing, we noticed that 

some black outlines would cover up certain colored segments 

due to it being such a dark color. As a result, we make the 

program paint all the black regions of the painting first before 

painting the rest. 
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VI. PROJECT MANAGEMENT 

A. Schedule 

The schedule for the project is shown on page 13. Each task 

is color coded based on which team member primarily worked 

on it, and lines between tasks indicate which tasks depended on 

the completion of others. Our schedule did not change 

significantly from the version presented in the design report. 

The major changes are that some tasks were broken up into 

smaller parts, and the time taken for certain tasks was longer 

than initially predicted. Nevertheless, we met all of our major 

deadlines and remained mostly on track for the duration of the 

project. We had plenty of time remaining in the days up to the 

final demo to test, debug, improve, and modify the system. 

B. Team Member Responsibilities 

In the first few weeks, all three of us focused on the physical 

portion of the design. Since none of us have had any mechanical 

design experience before, we have decided to frontload that part 

of the project. Chris has taken the lead on the mechanical design 

and oversaw building the physical system. Harsh focused on the 

software portion which involved the image processing. Eric has 

taken charge of the control layer of the robot, which includes 

the hardware and control of the motors. Although each focused 

on an individual subsystem, each team member also helped out 

and discussed decisions regarding other portions of the project 

whenever applicable and relevant. As the schedule shows, we 

all sharing some responsibilities at the end. 

C. Budget 

The budget consisted of ordered parts and 3D printed parts. 

Refer to the Bill of Materials on page 14. 

D. Risk Management 

The major risks to our project were being able to construct a 

reliable gantry system, being able to accurately control the 

system, being able to paint images in a reasonable amount of 

time, and consistent paint quality for all colors used. 

 In order to mitigate the risk of an inconsistent gantry 

design we drew heavily from the Ultimaker design. We were 

able to replicate the principles of operation from their design, 

and modify it to fit our design. These modifications consisted 

of custom length rods, custom frames, custom paint head, 

custom pulleys, and custom carriages. After construction we 

saw that our design was not as reliable as we would have liked, 

and we were able to limit this through iterative redesigns of all 

of our custom parts and a very fine attention to detail to reduce 

any sources of friction or non-uniform movements. This 

problem was also minimized by front-loading the construction 

of the gantry, giving us ample time to improve the physical 

design. From our experience, hardware problems are much 

more difficult to identify and fix than software issues, and this 

strategy gave us lots of time to fix all of our hardware issues.  

 We were able to limit the risk of how we operated our 

physical system by using GRBL, an open source software 

library for controlling CNCs. This library takes the 

responsibility of tracking the current head location and smooth 

motor controls. By using this library rather than creating this 

software ourselves we limit the error in operation of the gantry, 

so that the only source of error comes from inconsistencies in 

the physical gantry itself. 

 In order to reduce the amount of time taken we were able 

to set different operating modes of the gantry. When painting 

the image it moves slower and more carefully to ensure the lines 

look correct in the image, but moves much faster when moving 

to gather pigment or rinse the brush. This allows the system to 

operate in a reasonable amount of time without sacrificing 

quality of the painted image. Additionally, the strokes which 

are used to paint the image have been optimized to reduce the 

distance travelled by the paint head when performing infill 

strokes, which greatly reduces the total operation time. 

 Finally to ensure consistent paint quality across different 

colors we allowed for a custom number of palette swishes based 

on color. For lighter colors, like yellow or orange, the system 

will swish the paint much more than darker colors like black or 

gray. This ensures that the amount of pigment placed on the 

paper is roughly equal across all colors and that no color will 

dominate the resulting image. 
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VII. RELATED WORK 

The goal of having an independent robot independently paint 

an image is not unique to our project; this is the same goal of 

the Robot Art Competition and Exhibition [1]. This is a 

competition held annually for robotics enthusiasts to submit 

images which were painted by their creations. From this 

competition and the gallery of designs they provide we were 

able to see how many of the best robots performed and how they 

were designed. A stand out in the competition is a man named 

Pindar Van Arman and his CloudPainter, which is an AI driven 

robot which has both a robotic arm based design and a gantry 

based design. His design is so effective that he has built a brand 

and sells the paintings his robot creates for a large sum. Most 

other designs featured on the Robot Art site use gantry-based 

designs, including another watercolor painting robot. These 

designs were our main source of confirmation that our idea for 

a gantry-based painting robot could be a success. 

VIII. SUMMARY 

Overall, our system was able to successfully meet all our 

design specifications. Visual similarity, which was the 

specification with the biggest weight when dealing with 

painting images, was passed with flying colors with SSIM 

much higher than the threshold that we originally set. We were 

able to successfully render all input images and the painting 

operated in a reasonable amount of time. Color selection was 

not perfectly accurate, but we felt it was accurate enough and 

also valued contrast and aesthetic appeal along with having 

accurate colors. 

A. Future work 

One thing we want to work on is removing the downward 

lines that are created after each stroke. We think that this is a 

purely software problem, and we would be able to reduce this 

effect given more time. The further optimizations require 

making physical changes. One major problem we faced during 

the entire project was that the gantry system had large non-

uniform resistance during movements. We pinpointed the 

problem to the fact that the pulleys were too large for the shaft, 

leading to them not being centered on the shaft which caused 

the belts to stretch and contract with each rotation. To mitigate 

this problem in the limited time we had, we printed new pulleys 

with screws on all 4 sides to be able to center the pulley on the 

shaft. A final solution would involve obtaining pulleys which 

fit perfectly on the shaft. These would preferably be CNC’d, 

since metal parts would be more accurate and wear down 

slower. We also want to replace our bearings since they are low 

quality and don’t eliminate friction well. Another problem we 

had was that we didn’t have any feedback. We had no idea 

whether the painting head went to the right position or if it drew 

the right stroke. We got around this by zeroing after every 

movement. However, a final solution would involve using a 

camera to track the painting head, and encoders to track motor 

movement. Color blending could also be added to more 

perfectly match the input image, but for our project during this 

semester this was out of scope. 

B. Lessons Learned 

The biggest lesson we learned was that mechanical problems 

are much harder to fix than software problems. Software bugs 

can be fixed on a computer in a few hours, whereas mechanical 

problems require making the right measurements, waiting days 

for parts or 3D prints, and then fitting them onto the entire setup. 

Another lesson we anticipated and confirmed was that one 

should never try to recreate something that has already been 

created. To create our gantry system, we used a design inspired 

by 3D printers. We looked at the Ultimaker printer to 

understand its design and modeled a large part of our 2D gantry 

around it. Since we knew that this design already worked, we 

were confident that our gantry would function as well. This was 

highly helpful because none of our team members had much 

experience in mechanical design. We also front loaded the tasks 

we weren’t familiar with (mechanical design) to make sure we 

would have enough time for debugging. This turned out to be a 

good scheduling decision as we had enough time to learn from 

our mistakes and fix our design. This would definitely be a good 

lesson for us in future projects. One last thing was that we had 

several unexpected problems towards the end of the project, and 

we had to think quickly to come up with solutions. One should 

always expect the unexpected and account for it in design 

decisions. We had decided to 3D print most of our parts at the 

beginning, so when parts failed or were causing problems, we 

were able to reprint parts quickly. This was very helpful the 

weekend before demo day since we needed new pulleys. 
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