18-500 Final Project Report: 05/08/2019

Leonardo Da Robot

Authors: Eric Chang: Electrical and Computer Engineering, Carnegie Mellon University
Christopher Bayley: Electrical and Computer Engineering, Carnegie Mellon University
Harsh Yallapantula: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of taking a digital image and
painting a watercolor version on a physical canvas. The aim of the
project is to create an image which looks naturally painted, not a
replica of the source image. At minimum, this product will be able
to represent simple images or match the shape of the given image.
The resulting image should be similar in terms of color gradients
and general appearance and contrast. The system will consist of a
2-dimensional gantry system to physically draw the picture along
with a software component that will handle image processing.

Index Terms— Gantry, Image Processing, Painting, Robot

. INTRODUCTION

O NE of the biggest goals in robotics is to create systems
that behave more human-like. A large amount of research
today is focused on creating robotic systems that replicate
human tasks such as driving, speech comprehension and vision.
Our intent is to break down this barrier between humans and
robots in art. Our design is inspired by the gantry systems of 3D
printers, which we combine with image processing and control
systems to make a robot that can receive an image and paint it
on a canvas. The most difficult part of this is to make the
painting look natural and not robotic, while also maintaining
accuracy and speed. This project does not aim to replicate how
a printer makes an image pixel-by-pixel. To accomplish this
task, we paint the picture using a paint brush and human-like
strokes. Our approach takes the proven efficiency and accuracy
of 3D printers to allow us to paint a pre-processed image using
smooth and natural strokes

Critical to our design is the ability to paint an image which is
an accurate representation of the source image. This is
measured using the structural similarity (SSIM) index, where
we aim for a score of at least 0.2. Additionally, the total time
for painting an image should be reasonable to the scale and
complexity of the image, limited to 8 hours in the worst case.
These metrics are key for our project to meet our goals of
connecting robotic systems with art through a design which
produces a painted image of good quality and can do so in a
reasonable amount of time.

Il. DESIGN REQUIREMENTS

The first requirement is that a digital input image of any size
is capable of being rendered as the target image to paint and
displayed back to the user. This step allows for an image to be
rejected if the rendered painting is not of acceptable quality.
This requirement is purely digital in nature and therefore can be

tested using an image bank of 10 images which vary in image
size and complexity. The successful design will be able to
create renders of consistent quality across all scales and
complexities, and will scale images which exceed the bounds
of the painting space. This requirement will simply be measured
by the program’s success at processing the given input image.
Our next requirement is that we effectively use the full range
of the palette which is integrated into the system. When painting
an image the palette color with the lowest difference to the
desired color should be chosen, measured using the HSV (hue,
saturation, value) color model. Specifically, this color
difference will be measured using the following equation:

A= (JHO — Hr| + f* 0.1 % [So — Sr| + * 0.15* [V — Vi) (1)

In this equation, A is the color difference, Ho is the hue of the
original color from the image, H; is the hue of the color chosen
by the robot, So is the saturation of the original color from the
image, S; is the saturation of the color chosen by the robot, Vo
is the value of the original color from the image, V. is the value
of the color chosen by the robot, and f is the weighting factor
for brown. In our experimentation of color picking, we found
several difficulties and realized it was a much more complicated
process than initially expected. Hue, saturation, and value can
not be weighted equally when determining the closest color. As
a result, we choose to weight saturation and value less than hue
by multiplying them with the constants of 0.1 and 0.15
respectively. In addition, we introduced f, a weighting factor for
brown. Unlike other colors, brown is not determined by a
unique hue. Rather, its hue is orange, and it is defined by having
a low value. As a result, when the normalized hue of the color
is between 0 and 0.125, which is a region of orange-like hues,
we define f to be 1.5, while normally it is 1, in order to more
heavily weight value and saturation to more accurately pick out
brown from orange. Another important consideration was that
a hue of 0 and 1 both corresponded to red, as HSV values are
depicted as a cylinder which wrap around. This was accounted
for when writing the code that performed this algorithm and
calculation. Finally, white, black, and gray are tested for
initially before (1) is used, as those colors occur at extreme
values of saturation and value.

This color requirement can be tested using an image of our
own palette; the pigment in the palette image should always be
painted with that pigment. The image of our palette we will use
is shown in Fig. 1, which will be used to verify the accuracy of
our color picking.

18-500 Final Project Report: 05/08/2019

T
(COoousanee

Fig. 1. An image of our plaette which will be used to test our robot’s color
selection.

Our third requirement is that our product will create paintings
that are visually similar to the original image. We require that
our output painted image has a score of at least 0.2 according to
the structural similarity (SSIM) index. This is a metric which is
used to measure the perceived similarity of an image to the
source and is commonly used for film and television [4]. We
use this metric for this reason as it corresponds closely to the
goal of our project. After testing the SSIM for various images,
we found that professionally done water painting images of
customer supplied images was roughly 0.4 on average. We will
test our performance using an image bank of 10 images, shown
in Fig. 2, which features images which grow in complexity.
Using this bank, we will paint the images and test that the SSIM
score is at least 0.2 for the first 8 images. The final two images
are more complicated and are our stretch goals once we reach
the scores for the first 8, so they will not necessarily be tested.

Our final requirement is that our design operates in a
reasonable amount of time as a function of image size and
complexity, which we define using the following equation:

t=1+a)*(B*s) @)

In this equation, t is the estimated time, a is a measure of image
complexity, measured as 4 * (uncompressed image size / JPEG
compressed size), s is the size of the painted image in square
inches, and B is a constant scaling factor of 4 (translating to 4
minutes to paint each square inch). The equation for a follows
the logic that JPEG compression uses DCT-II coefficients to
compress the image from a raw uncompressed size of the total
image size and dimensions, meaning that the JPEG compressed
size of an image gives rough estimate of how much information
is contained in an image [5]. The image size painted can be
variable, but is limited to 7.5x10 inches, and from experimental
testing a can be up to 0.70 for a very complex landscape image,
and as low as 0.04 for a single line. Equation (2) gives a rough
estimate of the upper limit of the testing time, and is designed
to have a limit of roughly 8 hours for the largest and most
complex image. We will test our design using the same image
bank from Fig. 2, which contains variably sized images as well,
and will ensure that they all print in a time corresponding to (2).

