
18-500 Final Project Report: 05/08/2019

1

Abstract—A system capable of taking a digital image and

painting a watercolor version on a physical canvas. The aim of the

project is to create an image which looks naturally painted, not a

replica of the source image. At minimum, this product will be able

to represent simple images or match the shape of the given image.

The resulting image should be similar in terms of color gradients

and general appearance and contrast. The system will consist of a

2-dimensional gantry system to physically draw the picture along

with a software component that will handle image processing.

Index Terms— Gantry, Image Processing, Painting, Robot

I. INTRODUCTION

NE of the biggest goals in robotics is to create systems

that behave more human-like. A large amount of research

today is focused on creating robotic systems that replicate

human tasks such as driving, speech comprehension and vision.

Our intent is to break down this barrier between humans and

robots in art. Our design is inspired by the gantry systems of 3D

printers, which we combine with image processing and control

systems to make a robot that can receive an image and paint it

on a canvas. The most difficult part of this is to make the

painting look natural and not robotic, while also maintaining

accuracy and speed. This project does not aim to replicate how

a printer makes an image pixel-by-pixel. To accomplish this

task, we paint the picture using a paint brush and human-like

strokes. Our approach takes the proven efficiency and accuracy

of 3D printers to allow us to paint a pre-processed image using

smooth and natural strokes

Critical to our design is the ability to paint an image which is

an accurate representation of the source image. This is

measured using the structural similarity (SSIM) index, where

we aim for a score of at least 0.2. Additionally, the total time

for painting an image should be reasonable to the scale and

complexity of the image, limited to 8 hours in the worst case.

These metrics are key for our project to meet our goals of

connecting robotic systems with art through a design which

produces a painted image of good quality and can do so in a

reasonable amount of time.

II. DESIGN REQUIREMENTS

The first requirement is that a digital input image of any size

is capable of being rendered as the target image to paint and

displayed back to the user. This step allows for an image to be

rejected if the rendered painting is not of acceptable quality.

This requirement is purely digital in nature and therefore can be

tested using an image bank of 10 images which vary in image

size and complexity. The successful design will be able to

create renders of consistent quality across all scales and

complexities, and will scale images which exceed the bounds

of the painting space. This requirement will simply be measured

by the program’s success at processing the given input image.

Our next requirement is that we effectively use the full range

of the palette which is integrated into the system. When painting

an image the palette color with the lowest difference to the

desired color should be chosen, measured using the HSV (hue,

saturation, value) color model. Specifically, this color

difference will be measured using the following equation:

 Δ = (|H0 – Hr| + f * 0.1 * |S0 – Sr| + f * 0.15 * |V0 – Vr|) ()

In this equation, Δ is the color difference, H0 is the hue of the

original color from the image, Hr is the hue of the color chosen

by the robot, S0 is the saturation of the original color from the

image, Sr is the saturation of the color chosen by the robot, V0

is the value of the original color from the image, Vr is the value

of the color chosen by the robot, and f is the weighting factor

for brown. In our experimentation of color picking, we found

several difficulties and realized it was a much more complicated

process than initially expected. Hue, saturation, and value can

not be weighted equally when determining the closest color. As

a result, we choose to weight saturation and value less than hue

by multiplying them with the constants of 0.1 and 0.15

respectively. In addition, we introduced f, a weighting factor for

brown. Unlike other colors, brown is not determined by a

unique hue. Rather, its hue is orange, and it is defined by having

a low value. As a result, when the normalized hue of the color

is between 0 and 0.125, which is a region of orange-like hues,

we define f to be 1.5, while normally it is 1, in order to more

heavily weight value and saturation to more accurately pick out

brown from orange. Another important consideration was that

a hue of 0 and 1 both corresponded to red, as HSV values are

depicted as a cylinder which wrap around. This was accounted

for when writing the code that performed this algorithm and

calculation. Finally, white, black, and gray are tested for

initially before (1) is used, as those colors occur at extreme

values of saturation and value.

This color requirement can be tested using an image of our

own palette; the pigment in the palette image should always be

painted with that pigment. The image of our palette we will use

is shown in Fig. 1, which will be used to verify the accuracy of

our color picking.

Leonardo Da Robot

Authors: Eric Chang: Electrical and Computer Engineering, Carnegie Mellon University

Christopher Bayley: Electrical and Computer Engineering, Carnegie Mellon University

Harsh Yallapantula: Electrical and Computer Engineering, Carnegie Mellon University

O

18-500 Final Project Report: 05/08/2019

2

Fig. 1. An image of our plaette which will be used to test our robot’s color

selection.

Our third requirement is that our product will create paintings

that are visually similar to the original image. We require that

our output painted image has a score of at least 0.2 according to

the structural similarity (SSIM) index. This is a metric which is

used to measure the perceived similarity of an image to the

source and is commonly used for film and television [4]. We

use this metric for this reason as it corresponds closely to the

goal of our project. After testing the SSIM for various images,

we found that professionally done water painting images of

customer supplied images was roughly 0.4 on average. We will

test our performance using an image bank of 10 images, shown

in Fig. 2, which features images which grow in complexity.

