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Abstract—A system capable of taking a digital image and 

painting a watercolor version on a physical canvas. The aim of the 

project is to create an image which looks naturally painted, not a 

replica of the source image. At minimum, this product will be able 

to represent simple images or match the shape of the given image. 

The resulting image should be similar in terms of color gradients 

and general appearance and contrast. The system will consist of a 

2-dimensional gantry system to physically draw the picture along 

with a software component that will handle image processing. 

 
Index Terms— Gantry, Image Processing, Painting, Robot 

 

I. INTRODUCTION 

NE of the biggest goals in robotics is to create systems 

that behave more human-like. A large amount of research 

today is focused on creating robotic systems that replicate 

human tasks such as driving, speech comprehension and vision. 

Our intent is to break down this barrier between humans and 

robots in art. Our design is inspired by the gantry systems of 3D 

printers, which we combine with image processing and control 

systems to make a robot that can receive an image and paint it 

on a canvas. The most difficult part of this is to make the 

painting look natural and not robotic, while also maintaining 

accuracy and speed. This project does not aim to replicate how 

a printer makes an image pixel-by-pixel. To accomplish this 

task, we paint the picture using a paint brush and human-like 

strokes. Our approach takes the proven efficiency and accuracy 

of 3D printers to allow us to paint a pre-processed image using 

smooth and natural strokes. 

Critical to our design is the ability to paint an image which is 

an accurate representation of the source image. This is 

measured using the structural similarity (SSIM) index, where 

we aim for a score of at least 0.2. Additionally, the total time 

for painting an image should be reasonable to the scale and 

complexity of the image, limited to 8 hours in the worst case. 

These metrics are key for our project to meet our goals of 

connecting robotic systems with art through a design which 

produces a painted image of good quality and can do so in a 

reasonable amount of time. 

 

II. DESIGN REQUIREMENTS 

The first requirement is that a digital input image of any size 

is capable of being rendered as the target image to paint and 

displayed back to the user. This step allows for an image to be 

rejected if the rendered painting is not of acceptable quality. 

This requirement is purely digital in nature and therefore can be 

tested using an image bank of 20 images which vary in image 

size and complexity. The successful design will be able to 

create renders of consistent quality across all scales and 

complexities, and will scale images which exceed the bounds 

of the painting space. This requirement will simply be measured 

by the program’s success at processing the given input image. 

Our next requirement is that we effectively use the full range 

of the palette which is integrated into the system. When painting 

an image the palette color with the lowest difference to the 

desired color should be chosen, measured using the HSV (hue, 

saturation, value) color model. Specifically, this color 

difference will be measured using the following equation: 

 Δ = (|H0 – Hr| + |S0 – Sr| + |V0 – Vr|) () 

In this equation, Δ is the color difference, H0 is the hue of the 

original color from the image, Hr is the hue of the color chosen 

by the robot, S0 is the saturation of the original color from the 

image, Sr is the saturation of the color chosen by the robot, V0 

is the value of the original color from the image, and Vr is the 

value of the color chosen by the robot. This requirement can be 

tested using an image of our own palette; the pigment in the 

palette image should always be painted with that pigment. 

Other images that contain basic color samples, such as the one 

shown in Fig. 1, can also be used, in which case (1) will be 

utilized. Together, these images will be used to verify that the 

correct color is used. 

Fig. 1. An example of a basic color sample image which will be used to test 

our robot’s color selection. 
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We require that our output painted image has a score of at 

least 0.2 according to the structural similarity (SSIM) index. 

This is a metric which is used to measure the perceived 

similarity of an image to the source and is commonly used for 

film and television [4]. We use this metric for this reason as it 

corresponds closely to the goal of our project. After testing the 

SSIM for various images, we found that professionally done 

water painting images of customer supplied images was 

roughly 0.4 on average. We will test our performance using an 

image bank of 10 images, shown in Fig. 2, which features 

images which grow in complexity. Using this bank, we will 

paint the images and test that the SSIM score is at least 0.2 for 

the first 8 images. The final two images are more complicated 

and are our stretch goals once we reach the scores for the first 

8.  

Our final requirement is that our design operates in a 

reasonable amount of time as a function of image size and 

complexity, which we define using the following equation: 

 t = (1 + 𝝰) * (𝛃 * s) () 

 In this equation, t is the estimated time, 𝝰 is a measure of 

image complexity, measured as 4 * (uncompressed image size 

/ JPEG compressed size), s is the size of the painted image in 

square inches, and 𝛃 is a constant scaling factor of 4 (translating 

to 4 minutes to paint each square inch). The equation for 𝝰 

follows the logic that JPEG compression uses DCT-II 

coefficients to compress the image from a raw uncompressed 

size of the total image size and dimensions, meaning that the 

JPEG compressed size of an image gives rough estimate of how 

much information is contained in an image [5]. The image size 

painted can be variable, but is limited to 7.5x10 inches, and  

from experimental testing 𝝰 can be up to 0.70 for a very 

complex landscape image, and as low as 0.04 for a single line. 

Equation (2) gives a rough estimate of the upper limit of the 

testing time, and is designed to have a limit of roughly 8 hours 

for the largest and most complex image. We will test our design 

using the same image bank from Fig. 2, which contains variably 

sized images as well, and will ensure that they all print in a time 

corresponding to (2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The test image bank we will use in testing. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

Our project will primarily be split into a physical hardware 

component and a software image processing component. The 

overall architecture of our project is represented in the block 

diagram depicted in Fig. 3. The physical component will be the 

robot itself, which includes the base and frame that supports the 

2D gantry system. The gantry system is supported by a frame 

that lies on the base of the robot. The gantry system’s purpose 

is to move a painting head around the XY coordinate space 

above the paper, water, and palette which are lying on the base. 