=

Fig. 2. The test image bank we will use in testing.

18-500 Final Project Report: 05/08/2019

I11. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our project will primarily be split into a physical hardware
component and a software image processing component. The
overall architecture of our project is represented in the block
diagram depicted in Fig. 3. The physical component will be the
robot itself, which includes the base and frame that supports the
2D gantry system. The gantry system is supported by a frame
that lies on the base of the robot. The gantry system’s purpose
is to move a painting head around the XY coordinate space
above the paper, water, and palette which are lying on the base.
The painting head will control a paintbrush which is attached
by a servomotor, and the head will be moved around by two
stepper motors. These motors will be controlled by a Raspberry
Pi. The servomotor is connected to the Raspberry Pi through a
GPIO pin. In our original design, the stepper motors were
controlled through a motor shield attached to the Pi, but in our
final design these were controlled by stepper motor drivers in a
cnc shield attached to an Arduino. The Pi sends commands to
the Arduino which then controls the motors.

The software component of our project centers on using
image processing to convert a digital input image into
instructions for our motors in order to successfully paint an
image. A monitor will be connected to the Raspberry Pi which
will allow the user to submit the digital image they wish to be
painted. The monitor will also be used to display the result of
the image segmentation process to the user, in order to show the
user what the approximate final result of the painting will be.
The input image will go through our image processing
algorithm, which will first modify the image to be easier to
paint, in the process of image segmentation. This process will
reduce details and cluster colors together to create a simpler
image for painting, which is what will be displayed to the user
on the monitor. The image segmentation process will output

data and information such as edges and colors, which will then
be used in our stroke creation algorithm. This process will
generate the sequence of strokes that our robot will need to
perform in order to paint the image, with information such as
color, length, and direction encoded.

This sequence of strokes will be given to the stroke routine,
which will control the motors. A list of strokes with a specified
color and location are provided to the stroke routine, and the
routine will instruct the motors of our robot to dip the brush into
the water, paint, and finally onto the paper. Our motor control
routines are the bridge between the software containing
information of what to paint and the hardware which is capable
of painting. The interface from the lowest level of motor drivers
allow the stepper motors to rotate a set number of steps in a set
delay time between each step. This functionality is provided
through the use of an open source CNC control software called
GRBL. Communication between the Pi and the Arduino is over
the Arduino’s serial port, and GCode formatted instructions are
sent which contain destinations for the X and Y components
along with a set speed. This is an improvement over our original
design review, which involved controlling the motors through
a motor shield using code provided by the manufacturer. This
change in the system gave us greater control of the movement
of the motors for smooth acceleration and deceleration, and
allowed us to provide the necessary power at times to overcome
friction in our physical system. The servomotor is controlled
through PWM, and its driver has an interface that allows the
motor to be set to a certain angle. These interfaces are used by
the control routines to abstract to higher level concepts such as
dipping the brush to grab pigment or performing a stroke at set
locations. These control routines receive input from the painting
and stroke generation algorithms.

Monitor

/ Arduino \ \
Gantry System / Raspberry Pl
GCode
Frame a GRBL CNC Controller ocode /" Painting Routines
CNC Shield /
(1 Motor Controls w
2x Stepper Motor \ 2x Stepper Motor Drivers
(j L L / Image Processing
Painting Head Stroke Creation
AN / Image Segmentation
1x Servomotor
() 1x GPIO /

Key

Mechanical Part

Modified From

Online Source Dewlviies gred

Off The Shelf Part Hardware Part

Software Part

III/}}

Fig. 3. The block diagram showing our project’s archiecture and subsystems.

18-500 Final Project Report: 05/08/2019

IV. DESIGN TRADE STUDIES

The four main requirements of our project were successful
image rendering, accurate color picking from the available
palette, visual similarity between the painted image and the
original input, and a reasonable time taken for painting. We
evaluated our design using the tests described earlier in the
paper, and compared and analyzed these results against our
expectations. These details will be outlined more
comprehensively below in a section dedicated to each
specification and metric.

In designing our project, there were numerous trade-offs and
options to consider when finalizing decisions. Two of the most
important aspects of our design were the 2D gantry system,
which is the primary physical and hardware component of our
robot, and the image segmentation algorithm, which is the first
step of our software component. A significant amount of
testing, research, and experimentation was conducted in order
to choose the best option to proceed with in these two
subsystems. More information about this is included below, in
two sections centered around the design decisions we made
when creating the gantry system and choosing the image
segmentation algorithm.

A. Specification — Successful Rendering

Our first specification was that our robot could, given any
input image of any size, successfully process and render the
image and display the result back to the user. This
specification was not explicitly tested with a strict
methodology, as any issues arising from a failed render would
be quickly fixed. However, by the end of the project, we have
used numerous images as input to our program, including all
ten images in our image test bank, and all can be successfully
rendered. As a result, we believe our program’s ability to
process any input is fairly robust and comprehensive.

B. Specification — Color Picking

The next requirement was accurately choosing colors for
each segmented region in the input image. Table | shows the
results of a test involving the image of our palette from Fig. 1.
As Table I shows, our color picking algorithm was not
completely accurate. This was due to several complications
which were mentioned previously; black, gray, white, red, and
brown have unusual or extreme values in their HSV
representation, which is why (1) went through many revisions.
Ultimately, the algorithm we created satisfied us by being
accurate in many scenarios. Although there were some colors
which were not fully correct, as in the exact same pigment
from the palette was not chosen for itself, all the incorrect
colors were close in terms of being the same hue. Because of
the similarity in many of the hues on our palette, for example
there are several reds and blues on our palette which all look
very visually similar, we did not think it was necessary to
dedicate more time and effort to refining the algorithm even
more.