Using this bank, we will paint the images and test that the SSIM

score is at least 0.2 for the first 8 images. The final two images

are more complicated and are our stretch goals once we reach

the scores for the first 8, so they will not necessarily be tested.

Our final requirement is that our design operates in a

reasonable amount of time as a function of image size and

complexity, which we define using the following equation:

 t = (1 + 𝝰) * (𝛃 * s) ()

In this equation, t is the estimated time, 𝝰 is a measure of image

complexity, measured as 4 * (uncompressed image size / JPEG

compressed size), s is the size of the painted image in square

inches, and 𝛃 is a constant scaling factor of 4 (translating to 4

minutes to paint each square inch). The equation for 𝝰 follows

the logic that JPEG compression uses DCT-II coefficients to

compress the image from a raw uncompressed size of the total

image size and dimensions, meaning that the JPEG compressed

size of an image gives rough estimate of how much information

is contained in an image [5]. The image size painted can be

variable, but is limited to 7.5x10 inches, and from experimental

testing 𝝰 can be up to 0.70 for a very complex landscape image,

and as low as 0.04 for a single line. Equation (2) gives a rough

estimate of the upper limit of the testing time, and is designed

to have a limit of roughly 8 hours for the largest and most

complex image. We will test our design using the same image

bank from Fig. 2, which contains variably sized images as well,

and will ensure that they all print in a time corresponding to (2).

 Fig. 2. The test image bank we will use in testing.

18-500 Final Project Report: 05/08/2019

3

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our project will primarily be split into a physical hardware

component and a software image processing component. The

overall architecture of our project is represented in the block

diagram depicted in Fig. 3. The physical component will be the

robot itself, which includes the base and frame that supports the

2D gantry system. The gantry system is supported by a frame

that lies on the base of the robot. The gantry system’s purpose

is to move a painting head around the XY coordinate space

above the paper, water, and palette which are lying on the base.

The painting head will control a paintbrush which is attached

by a servomotor, and the head will be moved around by two

stepper motors. These motors will be controlled by a Raspberry

Pi. The servomotor is connected to the Raspberry Pi through a

GPIO pin. In our original design, the stepper motors were

controlled through a motor shield attached to the Pi, but in our

final design these were controlled by stepper motor drivers in a

cnc shield attached to an Arduino. The Pi sends commands to

the Arduino which then controls the motors.

The software component of our project centers on using

image processing to convert a digital input image into

instructions for our motors in order to successfully paint an

image. A monitor will be connected to the Raspberry Pi which

will allow the user to submit the digital image they wish to be

painted. The monitor will also be used to display the result of

the image segmentation process to the user, in order to show the

user what the approximate final result of the painting will be.

The input image will go through our image processing

algorithm, which will first modify the image to be easier to

paint, in the process of image segmentation. This process will

reduce details and cluster colors together to create a simpler

image for painting, which is what will be displayed to the user

on the monitor. The image segmentation process will output

data and information such as edges and colors, which will then

be used in our stroke creation algorithm. This process will

generate the sequence of strokes that our robot will need to

perform in order to paint the image, with information such as

color, length, and direction encoded.

This sequence of strokes will be given to the stroke routine,

which will control the motors. A list of strokes with a specified

color and location are provided to the stroke routine, and the

routine will instruct the motors of our robot to dip the brush into

the water, paint, and finally onto the paper. Our motor control

routines are the bridge between the software containing

information of what to paint and the hardware which is capable

of painting. The interface from the lowest level of motor drivers

allow the stepper motors to rotate a set number of steps in a set

delay time between each step. This functionality is provided

through the use of an open source CNC control software called

GRBL. Communication between the Pi and the Arduino is over

the Arduino’s serial port, and GCode formatted instructions are

sent which contain destinations for the X and Y components

along with a set speed. This is an improvement over our original

design review, which involved controlling the motors through

a motor shield using code provided by the manufacturer. This

change in the system gave us greater control of the movement

of the motors for smooth acceleration and deceleration, and

allowed us to provide the necessary power at times to overcome

friction in our physical system. The servomotor is controlled

through PWM, and its driver has an interface that allows the

motor to be set to a certain angle. These interfaces are used by

the control routines to abstract to higher level concepts such as

dipping the brush to grab pigment or performing a stroke at set

locations. These control routines receive input from the painting

and stroke generation algorithms.

Fig. 3. The block diagram showing our project’s archiecture and subsystems.

18-500 Final Project Report: 05/08/2019

4

IV. DESIGN TRADE STUDIES

The four main requirements of our project were successful

image rendering, accurate color picking from the available

palette, visual similarity between the painted image and the

original input, and a reasonable time taken for painting. We

evaluated our design using the tests described earlier in the

paper, and compared and analyzed these results against our

expectations. These details will be outlined more

comprehensively below in a section dedicated to each

specification and metric.