C. Specification — Visual Similarity

The next specification of our system was that each painted
image is visually similar to the original input image. As
previously stated, this was tested using the structural similarity

TABLE I. CORRECTNESS OF OUR COLOR PICKING ALGORITHM AS

TESTED BY AN IMAGE OF OUR PALETTE

Category Number of Colors
Correct 15
Close

Incorrect

(SSIM) index. This requirement was tested against our image
bank of ten images, with the results shown in Table 1. A small
description of each image is included for reference. Images 9
and 10 were not tested due to concerns over complexity and
time, as those two images were originally stretch goals as
well. As can be seen from the results in the table, the first 8
images in our image bank all had an SSIM higher than 0.2,
which was the threshold we determined when planning our
tests and metrics. In fact, the results of the structural similarity
tests were much higher than we expected, with every image in
the first 8 having an SSIM of above 0.4. The results of some
select images from the test bank are shown in Fig. 4, which
displays our robot’s drawings of a rocket (image 6), tomatoes
(image 7), and a fruit basket (image 8).

D. Specification — Time Taken

The final specification of our system was that it operated in a
reasonable amount of time. Again referring to the results in
Table 11, the time it takes for the robot to paint an image
increases as the complexity and size of the image increases. In
addition, no image so far has taken over eight hours to paint,
which was the maximum amount of time we wished our robot
to perform in. However, images 9 and 10 are highly detailed
and complex, and may possibly have taken over eight hours to
paint. This was one of the reasons why we did not test images
9 and 10, due to the interest of time.

TABLE Il STRUCTURAL SIMILARITY AND TIME TAKEN OF IMAGES IN
OUR TEST BANK
Image Image SSIM Time Taken
Description Number
Line 1 0.683 2min6s
Triangle 2 0.655 5min 14s
Circle 3 0.691 5min3s
Shapes 4 0.465 8 min29s
Colored Shapes 5 0.436 42minlls
Rocket 6 0.404 37min40s
Tomatoes 7 0.434 5hrs 56 min 17 s
Fruit Basket 8 0.552 2hrs32min34s

Fig. 4. The robot’s drawings of a rocket, tomatoes, and a fruit basket. Original
images are images 6, 7, and 8 in the test image bank respectively.

18-500 Final Project Report: 05/08/2019

E. Subsystem - 2D Gantry System

There were several possible implementation paths available
for designing the 2D gantry, and all would meet the major
constraints of our project which are having a large enough
workspace and a fine enough granularity. Because of this, the
main considerations made when choosing the gantry design
were complexity, cost, and risk. Our original plan was to use
threaded rods which would support the carriage, allowing
rotation of the threads to carry the device. We found that these
designs were generally used for much larger constructions, as it
can support a much heavier payload. For this reason, we chose
to use a belt-based design as is commonly used in 3D printers,
as these designs are commonly used for lighter loads and there
are plenty of reference implementations available in the form of
3D printers.

When considering possible belt-based gantry designs, we
found some of the most common designs are the Hbot system
(depicted in Fig. 5), CoreXY (depicted in Fig. 6), and the
Ultimaker style [2]. The Hbot uses a single very long belt
arranged in the shape of an H, but the force applied is uneven
and results in a moment created on the edge of the print head.
The CoreXY system solves this problem using two belts
arranged in an H shape which cross near the top. This design is
fairly complicated, and the exact arrangement of the belts and
pulleys required leaves a lot of room for error. Based on these
factors, we chose the design used by the Ultimaker printers.
This design uses several sets of belts which run in one direction
and is almost entirely symmetric, making it simpler to
implement. Additionally, Ultimaker is open source, allowing us
to leverage their proven system with small modifications to
work in our own design. We selected the gantry specification
based on the simplicity of the Ultimaker style and the low risk
due to the open-source nature of Ultimaker.

The final aspect of our design decision with respect to the
gantry was to use existing parts or design our own. By designing
and 3D printing our own parts, we allow for a more custom
design, fast part availability, and an overall lower cost than
purchasing the Ultimaker parts. The drawbacks are that this
allows room for error by modifying an existing design which is
known to work well. The Ultimaker parts were not available

@'—‘ Pulley

Pulley

Belt ——

Gantry

@=9)
)

[

Y+

@

— (] X+
\ Stepper 1

Fig. 5. The Hbot gantry design.

Stepper 2 M2
~ o

CoreXY System

Gantry

OO

Belt 1\ Ngeit 2

Stepper 1

[.

Fig. 6. The CoreXY gantry design.

. |
|

from any major retailers in the US, and additionally the
replacement part packs were expensive and contained many
parts we wouldn’t need. For these reasons we chose to design
our own parts and have them 3D printed. This design choice has
allowed us to save over $100 of our budget, and allowed us to
expand the working space of the head considerably. Inevitably
the print head would have to be a custom part as well, and by
modifying all of the other parts we reduced the number of
constraints on the geometry of the print head which allowed us
to pursue a clean and simple design.

Overall, our gantry design decision diverged first between
a threaded rod or belt design, between several different belt
designs, and finally on using custom or premade parts. We
made the choice of a belt-based design for its prevalence in an
area which is very similar to our goal, allowing us to keep risk
low and manage complexity by using well documented existing
designs. The Ultimaker design was chosen among other belt-
based designs again for its simpler design and proven
effectiveness, which greatly lower our risk. Finally, the decision
to modify the parts came at the price of a small increase in risk
for the benefit of a significantly less constrained design space
and lower cost.

F. Subsystem - Image Segmentation Algorithm

There were a few methods we considered for implementing
an algorithm to pre-process the image. The reason that we
needed to pre-process was because of the limitations of the
physical system. The brush width must stay constant throughout
the entire painting process, and thus we cannot draw something
thinner than this width. The second limitation is that we have
24 colors available. This means that all colors have to be
approximated to those 24 colors. The third limitation is time.
Since this is a physical system where motors have to move
everything around, there are time constraints. To tackle these
constraints, we considered the following pre-processing
algorithms: blurring, edge drawing, k-means image
segmentation, and mean shift segmentation. After some
consideration, we decided to discard the idea of blurring. The
original image used to test all of these image segmentation
algorithms, depicting a fruit basket, is shown in Fig. 7. The

18-500 Final Project Report: 05/08/2019

result of blurring it is shown in Fig. 8.

Although blurring removes the detailed parts of the image, it
still has gradients, which are very difficult to produce. It also
becomes difficult to see where one object ends and another
begins. Therefore, we decided to further explore drawing only
the edges and image segmentation. To choose between these
three methods, we calculated the accuracy of the output along
with how complex the output image was. For accuracy, we
looked at the output image and used the Structural Similarity
Index to classify the methods. For complexity, we took the
output JPEG file and compared it with the original JPEG file in
terms of file size. As stated earlier, the JPEG file format
compression is correlated to how complex an image is, so the
more compressed the output file is, the less complex it is [5].
Table 11l shows the complexity and similarity for the three
methods.

The conclusions we can draw are that the k-means clustering
and mean shift clustering are far better than edge drawing in
both accuracy and complexity. Mean shift clustering is 27%
less complex than k-means clustering but still manages to beat
out k-means in terms of accuracy. It also returns objects of
defined edges and uniform color, which is much easier for the
physical system to draw than what k-means returns. The
following images show the output of edge detection, k-means
clustering, and mean shift segmentation. Fig. 9 shows the
output of the original image after running edge detection, Fig.
10 shows the result of running k-means, and Fig. 11 shows the
result of running mean shift segmentation. All these images use
the original fruit basket image in Fig. 7 as input.

TABLE Il STRUCTURAL SIMILARITY AND COMPLEXITY RATIO OF
DIFFERENT IMAGE SEGMENTATION ALGORITHMS

SSIM Complexity Ratio
Edge detection 0.0335 1.8982
Mean shift 0.9432 0.7654
k-means 0.9352 1.0471

Fig. 7. The original image of a fruit basket used in our image processing
experimentation.

¥

.

Fig. 8. The result of blurring the image in Fig. 7.

Fig. 9. The result of running edge detection on the image in Fig. 7.

Fig. 11. The result of running mean shift segmentation on the image in Fig. 7.

18-500 Final Project Report: 05/08/2019

V. SYSTEM DESCRIPTION

Our project is split into three main subsystems: the 2D gantry
system, which is the physical component that controls
movement of the brush; the gantry control layer, which controls
the motors of the gantry; and image processing and stroke
generation, which is the software component of our project. An
image of our robot as a whole can be seen in Fig. 12.

A. 2D Gantry System

The gantry system forms the physical portion of the project.
This is a system of shafts, pulleys, and motors which allow the
robot to dip a paintbrush in water, collect pigment from a
palette, and perform a stroke on the paper. The design for our
gantry follows the gantry design used in the Ultimaker line of
3D printers, which is proven to be effective and accurate.
Ultimaker is also entirely open source, and we were able to
modify their CAD files as well as design our own which match
our design more precisely. Our design does not use the
Ultimaker parts, although they are available for purchase online
through 3D printer repair sites. This is because by modifying
the Ultimaker designs or creating our own we are able to keep
costs low by 3D printing these parts, as well as make custom
parts which match our design requirements more precisely. For
example, the carriages were redesigned to fit an axes
arrangement which was simpler for us to execute, as well as to
carry the print head with the crossbar shafts in a different
arrangement than the original design.

The core of the gantry design is outlined in Fig. 13. Two
stepper motors are located at one corner of the gantry and can
be positioned anywhere in the z plane below the axes. Two sets
of parallel axes are positioned to form a square, mounted in a
bearing allowing the shafts to rotate easily. Both the stepper
motors and the axes have a pulley around them, and are
connected by a timing belt, labelled purple. This translates the
rotation of the stepper motor to the axes. Each set of parallel

Fig. 12. An image displaying the main portion of our robot.

Belt 1
=i —_— P | |
- s — | =) —-—
Belt 2
[| | Gantry [| I
Stepper 1
~ \
Y+ \
X+
I —_—
O Hr——
EB —_— =] M1
Stepper 2) M2 o
— £ o

Fig. 13. The Ultimaker gantry design.

axes are connected by two belts as well, labelled red and blue,
which coordinate their rotations. A carriage rests on the axes
and is attached to the belts, which allows the rotational motion
of the opposite axes to be transferred into translational motion
on the carriage. The carriages carry shafts which support a paint
head in the center space, allowing the head to be coordinated in
two dimensions. The paint head carries a servomotor which has
a brush connected, allowing the brush to be raised from the page
or lowered to make contact. This is suspended via a frame of T-
slotted aluminum, allowing the paint head to travel a fixed
distance above the base. The implementation of our design is
shown in Fig. 14.

The major constraints on this system are that the brush head
have a movable space which is large enough and that the brush
can be controlled with sufficient precision. The working space
must fit our canvas, 4x6 inches, our watercolor palette, about
3.5x8.5 inches, and a cup of water, about 2x2 inches. This totals
a working space requirement of about 8.5x8.5 inches. Our
design consists of a frame of aluminum with inner dimensions
of 16x16 inches. The entire inner dimension is not usable
however, due to the space required within the frame for

Fig. 14. A CAD model of our gantry system.

18-500 Final Project Report: 05/08/2019

the axes to run uninterrupted. Considering the space required
for the axes, as well as the pulleys and carriages mounted on the
axes, the dimensions of the working space are 14x14 inches.
Then this meets our requirement for the brush to be able to
move over a sufficiently large area. This also leaves enough
room for us to add a mechanism to stabilize the position of the
paint head. By surrounding the shafts of the gantry with plastic
tubing, we can further restrict the area the paint head can travel
within. This allows us to place zero points near the components
on the board which are frequently visited, and by driving the
paint head into these tubes we can effectively guarantee the
current position of the paint head. For our design with no
feedback mechanisms, this design choice was critical to
creating a system which could account for error. Additionally,
the mounting height of the entire gantry is adjustable, but fixed
during operation. This allows us to modify the height to fine
tune the amount of contact the brush makes with the paper as it
is rotated by the servomotor. This is the advantage of using T-
slotted aluminum as well as our own designed mounts for the
axes.