In designing our project, there were numerous trade-offs and

options to consider when finalizing decisions. Two of the most

important aspects of our design were the 2D gantry system,

which is the primary physical and hardware component of our

robot, and the image segmentation algorithm, which is the first

step of our software component. A significant amount of

testing, research, and experimentation was conducted in order

to choose the best option to proceed with in these two

subsystems. More information about this is included below, in

two sections centered around the design decisions we made

when creating the gantry system and choosing the image

segmentation algorithm.

A. Specification – Successful Rendering

Our first specification was that our robot could, given any

input image of any size, successfully process and render the

image and display the result back to the user. This

specification was not explicitly tested with a strict

methodology, as any issues arising from a failed render would

be quickly fixed. However, by the end of the project, we have

used numerous images as input to our program, including all

ten images in our image test bank, and all can be successfully

rendered. As a result, we believe our program’s ability to

process any input is fairly robust and comprehensive.

B. Specification – Color Picking

The next requirement was accurately choosing colors for

each segmented region in the input image. Table I shows the

results of a test involving the image of our palette from Fig. 1.

As Table I shows, our color picking algorithm was not

completely accurate. This was due to several complications

which were mentioned previously; black, gray, white, red, and

brown have unusual or extreme values in their HSV

representation, which is why (1) went through many revisions.

Ultimately, the algorithm we created satisfied us by being

accurate in many scenarios. Although there were some colors

which were not fully correct, as in the exact same pigment

from the palette was not chosen for itself, all the incorrect

colors were close in terms of being the same hue. Because of

the similarity in many of the hues on our palette, for example

there are several reds and blues on our palette which all look

very visually similar, we did not think it was necessary to

dedicate more time and effort to refining the algorithm even

more.

C. Specification – Visual Similarity

The next specification of our system was that each painted

image is visually similar to the original input image. As

previously stated, this was tested using the structural similarity

TABLE I. CORRECTNESS OF OUR COLOR PICKING ALGORITHM AS

TESTED BY AN IMAGE OF OUR PALETTE

Category Number of Colors

Correct 15

Close 9

Incorrect 0

 (SSIM) index. This requirement was tested against our image

bank of ten images, with the results shown in Table II. A small

description of each image is included for reference. Images 9

and 10 were not tested due to concerns over complexity and

time, as those two images were originally stretch goals as

well. As can be seen from the results in the table, the first 8

images in our image bank all had an SSIM higher than 0.2,

which was the threshold we determined when planning our

tests and metrics. In fact, the results of the structural similarity

tests were much higher than we expected, with every image in

the first 8 having an SSIM of above 0.4. The results of some

select images from the test bank are shown in Fig. 4, which

displays our robot’s drawings of a rocket (image 6), tomatoes

(image 7), and a fruit basket (image 8).

D. Specification – Time Taken

The final specification of our system was that it operated in a

reasonable amount of time. Again referring to the results in

Table II, the time it takes for the robot to paint an image

increases as the complexity and size of the image increases. In

addition, no image so far has taken over eight hours to paint,

which was the maximum amount of time we wished our robot

to perform in. However, images 9 and 10 are highly detailed

and complex, and may possibly have taken over eight hours to

paint. This was one of the reasons why we did not test images

9 and 10, due to the interest of time.

TABLE II. STRUCTURAL SIMILARITY AND TIME TAKEN OF IMAGES IN

OUR TEST BANK

Image

Description

Image

Number

SSIM Time Taken

Line 1 0.683 2 min 6 s

Triangle 2 0.655 5 min 14 s

Circle 3 0.691 5 min 3 s

Shapes 4 0.465 8 min 29 s

Colored Shapes 5 0.436 42 min 11 s

Rocket 6 0.404 37 min 40 s

Tomatoes 7 0.434 5 hrs 56 min 17 s

Fruit Basket 8 0.552 2 hrs 32 min 34 s

Fig. 4. The robot’s drawings of a rocket, tomatoes, and a fruit basket. Original

images are images 6, 7, and 8 in the test image bank respectively.

18-500 Final Project Report: 05/08/2019

5

E. Subsystem - 2D Gantry System

There were several possible implementation paths available

for designing the 2D gantry, and all would meet the major

constraints of our project which are having a large enough

workspace and a fine enough granularity. Because of this, the

main considerations made when choosing the gantry design

were complexity, cost, and risk. Our original plan was to use

threaded rods which would support the carriage, allowing

rotation of the threads to carry the device. We found that these

designs were generally used for much larger constructions, as it

can support a much heavier payload. For this reason, we chose

to use a belt-based design as is commonly used in 3D printers,

as these designs are commonly used for lighter loads and there

are plenty of reference implementations available in the form of

3D printers.

When considering possible belt-based gantry designs, we

found some of the most common designs are the Hbot system

(depicted in Fig. 5), CoreXY (depicted in Fig. 6), and the

Ultimaker style [2]. The Hbot uses a single very long belt

arranged in the shape of an H, but the force applied is uneven

and results in a moment created on the edge of the print head.

The CoreXY system solves this problem using two belts

arranged in an H shape which cross near the top. This design is

fairly complicated, and the exact arrangement of the belts and

pulleys required leaves a lot of room for error. Based on these

factors, we chose the design used by the Ultimaker printers.