To address the precision allowed by this design, we must
consider the precision of the stepper motors and the dimensions
of the pulleys and timing belts. The stepper motors step size
translates to a rotation of the axes by the same amount, as they
are coupled by a timing belt. The rotation of the axes will result
in a translational movement of the belt which carries the
carriage according to the degree change and the radius of the
pulley. From this we can form the equation x = 2zr * (6 / 360),
where X is the translation of the carriage, r is the radius of the
pulley, and 6 is the change in angle of the axes. The pulley used
in the Ultimaker, which we use in our design with a small
change to the inner radius, has a radius of 0.25 in. Our stepper
motors have 200 steps / revolution, which translates to a 1.8
degree step size. Of all the cost-effective stepper motors we
considered, this step size was standard. This gives us a
minimum horizontal translation x = 2z * (0.25 in) * (1.8 / 360)
~0.008 in. or 0.2 mm. This means we can operate the paint head
with a granularity of 0.008 inches, which is more than sufficient
to carry out all the requisite strokes and operations.

The integration of the gantry into our overall design is at the
motors. The two stepper motors are connected to CNC shield
mounted on the Arduino, and the servomotor are connected
directly to the Raspberry Pi. Low level drivers are used for basic
control of these devices, allowing their rotations to be
orchestrated into an operating gantry system.

The design of our gantry did not change much throughout our
project, as we successfully leveraged the working designs of the
Ultimaker. The major parts which were revised were the 3D
printed parts, in order to allow for easier assembly and
operation. The carriages were redesigned multiple times to
create something which could connect easier than the Ultimaker
design and be much more sturdy. Additionally, the pulleys were
redesigned to allow for 4 screws rather than one for fixing onto
the shafts. This allowed us to perfectly center the pulleys and
reduce the amount of wobble in our gantry.

B. Gantry Control Layer

The gantry control layer consists of the motors that will
control the 2D gantry system as well as the software in the
Raspberry Pi that controls the motors. The code for this
subsystem will be written in Python, and will use libraries to
help interface the motors with the Pi. The servomotor, which
controls the painting head, will be wired to the Raspberry Pi
through a GPIO pin. We will be using the library gpiozero to
interface with the servomotor, specifically the AngularServo
class, which extends the Servo class [6]. This class allows
control of a rotational PWM-controlled servomotor, and gives
us the ability to set it to specific angles. For the library to work,
we must set the servo to its maximum position and its minimum
position and measure its angles, and input these angles as the
constructor for an instance of the class. This setup will let us
move the servomotor to any angle in between.

The two stepper motors are controlled by stepper motor
drivers, A4988, which are mounted into a CNC shield on the
Arduino. This allows for precise control of the motors through
the open source CNC software GRBL. The drivers allow us to
precisely control the power which goes to the motors, and have
a sufficiently high current rating to allow for the friction in the
system to be overcome. The painting routine algorithm
generates GCode instructions which are sent to the Arduino
over the serial port. The GCode sent is very simple, with lines
consisting solely of X and Y positioning arguments and a speed.
During initialization of the gantry control layer, GRBL is
configured to match the rotations needed to translate a single
inch.

The original design used a motor shield which connected
directly to the Pi. While this design gave us access to the motors
directly, it proved ineffective at supplying power as there was
no way to set current limits to the motors. By using stepper
motor drivers we were able to ensure that the motors would
always receive sufficient power and not draw a dangerous
amount. Additionally the GRBL software allowed smoother
accelerations and decelerations which allowed for smoother
control of the gantry.

With this, an interface was created for use by the painting
routines. The gantry control layer will act as the intermediary
between the software and hardware components of our project,
allowing our code to easily call functions that will move the
motors how we desire. This layer exposes a single interface
which is the stroke routine, which can receive a list of xy
coordinates which define a series of straight line segments and
a number corresponding to one of the available colors in the
palette. This function will then paint the entire stroke and return
when completed. Doing so will require the paint head be moved
to wash the brush, grab pigment from the palette, and trace the
line segments on the page. It may be necessary to gather more
water and more pigment while painting a single stroke, which
is the responsibility of this layer to control. The layer above
provides no information on how frequently to collect pigment.
In addition to this single routine, a software model of how this
layer should behave was created. This layer exposes an API
which is exactly the same as the gantry control layer, but instead
of sending the strokes to the gantry to be executed, they are

18-500 Final Project Report: 05/08/2019

instead used to create an image of the lines in the stroke. This
model is used to show an in-progress view of the painting, and
also allowed for easy debugging as we had a comparison for
exactly how the gantry should behave.

In creating the stroke routine which is exposed to the layer
above, routines for washing the brush and collecting a specific
pigment are required. These routines are also a part of the motor
control layer but are not exposed to the layer above. These are
used internally by the stroke routine when it is necessary to wet
the brush and collect pigment. As the locations of all of the
needed objects to carry out these routines are fixed, much of the
control routines will be moving to hard-coded locations, not
operating by some feedback informing the head where the
objects are. For this to work this layer must also always keep
track of the precise location of where the head is. An additional
challenge is that the coordinate systems used by the image must
match the coordinate system used by the control layer. To
address this the layer also exposes an initialization routine
which will receive information from the above layer regarding
the image size and desired output size, in inches. This
information allows the future routines to normalize the pixels
received and translate to its own coordinate system which is
rooted in the physical space rather than a digital space.

This layer bridges the gap between the hardware and
software in our design. Built up from the provided device
drivers for the motors, this layer offers a single control routine
for painting a desired stroke with a specified color. This
abstraction allows the painting to be easily performed from the
above layer after a list of strokes representing the image has
been created.

C. Image Processing and Stroke Generation

The Image Processing and Stroke Generation algorithms
form the software component of this project. The first part is the
Image Processing algorithm. This converts the original digital
image into something that the physical apparatus can draw. The
reason this is required is that the physical part of the robot has
3 main constraints: brush width, number of colors, and time.
The width of the brush is constant from the beginning to the end
of the painting process, since we won’t swap out brushes during
a painting. We are using 24 colors, so the robot will have to
select the closest color to the 24 colors. There is also a time
limitation. Therefore an image clustering algorithm called
Mean Shift Segmentation was used. This algorithm takes
regions of similar color that are close together and turns them
into regions of uniform color. Three parameters are used to
toggle the properties of the segmentation algorithm. The first
parameter is the distance from the center that a point can be such
that it is still able to be part of that segment. This is called the
spatial radius. The second parameter is the range radius, which
specifies the range of colors that can be in the segment. The
third parameter is the minimum density of points, which
indicates the number of pixels that can be inside one segment,
thereby dictating the size of the largest segment. These
parameters ensure that the objects are wide enough to be drawn
by the brush. This algorithm reduces the complexity of the
image significantly (about 24%) while keeping the accuracy

close to the original. The second benefit is that the algorithm
outputs a map with the labeled regions for each pixel, which
allows us to have objects with defined edges and uniform color.
This makes it simple for the next part of the software
component, namely the Stroke Generation algorithm.

The Mean Shift Segmentation algorithm is an open source
function implemented in the pymeanshift library [8]. By
changing the parameters, we are able to segment an image in
whichever way the problem requires. Fig. 15 shows the result
of running light segmentation while Fig. 16 shows the result of
running stronger segmentation.

The second part of the software component is Stroke
Generation. Once the segmented image has been created, the
segments are separated into lists of strokes. There are two
different kinds of strokes: perimeter strokes and fill-in strokes.
Each object in the segmented image is made up of one perimeter
stroke and one fill-in stroke. The perimeter strokes trace the
outline of an object with the color of that object. The fill-in
strokes fill in the object with horizontal straight lines of that
color. First the perimeter stroke is drawn for one object, and
then that object is filled in with fill-in strokes. The order of
objects to be drawn is based on the length of the perimeter
stroke, to make sure that the lowest detailed objects are drawn
first. A perimeter stroke is made up of several very small line
segments which trace the outline of the object. A fill-in stroke
is made up of several horizontal line segments which go from
the top of the object to the bottom.

Once the strokes have been created and ordered, they are
broken up into line segments which are defined by a starting

Fig. 16. The result of stronger segmentation on the image in Fig. 7.

18-500 Final Project Report: 05/08/2019

coordinate, ending coordinate, and color.

The color chosen from a region uses a weighted cost
function of HSV values. Some special colors, white, gray and
black, have special logic related to the saturation and the value
HSV fields. A weighted sum allows us to place more emphasis
on the hue of the color when relevant, as this is the most
important factor in matching the color. The color choosing
algorithm also considers the neighbors of a region, and is biased
towards choosing colors which are different than its neighbors.
This allows the rendered image to maintain the contrast present
in the original image. The algorithm will consider using the
second best color match over the best color match when the best
match is used by a neighbor. The second best color will only be
used if the loss of color accuracy is below some threshold.

The order the regions are drawn in mostly follow the order
that they are created by default using the library. However, we
made one small optimization. When testing, we noticed that
some black outlines would cover up certain colored segments
due to it being such a dark color. As a result, we make the
program paint all the black regions of the painting first before
painting the rest.

10

18-500 Final Project Report: 05/08/2019

VI. PROJECT MANAGEMENT

A. Schedule

The schedule for the project is shown on page 13. Each task
is color coded based on which team member primarily worked
on it, and lines between tasks indicate which tasks depended on
the completion of others. Our schedule did not change
significantly from the version presented in the design report.
The major changes are that some tasks were broken up into
smaller parts, and the time taken for certain tasks was longer
than initially predicted. Nevertheless, we met all of our major
deadlines and remained mostly on track for the duration of the
project. We had plenty of time remaining in the days up to the
final demo to test, debug, improve, and modify the system.

B. Team Member Responsibilities

In the first few weeks, all three of us focused on the physical
portion of the design. Since none of us have had any mechanical
design experience before, we have decided to frontload that part
of the project. Chris has taken the lead on the mechanical design
and oversaw building the physical system. Harsh focused on the
software portion which involved the image processing. Eric has
taken charge of the control layer of the robot, which includes
the hardware and control of the motors. Although each focused
on an individual subsystem, each team member also helped out
and discussed decisions regarding other portions of the project
whenever applicable and relevant. As the schedule shows, we
all sharing some responsibilities at the end.

C. Budget

The budget consisted of ordered parts and 3D printed parts.
Refer to the Bill of Materials on page 14.

D. Risk Management

The major risks to our project were being able to construct a
reliable gantry system, being able to accurately control the
system, being able to paint images in a reasonable amount of
time, and consistent paint quality for all colors used.

In order to mitigate the risk of an inconsistent gantry
design we drew heavily from the Ultimaker design. We were
able to replicate the principles of operation from their design,
and modify it to fit our design. These modifications consisted
of custom length rods, custom frames, custom paint head,
custom pulleys, and custom carriages. After construction we
saw that our design was not as reliable as we would have liked,
and we were able to limit this through iterative redesigns of all
of our custom parts and a very fine attention to detail to reduce
any sources of friction or non-uniform movements. This
problem was also minimized by front-loading the construction
of the gantry, giving us ample time to improve the physical
design. From our experience, hardware problems are much
more difficult to identify and fix than software issues, and this
strategy gave us lots of time to fix all of our hardware issues.

We were able to limit the risk of how we operated our
physical system by using GRBL, an open source software
library for controlling CNCs. This library takes the
responsibility of tracking the current head location and smooth
motor controls. By using this library rather than creating this

11

software ourselves we limit the error in operation of the gantry,
so that the only source of error comes from inconsistencies in
the physical gantry itself.