This design uses several sets of belts which run in one direction

and is almost entirely symmetric, making it simpler to

implement. Additionally, Ultimaker is open source, allowing us

to leverage their proven system with small modifications to

work in our own design. We selected the gantry specification

based on the simplicity of the Ultimaker style and the low risk

due to the open-source nature of Ultimaker.

 The final aspect of our design decision with respect to the

gantry was to use existing parts or design our own. By designing

and 3D printing our own parts, we allow for a more custom

design, fast part availability, and an overall lower cost than

purchasing the Ultimaker parts. The drawbacks are that this

allows room for error by modifying an existing design which is

known to work well. The Ultimaker parts were not available

Fig. 5. The Hbot gantry design.

Fig. 6. The CoreXY gantry design.

from any major retailers in the US, and additionally the

replacement part packs were expensive and contained many

parts we wouldn’t need. For these reasons we chose to design

our own parts and have them 3D printed. This design choice has

allowed us to save over $100 of our budget, and allowed us to

expand the working space of the head considerably. Inevitably

the print head would have to be a custom part as well, and by

modifying all of the other parts we reduced the number of

constraints on the geometry of the print head which allowed us

to pursue a clean and simple design.

 Overall, our gantry design decision diverged first between

a threaded rod or belt design, between several different belt

designs, and finally on using custom or premade parts. We

made the choice of a belt-based design for its prevalence in an

area which is very similar to our goal, allowing us to keep risk

low and manage complexity by using well documented existing

designs. The Ultimaker design was chosen among other belt-

based designs again for its simpler design and proven

effectiveness, which greatly lower our risk. Finally, the decision

to modify the parts came at the price of a small increase in risk

for the benefit of a significantly less constrained design space

and lower cost.

F. Subsystem - Image Segmentation Algorithm

There were a few methods we considered for implementing

an algorithm to pre-process the image. The reason that we

needed to pre-process was because of the limitations of the

physical system. The brush width must stay constant throughout

the entire painting process, and thus we cannot draw something

thinner than this width. The second limitation is that we have

24 colors available. This means that all colors have to be

approximated to those 24 colors. The third limitation is time.

Since this is a physical system where motors have to move

everything around, there are time constraints. To tackle these

constraints, we considered the following pre-processing

algorithms: blurring, edge drawing, k-means image

segmentation, and mean shift segmentation. After some

consideration, we decided to discard the idea of blurring. The

original image used to test all of these image segmentation

algorithms, depicting a fruit basket, is shown in Fig. 7. The

18-500 Final Project Report: 05/08/2019

6

result of blurring it is shown in Fig. 8.

Although blurring removes the detailed parts of the image, it

still has gradients, which are very difficult to produce. It also

becomes difficult to see where one object ends and another

begins. Therefore, we decided to further explore drawing only

the edges and image segmentation. To choose between these

three methods, we calculated the accuracy of the output along

with how complex the output image was. For accuracy, we

looked at the output image and used the Structural Similarity

Index to classify the methods. For complexity, we took the

output JPEG file and compared it with the original JPEG file in

terms of file size. As stated earlier, the JPEG file format

compression is correlated to how complex an image is, so the

more compressed the output file is, the less complex it is [5].

Table III shows the complexity and similarity for the three

methods.

The conclusions we can draw are that the k-means clustering

and mean shift clustering are far better than edge drawing in

both accuracy and complexity. Mean shift clustering is 27%

less complex than k-means clustering but still manages to beat

out k-means in terms of accuracy. It also returns objects of

defined edges and uniform color, which is much easier for the

physical system to draw than what k-means returns. The

following images show the output of edge detection, k-means

clustering, and mean shift segmentation. Fig. 9 shows the

output of the original image after running edge detection, Fig.

10 shows the result of running k-means, and Fig. 11 shows the

result of running mean shift segmentation. All these images use

the original fruit basket image in Fig. 7 as input.

TABLE III. STRUCTURAL SIMILARITY AND COMPLEXITY RATIO OF

DIFFERENT IMAGE SEGMENTATION ALGORITHMS

 SSIM Complexity Ratio

Edge detection 0.0335 1.8982

Mean shift 0.9432 0.7654

k-means 0.9352 1.0471

Fig. 7. The original image of a fruit basket used in our image processing

experimentation.

Fig. 8. The result of blurring the image in Fig. 7.

Fig. 9. The result of running edge detection on the image in Fig. 7.

Fig. 10. The result of running k-means on the image in Fig. 7.

Fig. 11. The result of running mean shift segmentation on the image in Fig. 7.

18-500 Final Project Report: 05/08/2019

7

V. SYSTEM DESCRIPTION

Our project is split into three main subsystems: the 2D gantry

system, which is the physical component that controls

movement of the brush; the gantry control layer, which controls

the motors of the gantry; and image processing and stroke

generation, which is the software component of our project. An

image of our robot as a whole can be seen in Fig. 12.

A. 2D Gantry System

The gantry system forms the physical portion of the project.

This is a system of shafts, pulleys, and motors which allow the

robot to dip a paintbrush in water, collect pigment from a

palette, and perform a stroke on the paper. The design for our

gantry follows the gantry design used in the Ultimaker line of

3D printers, which is proven to be effective and accurate.

Ultimaker is also entirely open source, and we were able to

modify their CAD files as well as design our own which match

our design more precisely. Our design does not use the

Ultimaker parts, although they are available for purchase online

through 3D printer repair sites. This is because by modifying

the Ultimaker designs or creating our own we are able to keep

costs low by 3D printing these parts, as well as make custom

parts which match our design requirements more precisely. For

example, the carriages were redesigned to fit an axes

arrangement which was simpler for us to execute, as well as to

carry the print head with the crossbar shafts in a different

arrangement than the original design.

The core of the gantry design is outlined in Fig. 13. Two

stepper motors are located at one corner of the gantry and can

be positioned anywhere in the z plane below the axes. Two sets

of parallel axes are positioned to form a square, mounted in a

bearing allowing the shafts to rotate easily. Both the stepper

motors and the axes have a pulley around them, and are

connected by a timing belt, labelled purple. This translates the

rotation of the stepper motor to the axes. Each set of parallel

Fig. 12. An image displaying the main portion of our robot.

Fig. 13. The Ultimaker gantry design.

axes are connected by two belts as well, labelled red and blue,

which coordinate their rotations. A carriage rests on the axes

and is attached to the belts, which allows the rotational motion

of the opposite axes to be transferred into translational motion

on the carriage. The carriages carry shafts which support a paint

head in the center space, allowing the head to be coordinated in

two dimensions. The paint head carries a servomotor which has

a brush connected, allowing the brush to be raised from the page

or lowered to make contact. This is suspended via a frame of T-

slotted aluminum, allowing the paint head to travel a fixed

distance above the base. The implementation of our design is

shown in Fig. 14.

The major constraints on this system are that the brush head

have a movable space which is large enough and that the brush

can be controlled with sufficient precision. The working space

must fit our canvas, 4x6 inches, our watercolor palette, about

3.5x8.5 inches, and a cup of water, about 2x2 inches. This totals

a working space requirement of about 8.5x8.5 inches. Our

design consists of a frame of aluminum with inner dimensions

of 16x16 inches. The entire inner dimension is not usable

however, due to the space required within the frame for

Fig. 14. A CAD model of our gantry system.

18-500 Final Project Report: 05/08/2019

8

the axes to run uninterrupted. Considering the space required

for the axes, as well as the pulleys and carriages mounted on the

axes, the dimensions of the working space are 14x14 inches.

Then this meets our requirement for the brush to be able to

move over a sufficiently large area. This also leaves enough

room for us to add a mechanism to stabilize the position of the

paint head. By surrounding the shafts of the gantry with plastic

tubing, we can further restrict the area the paint head can travel

within. This allows us to place zero points near the components

on the board which are frequently visited, and by driving the

paint head into these tubes we can effectively guarantee the

current position of the paint head. For our design with no

feedback mechanisms, this design choice was critical to

creating a system which could account for error. Additionally,

the mounting height of the entire gantry is adjustable, but fixed

during operation. This allows us to modify the height to fine

tune the amount of contact the brush makes with the paper as it

is rotated by the servomotor. This is the advantage of using T-

slotted aluminum as well as our own designed mounts for the

axes.

To address the precision allowed by this design, we must

consider the precision of the stepper motors and the dimensions

of the pulleys and timing belts. The stepper motors step size

translates to a rotation of the axes by the same amount, as they

are coupled by a timing belt. The rotation of the axes will result

in a translational movement of the belt which carries the

carriage according to the degree change and the radius of the

pulley. From this we can form the equation x = 2𝜋r * (𝜃 / 360),

where x is the translation of the carriage, r is the radius of the

pulley, and 𝜃 is the change in angle of the axes. The pulley used

in the Ultimaker, which we use in our design with a small

change to the inner radius, has a radius of 0.25 in. Our stepper

motors have 200 steps / revolution, which translates to a 1.8

degree step size. Of all the cost-effective stepper motors we

considered, this step size was standard. This gives us a

minimum horizontal translation x = 2𝜋 * (0.25 in) * (1.8 / 360)

≈ 0.008 in. or 0.2 mm. This means we can operate the paint head

with a granularity of 0.008 inches, which is more than sufficient

to carry out all the requisite strokes and operations.

The integration of the gantry into our overall design is at the

motors. The two stepper motors are connected to CNC shield

mounted on the Arduino, and the servomotor are connected

directly to the Raspberry Pi. Low level drivers are used for basic

control of these devices, allowing their rotations to be

orchestrated into an operating gantry system.

The design of our gantry did not change much throughout our

project, as we successfully leveraged the working designs of the

Ultimaker. The major parts which were revised were the 3D

printed parts, in order to allow for easier assembly and

operation. The carriages were redesigned multiple times to

create something which could connect easier than the Ultimaker

design and be much more sturdy. Additionally, the pulleys were

redesigned to allow for 4 screws rather than one for fixing onto

the shafts. This allowed us to perfectly center the pulleys and

reduce the amount of wobble in our gantry.