In order to reduce the amount of time taken we were able
to set different operating modes of the gantry. When painting
the image it moves slower and more carefully to ensure the lines
look correct in the image, but moves much faster when moving
to gather pigment or rinse the brush. This allows the system to
operate in a reasonable amount of time without sacrificing
quality of the painted image. Additionally, the strokes which
are used to paint the image have been optimized to reduce the
distance travelled by the paint head when performing infill
strokes, which greatly reduces the total operation time.

Finally to ensure consistent paint quality across different
colors we allowed for a custom number of palette swishes based
on color. For lighter colors, like yellow or orange, the system
will swish the paint much more than darker colors like black or
gray. This ensures that the amount of pigment placed on the
paper is roughly equal across all colors and that no color will
dominate the resulting image.

18-500 Final Project Report: 05/08/2019

VIl. RELATED WORK

The goal of having an independent robot independently paint
an image is not unique to our project; this is the same goal of
the Robot Art Competition and Exhibition [1]. This is a
competition held annually for robotics enthusiasts to submit
images which were painted by their creations. From this
competition and the gallery of designs they provide we were
able to see how many of the best robots performed and how they
were designed. A stand out in the competition is a man named
Pindar Van Arman and his CloudPainter, which is an Al driven
robot which has both a robotic arm based design and a gantry
based design. His design is so effective that he has built a brand
and sells the paintings his robot creates for a large sum. Most
other designs featured on the Robot Art site use gantry-based
designs, including another watercolor painting robot. These
designs were our main source of confirmation that our idea for
a gantry-based painting robot could be a success.

VIII.

Overall, our system was able to successfully meet all our
design specifications. Visual similarity, which was the
specification with the biggest weight when dealing with
painting images, was passed with flying colors with SSIM
much higher than the threshold that we originally set. We were
able to successfully render all input images and the painting
operated in a reasonable amount of time. Color selection was
not perfectly accurate, but we felt it was accurate enough and
also valued contrast and aesthetic appeal along with having
accurate colors.

SUMMARY

A. Future work

One thing we want to work on is removing the downward
lines that are created after each stroke. We think that this is a
purely software problem, and we would be able to reduce this
effect given more time. The further optimizations require
making physical changes. One major problem we faced during
the entire project was that the gantry system had large non-
uniform resistance during movements. We pinpointed the
problem to the fact that the pulleys were too large for the shaft,
leading to them not being centered on the shaft which caused
the belts to stretch and contract with each rotation. To mitigate
this problem in the limited time we had, we printed new pulleys
with screws on all 4 sides to be able to center the pulley on the
shaft. A final solution would involve obtaining pulleys which
fit perfectly on the shaft. These would preferably be CNC’d,
since metal parts would be more accurate and wear down
slower. We also want to replace our bearings since they are low
quality and don’t eliminate friction well. Another problem we
had was that we didn’t have any feedback. We had no idea
whether the painting head went to the right position or if it drew
the right stroke. We got around this by zeroing after every
movement. However, a final solution would involve using a
camera to track the painting head, and encoders to track motor
movement. Color blending could also be added to more
perfectly match the input image, but for our project during this
semester this was out of scope.

12

B. Lessons Learned

The biggest lesson we learned was that mechanical problems
are much harder to fix than software problems. Software bugs
can be fixed on a computer in a few hours, whereas mechanical
problems require making the right measurements, waiting days
for parts or 3D prints, and then fitting them onto the entire setup.
Another lesson we anticipated and confirmed was that one
should never try to recreate something that has already been
created. To create our gantry system, we used a design inspired
by 3D printers. We looked at the Ultimaker printer to
understand its design and modeled a large part of our 2D gantry
around it. Since we knew that this design already worked, we
were confident that our gantry would function as well. This was
highly helpful because none of our team members had much
experience in mechanical design. We also front loaded the tasks
we weren’t familiar with (mechanical design) to make sure we
would have enough time for debugging. This turned out to be a
good scheduling decision as we had enough time to learn from
our mistakes and fix our design. This would definitely be a good
lesson for us in future projects. One last thing was that we had
several unexpected problems towards the end of the project, and
we had to think quickly to come up with solutions. One should
always expect the unexpected and account for it in design
decisions. We had decided to 3D print most of our parts at the
beginning, so when parts failed or were causing problems, we
were able to reprint parts quickly. This was very helpful the
weekend before demo day since we needed new pulleys.

REFERENCES

[1] https://robotart.org/

[2] https://maxdesign1990.wordpress.com/2016/05/22/gmtech-printer-motion-
platform-research/ - gantry designs

[3] https://imiloainf.wordpress.com/2012/06/13/mean-shift-segmentation/ -
Mean Shift Segmentation

[4] http://www.imatest.com/docs/ssim/ - SSIM info

[5] https://en.wikipedia.org/wiki/JPEG - JPEG Compressions algorithm

[6] https://gpiozero.readthedocs.io/en/stable/api_output.html - gpiozero servo
library

[7] https://github.com/sbcshop/MotorShield - MotorShield library

[8] https://github.com/fjean/pymeanshift - Pymeanshift library

13

18-500 Final Project Report: 05/08/2019

AUOR UDRANIELDD amply saseynd
[EasAyd ARsSEAIaL e /N5 3qew
II® ansuy wyirodje Suisooy Joj00 azwdg

I.I_ S0 APEIL LA 1531 Apje|wis Bupsn sadew) Sunynsal Bupsa)
safew) Sunaaqon

2015 Joy wiyuode szwirdg

I Hup aynpal 01 Anued wo suedUgn) JURUEMIP dursn 15a]
l|_ wiasds |ensAyd uo wylpod)e Sunuied 1531
L
wiagshs |exsiyd uo aunnoy ayoas ‘Buues)a ysneg 'Supggesd Jojoz 159)