B. Gantry Control Layer

The gantry control layer consists of the motors that will

control the 2D gantry system as well as the software in the

Raspberry Pi that controls the motors. The code for this

subsystem will be written in Python, and will use libraries to

help interface the motors with the Pi. The servomotor, which

controls the painting head, will be wired to the Raspberry Pi

through a GPIO pin. We will be using the library gpiozero to

interface with the servomotor, specifically the AngularServo

class, which extends the Servo class [6]. This class allows

control of a rotational PWM-controlled servomotor, and gives

us the ability to set it to specific angles. For the library to work,

we must set the servo to its maximum position and its minimum

position and measure its angles, and input these angles as the

constructor for an instance of the class. This setup will let us

move the servomotor to any angle in between.

The two stepper motors are controlled by stepper motor

drivers, A4988, which are mounted into a CNC shield on the

Arduino. This allows for precise control of the motors through

the open source CNC software GRBL. The drivers allow us to

precisely control the power which goes to the motors, and have

a sufficiently high current rating to allow for the friction in the

system to be overcome. The painting routine algorithm

generates GCode instructions which are sent to the Arduino

over the serial port. The GCode sent is very simple, with lines

consisting solely of X and Y positioning arguments and a speed.

During initialization of the gantry control layer, GRBL is

configured to match the rotations needed to translate a single

inch.

 The original design used a motor shield which connected

directly to the Pi. While this design gave us access to the motors

directly, it proved ineffective at supplying power as there was

no way to set current limits to the motors. By using stepper

motor drivers we were able to ensure that the motors would

always receive sufficient power and not draw a dangerous

amount. Additionally the GRBL software allowed smoother

accelerations and decelerations which allowed for smoother

control of the gantry.

With this, an interface was created for use by the painting

routines. The gantry control layer will act as the intermediary

between the software and hardware components of our project,

allowing our code to easily call functions that will move the

motors how we desire. This layer exposes a single interface

which is the stroke routine, which can receive a list of xy

coordinates which define a series of straight line segments and

a number corresponding to one of the available colors in the

palette. This function will then paint the entire stroke and return

when completed. Doing so will require the paint head be moved

to wash the brush, grab pigment from the palette, and trace the

line segments on the page. It may be necessary to gather more

water and more pigment while painting a single stroke, which

is the responsibility of this layer to control. The layer above

provides no information on how frequently to collect pigment.

In addition to this single routine, a software model of how this

layer should behave was created. This layer exposes an API

which is exactly the same as the gantry control layer, but instead

of sending the strokes to the gantry to be executed, they are

18-500 Final Project Report: 05/08/2019

9

instead used to create an image of the lines in the stroke. This

model is used to show an in-progress view of the painting, and

also allowed for easy debugging as we had a comparison for

exactly how the gantry should behave.

In creating the stroke routine which is exposed to the layer

above, routines for washing the brush and collecting a specific

pigment are required. These routines are also a part of the motor

control layer but are not exposed to the layer above. These are

used internally by the stroke routine when it is necessary to wet

the brush and collect pigment. As the locations of all of the

needed objects to carry out these routines are fixed, much of the

control routines will be moving to hard-coded locations, not

operating by some feedback informing the head where the

objects are. For this to work this layer must also always keep

track of the precise location of where the head is. An additional

challenge is that the coordinate systems used by the image must

match the coordinate system used by the control layer. To

address this the layer also exposes an initialization routine

which will receive information from the above layer regarding

the image size and desired output size, in inches. This

information allows the future routines to normalize the pixels

received and translate to its own coordinate system which is

rooted in the physical space rather than a digital space.

This layer bridges the gap between the hardware and

software in our design. Built up from the provided device

drivers for the motors, this layer offers a single control routine

for painting a desired stroke with a specified color. This

abstraction allows the painting to be easily performed from the

above layer after a list of strokes representing the image has

been created.

C. Image Processing and Stroke Generation

The Image Processing and Stroke Generation algorithms

form the software component of this project. The first part is the

Image Processing algorithm. This converts the original digital

image into something that the physical apparatus can draw. The

reason this is required is that the physical part of the robot has

3 main constraints: brush width, number of colors, and time.

The width of the brush is constant from the beginning to the end

of the painting process, since we won’t swap out brushes during

a painting. We are using 24 colors, so the robot will have to

select the closest color to the 24 colors. There is also a time

limitation. Therefore an image clustering algorithm called

Mean Shift Segmentation was used. This algorithm takes

regions of similar color that are close together and turns them

into regions of uniform color. Three parameters are used to

toggle the properties of the segmentation algorithm. The first

parameter is the distance from the center that a point can be such

that it is still able to be part of that segment. This is called the

spatial radius. The second parameter is the range radius, which

specifies the range of colors that can be in the segment. The

third parameter is the minimum density of points, which

indicates the number of pixels that can be inside one segment,

thereby dictating the size of the largest segment. These

parameters ensure that the objects are wide enough to be drawn

by the brush. This algorithm reduces the complexity of the

image significantly (about 24%) while keeping the accuracy

close to the original. The second benefit is that the algorithm

outputs a map with the labeled regions for each pixel, which

allows us to have objects with defined edges and uniform color.

This makes it simple for the next part of the software

component, namely the Stroke Generation algorithm.

The Mean Shift Segmentation algorithm is an open source

function implemented in the pymeanshift library [8]. By

changing the parameters, we are able to segment an image in

whichever way the problem requires. Fig. 15 shows the result

of running light segmentation while Fig. 16 shows the result of

running stronger segmentation.

The second part of the software component is Stroke

Generation. Once the segmented image has been created, the

segments are separated into lists of strokes. There are two

different kinds of strokes: perimeter strokes and fill-in strokes.

Each object in the segmented image is made up of one perimeter

stroke and one fill-in stroke. The perimeter strokes trace the

outline of an object with the color of that object. The fill-in

strokes fill in the object with horizontal straight lines of that

color. First the perimeter stroke is drawn for one object, and

then that object is filled in with fill-in strokes. The order of

objects to be drawn is based on the length of the perimeter

stroke, to make sure that the lowest detailed objects are drawn

first. A perimeter stroke is made up of several very small line

segments which trace the outline of the object. A fill-in stroke

is made up of several horizontal line segments which go from

the top of the object to the bottom.

Once the strokes have been created and ordered, they are

broken up into line segments which are defined by a starting

Fig. 15. The result of light segmentation on the image in Fig. 7.

Fig. 16. The result of stronger segmentation on the image in Fig. 7.

18-500 Final Project Report: 05/08/2019

10

coordinate, ending coordinate, and color.

 The color chosen from a region uses a weighted cost

function of HSV values. Some special colors, white, gray and

black, have special logic related to the saturation and the value

HSV fields. A weighted sum allows us to place more emphasis

on the hue of the color when relevant, as this is the most

important factor in matching the color. The color choosing

algorithm also considers the neighbors of a region, and is biased

towards choosing colors which are different than its neighbors.

This allows the rendered image to maintain the contrast present

in the original image. The algorithm will consider using the

second best color match over the best color match when the best

match is used by a neighbor. The second best color will only be

used if the loss of color accuracy is below some threshold.

The order the regions are drawn in mostly follow the order

that they are created by default using the library. However, we

made one small optimization. When testing, we noticed that

some black outlines would cover up certain colored segments

due to it being such a dark color. As a result, we make the

program paint all the black regions of the painting first before

painting the rest.

18-500 Final Project Report: 05/08/2019

11

VI. PROJECT MANAGEMENT

A. Schedule

The schedule for the project is shown on page 13. Each task

is color coded based on which team member primarily worked

on it, and lines between tasks indicate which tasks depended on

the completion of others. Our schedule did not change

significantly from the version presented in the design report.

The major changes are that some tasks were broken up into

smaller parts, and the time taken for certain tasks was longer

than initially predicted. Nevertheless, we met all of our major

deadlines and remained mostly on track for the duration of the

project. We had plenty of time remaining in the days up to the

final demo to test, debug, improve, and modify the system.

B. Team Member Responsibilities

In the first few weeks, all three of us focused on the physical

portion of the design. Since none of us have had any mechanical

design experience before, we have decided to frontload that part

of the project. Chris has taken the lead on the mechanical design

and oversaw building the physical system. Harsh focused on the

software portion which involved the image processing. Eric has

taken charge of the control layer of the robot, which includes

the hardware and control of the motors. Although each focused

on an individual subsystem, each team member also helped out

and discussed decisions regarding other portions of the project

whenever applicable and relevant. As the schedule shows, we

all sharing some responsibilities at the end.

C. Budget

The budget consisted of ordered parts and 3D printed parts.

Refer to the Bill of Materials on page 14.

D. Risk Management

The major risks to our project were being able to construct a

reliable gantry system, being able to accurately control the

system, being able to paint images in a reasonable amount of

time, and consistent paint quality for all colors used.

 In order to mitigate the risk of an inconsistent gantry

design we drew heavily from the Ultimaker design. We were

able to replicate the principles of operation from their design,

and modify it to fit our design. These modifications consisted

of custom length rods, custom frames, custom paint head,

custom pulleys, and custom carriages. After construction we

saw that our design was not as reliable as we would have liked,

and we were able to limit this through iterative redesigns of all

of our custom parts and a very fine attention to detail to reduce

any sources of friction or non-uniform movements. This

problem was also minimized by front-loading the construction

of the gantry, giving us ample time to improve the physical

design. From our experience, hardware problems are much

more difficult to identify and fix than software issues, and this

strategy gave us lots of time to fix all of our hardware issues.

 We were able to limit the risk of how we operated our

physical system by using GRBL, an open source software

library for controlling CNCs. This library takes the

responsibility of tracking the current head location and smooth

motor controls. By using this library rather than creating this

software ourselves we limit the error in operation of the gantry,

so that the only source of error comes from inconsistencies in

the physical gantry itself.