SUINO) 3¥0Ms a1ead])

aunod Suiqgesd Jo0 B1AU0
aupnou Suluea)s Ysnig a=au]

asemyos Sunojd a1eau pue sa0sey Wyls0d|E aKew

wiyio8|e Sursooyd Jojm 311im PUE a1E3L)
F syo(d uo Bupegnuws Ag 1531 puE alemyos wucd|e a1umm,
F — afew) peauawdas wouy usnesauad ayouls 1o wiuode a1ean

r —] jueq 1521 10y sadpe » adew) 198le] EqeaUD 01 YIYs-UESW 50

| BORMAIU| |CUILOD JO10W BREWY
[oaJas Busn ysniqiued jouuog
- walsds Augued gy so1ow jo uopesiagu) nseq ayepdwod

BUNDU J0UIUCD OAJSS BZ||BEUY PUE 153]
BUINGY [DUILCD DALSS JSEG S1UM,
1d Fujsn Joacw auo [ouuod Al EUO[IIUNY 14 JI5eq 15a)
5|CUIUO03 P|3YS SO0 PUE SBIIEIGI Wi |4 dn 135
= BLUEL) 0] X|}E PUE PIEOGESE] 1N

[Jamod 01 173UU00 PUE 0AJ3S 5130 010 UOELY

= sadE|uEd pue peay ud ‘spod ‘BlWwel) 0 saunow Suueaq YIeuy

r peay Jupd ‘sfeused ‘ssunow Supesg “sAsnd uud gf pue sulljsap Bupsme Aypowy
m suoddns pue smauds Supsn 1DaULED PUE JWEL 0 SUD|SMUIXS WNULINE 107

— sdnyas f spuenq 1533 udjsag

I swiyao8e fuyzueasay

__.q [awely ulsag

. JomEyRq Jued 153]
ysieH

|ouuoo ongas ulisag
] dmas [cuuos Jojow udjsag

o3
SUYD

|CUILO0 JO10W 04 SUOIIEINIE]

]
i

SIIELAY IS [CUIUCD PUE samod ey
- ud|sap sie pg a1Euld
P 5B S|NE (J7 YIIESSEY

S5 2w Shiv Sit BEE aLE AE VET FLE WE 52/l

14

05/08/2019

18-500 Final Project Report

YO OERS 1500 8301
61793 61793 64708 b b PIBIUS IND
L1es L1es (A3 L ! S13AUP Jojow Jadda)s
697024 697024 69028 L L ounpiy
5188US G 10 Yoed ZETLE ZETLE 6l L% z L | Jaded JojoJualEM
01 Jo3oed 0058 0058 0058 L 0 b sBuuds uoisio} jjag
129 JO Wg 2088 00°0% 2288 2885 I 0 l slag
yoed Jad syeq g 66°9% 00708 66°9% 6605 b 0 b s)og J0joW
ENX8 Z Papaau g ‘sbuueag | suIBu0D €664 86FS S6 TS S61ZS L 0 | sBuueagq Jo yoed
€ OJULIND B4 [Yeys yoeg 08628 Vs 20gLs 198 ¥ b £ syeys
sjunopw
SMBI0S PUE SJUNowW € Sey yoed aup 660LE 0008 660L% 66015 L 0 | V510 Jeddars
FLGLE 5808 6298 6285 L 0 L pieog aseg
620L% 00°0% 620L% 62018 I 0 ! 195 Juied
13)depy
00d 00zd 00ZE L 0 L Jamod JQ alewad
fiddns
ued Buimoljo) 10} 1500 SBpNJoUI XE] pue Buiddiug BELLE v68% 5623 G685 L 0 ! 18mod D0 V1 AZ}
08 40 30Ed 6668 6668 6668 L 0 b sajqe) sedwnp
ajgen
WWDZE ‘ZL 10 ¥oed 66°9% 0008 66°9% 6695 L 0 L UOISU)XS J010WOMIDS
Z10y2ed 69718 0008 6918 SEES z L L lojowonias
(581982 + £ 10 yoed) (z THEHIT wou) /| BLREK g8°8zs 0008 g8°8zs £0°6% £ L z 10101 Jaddals
{siunow Buueaq 1oy)
@I 1510 paU3pl0 JUNoLE Dauodul _w_?_unm SE SWes sl Hed 656°8% 00 0% 656°8% G5 2% L 0 I Mald§ pue lnN-1 weag
(sjunow Buueaq 1oy)
fizpeedes pasapio ‘Ued anoge SE [eRUSp| 9g /% 00°0% 9g4% aF 0% 18 0 al M2I2§ pue INN-1 weag
sued 0z/0g aul 1o JIe Joy 5 xeybuddiys JANFL 15728 09t ar 0% oL z g MaIJS PUB INN-1 Weag
0c /6% MBIOS PUE WN-| WEag ul papnpul xeybuiddiyg 0528 05228 SITS 0L z 2 slayoelg Jauio) weag
MBIOS PUE WN-| WESF Ul papnjoul ﬁcwc_mm_zm 0gLs 0gLs €108 oL z 2 _w__wawm urysnd dep
- MBIOG PUE MN-L Weag ul papnpul xeybuiddiyg 00zhe 00z 0Z'1% (i1 z 2 sde) weag
79 C05$ }s0) |ejoL sieag
UoES 56713 18 SIND ¢ 10y 51 92ud xeyBuiddiys ‘Yol 1ad aoud ¥ IES 0818 it £20% 8zl ZE 96 wnuiwn|y payols- 1
6613 0008 6613 66°L% L 0 | 191depy unm as oo
00°90% sped pajuud ge 6663 0008 6663 6665 L 0 L 18)depy 1amod Idy
; 26628 00°0% 26628 6671S z I ! PIBIYS 1030 IdY
79 9Er$ sHed alempieH 67 PES 0008 67 PES 6¥ FES L 0 L 1dd
Apuenp Apuenp
150D S3]0N aoug |ejo] xel/Buiddiys aoud aseg punjaougd [aLTR enx3 fnuenp alieu ped
Iso) @0l

seuajely jo g