 In order to reduce the amount of time taken we were able

to set different operating modes of the gantry. When painting

the image it moves slower and more carefully to ensure the lines

look correct in the image, but moves much faster when moving

to gather pigment or rinse the brush. This allows the system to

operate in a reasonable amount of time without sacrificing

quality of the painted image. Additionally, the strokes which

are used to paint the image have been optimized to reduce the

distance travelled by the paint head when performing infill

strokes, which greatly reduces the total operation time.

 Finally to ensure consistent paint quality across different

colors we allowed for a custom number of palette swishes based

on color. For lighter colors, like yellow or orange, the system

will swish the paint much more than darker colors like black or

gray. This ensures that the amount of pigment placed on the

paper is roughly equal across all colors and that no color will

dominate the resulting image.

18-500 Final Project Report: 05/08/2019

12

VII. RELATED WORK

The goal of having an independent robot independently paint

an image is not unique to our project; this is the same goal of

the Robot Art Competition and Exhibition [1]. This is a

competition held annually for robotics enthusiasts to submit

images which were painted by their creations. From this

competition and the gallery of designs they provide we were

able to see how many of the best robots performed and how they

were designed. A stand out in the competition is a man named

Pindar Van Arman and his CloudPainter, which is an AI driven

robot which has both a robotic arm based design and a gantry

based design. His design is so effective that he has built a brand

and sells the paintings his robot creates for a large sum. Most

other designs featured on the Robot Art site use gantry-based

designs, including another watercolor painting robot. These

designs were our main source of confirmation that our idea for

a gantry-based painting robot could be a success.

VIII. SUMMARY

Overall, our system was able to successfully meet all our

design specifications. Visual similarity, which was the

specification with the biggest weight when dealing with

painting images, was passed with flying colors with SSIM

much higher than the threshold that we originally set. We were

able to successfully render all input images and the painting

operated in a reasonable amount of time. Color selection was

not perfectly accurate, but we felt it was accurate enough and

also valued contrast and aesthetic appeal along with having

accurate colors.

A. Future work

One thing we want to work on is removing the downward

lines that are created after each stroke. We think that this is a

purely software problem, and we would be able to reduce this

effect given more time. The further optimizations require

making physical changes. One major problem we faced during

the entire project was that the gantry system had large non-

uniform resistance during movements. We pinpointed the

problem to the fact that the pulleys were too large for the shaft,

leading to them not being centered on the shaft which caused

the belts to stretch and contract with each rotation. To mitigate

this problem in the limited time we had, we printed new pulleys

with screws on all 4 sides to be able to center the pulley on the

shaft. A final solution would involve obtaining pulleys which

fit perfectly on the shaft. These would preferably be CNC’d,

since metal parts would be more accurate and wear down

slower. We also want to replace our bearings since they are low

quality and don’t eliminate friction well. Another problem we

had was that we didn’t have any feedback. We had no idea

whether the painting head went to the right position or if it drew

the right stroke. We got around this by zeroing after every

movement. However, a final solution would involve using a

camera to track the painting head, and encoders to track motor

movement. Color blending could also be added to more

perfectly match the input image, but for our project during this

semester this was out of scope.

B. Lessons Learned

The biggest lesson we learned was that mechanical problems

are much harder to fix than software problems. Software bugs

can be fixed on a computer in a few hours, whereas mechanical

problems require making the right measurements, waiting days

for parts or 3D prints, and then fitting them onto the entire setup.

Another lesson we anticipated and confirmed was that one

should never try to recreate something that has already been

created. To create our gantry system, we used a design inspired

by 3D printers. We looked at the Ultimaker printer to

understand its design and modeled a large part of our 2D gantry

around it. Since we knew that this design already worked, we

were confident that our gantry would function as well. This was

highly helpful because none of our team members had much

experience in mechanical design. We also front loaded the tasks

we weren’t familiar with (mechanical design) to make sure we

would have enough time for debugging. This turned out to be a

good scheduling decision as we had enough time to learn from

our mistakes and fix our design. This would definitely be a good

lesson for us in future projects. One last thing was that we had

several unexpected problems towards the end of the project, and

we had to think quickly to come up with solutions. One should

always expect the unexpected and account for it in design

decisions. We had decided to 3D print most of our parts at the

beginning, so when parts failed or were causing problems, we

were able to reprint parts quickly. This was very helpful the

weekend before demo day since we needed new pulleys.

REFERENCES

[1] https://robotart.org/
[2] https://maxdesign1990.wordpress.com/2016/05/22/gmtech-printer-motion-

platform-research/ - gantry designs

[3] https://imiloainf.wordpress.com/2012/06/13/mean-shift-segmentation/ -
Mean Shift Segmentation

[4] http://www.imatest.com/docs/ssim/ - SSIM info

[5] https://en.wikipedia.org/wiki/JPEG - JPEG Compressions algorithm
[6] https://gpiozero.readthedocs.io/en/stable/api_output.html - gpiozero servo

library

[7] https://github.com/sbcshop/MotorShield - MotorShield library
[8] https://github.com/fjean/pymeanshift - Pymeanshift library

18-500 Final Project Report: 05/08/2019

13

18-500 Final Project Report: 05/08/2019

14