The painting head will control a paintbrush which is attached 

by a servomotor, and the head will be moved around by two 

stepper motors. These motors will be controlled by a Raspberry 

Pi. The servomotor is connected to the Raspberry Pi through a 

GPIO pin, while the stepper motors are controlled using the I2C 

interface which is provided by a Raspberry Pi motor shield. 

The software component of our project centers on using 

image processing to convert a digital input image into 

instructions for our motors in order to successfully paint an 

image. A monitor will be connected to the Raspberry Pi which 

will allow the user to submit the digital image they wish to be 

painted. The monitor will also be used to display the result of 

the image segmentation process to the user, in order to show the 

user what the approximate final result of the painting will be. 

The input image will go through our image processing 

algorithm, which will first modify the image to be easier to 

paint, in the process of image segmentation. This process will 

reduce details and cluster colors together to create a simpler 

image for painting, which is what will be displayed to the user 

on the monitor. The image segmentation process will output 

data and information such as edges and colors, which will then 

be used in our stroke creation algorithm. This process will 

generate the sequence of strokes that our robot will need to 

perform in order to paint the image, with information such as 

color, length, and direction encoded.  

This sequence of strokes will be given to the stroke routine, 

which will control the motors. The motor shield for the 

Raspberry Pi that we are using comes with a library of motor 

controls, which we will use in our stroke routine algorithm. A 

list of strokes with a specified color and location are provided 

to the stroke routine, and the routine will instruct the motors of 

our robot to dip the brush into the water, paint, and finally onto 

the paper. Our motor control routines are the bridge between 

the software containing information of what to paint and the 

hardware which is capable of painting. The interface from the 

lowest level of motor drivers allow the stepper motors to rotate 

a set number of steps in a set delay time between each step. The 

servomotor is controlled through PWM, and its driver has an 

interface that allows the motor to be set to a certain angle. These 

interfaces are used by the control routines to abstract to higher 

level concepts such as dipping the brush to grab pigment or 

performing a stroke at set locations. These control routines 

receive input from the painting and stroke generation 

algorithms.  

 

 
Fig. 3. The block diagram showing our project’s archiecture and subsystems. 
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IV. DESIGN TRADE STUDIES 

In designing our project, there were numerous trade-offs and 

options to consider when finalizing decisions. Two of the most 

important aspects of our design were the 2D gantry system, 

which is the primary physical and hardware component of our 

robot, and the image segmentation algorithm, which is the first 

step of our software component. A significant amount of 

testing, research, and experimentation was conducted in order 

to choose the best option to proceed with in these two 

subsystems. 

A. 2D Gantry System 

There were several possible implementation paths available 

for designing the 2D gantry, and all would meet the major 

constraints of our project which are having a large enough 

workspace and a fine enough granularity. Because of this, the 

main considerations made when choosing the gantry design 

were complexity, cost, and risk. Our original plan was to use 

threaded rods which would support the carriage, allowing 

rotation of the threads to carry the device. We found that these 

designs were generally used for much larger constructions, as it 

can support a much heavier payload. For this reason, we chose 

to use a belt-based design as is commonly used in 3D printers, 

as these designs are commonly used for lighter loads and there 

are plenty of reference implementations available in the form of 

3D printers. 

When considering possible belt-based gantry designs, we 

found some of the most common designs are the Hbot system 

(depicted in Fig. 4), CoreXY (depicted in Fig. 5), and the 

Ultimaker style [2]. The Hbot uses a single very long belt 

arranged in the shape of an H, but the force applied is uneven 

and results in a moment created on the edge of the print head. 

The CoreXY system solves this problem using two belts 

arranged in an H shape which cross near the top. This design is 

fairly complicated, and the exact arrangement of the belts and 

pulleys required leaves a lot of room for error. Based on these 

factors, we chose the design used by the Ultimaker printers. 

This design uses several sets of belts which run in one direction 

and is almost entirely symmetric, making it simpler to 

implement. Additionally, Ultimaker is open source, allowing us  

Fig. 4. The Hbot gantry design. 

Fig. 5. The CoreXY gantry design. 

to leverage their proven system with small modifications to 

work in our own design. We selected the gantry specification 

based on the simplicity of the Ultimaker style and the low risk 

due to the open-source nature of Ultimaker. 

 The final aspect of our design decision with respect to the 

gantry was to use existing parts or design our own. By designing 

and 3D printing our own parts, we allow for a more custom 

design, fast part availability, and an overall lower cost than 

purchasing the Ultimaker parts. The drawbacks are that this 

allows room for error by modifying an existing design which is 

known to work well. The Ultimaker parts were not available 

from any major retailers in the US, and additionally the 

replacement part packs were expensive and contained many 

parts we wouldn’t need. For these reasons we chose to design 

our own parts and have them 3D printed. This design choice has 

allowed us to save over $100 of our budget, and allowed us to 

expand the working space of the head considerably. Inevitably 

the print head would have to be a custom part as well, and by 

modifying all of the other parts we reduced the number of 

constraints on the geometry of the print head which allowed us 

to pursue a clean and simple design.  

 Overall, our gantry design decision diverged first between 

a threaded rod or belt design, between several different belt 

designs, and finally on using custom or premade parts. We 

made the choice of a belt-based design for its prevalence in an 

area which is very similar to our goal, allowing us to keep risk 

low and manage complexity by using well documented existing 

designs. The Ultimaker design was chosen among other belt-

based designs again for its simpler design and proven 

effectiveness, which greatly lower our risk. Finally, the decision 

to modify the parts came at the price of a small increase in risk 

for the benefit of a significantly less constrained design space 

and lower cost. 

B. Image Segmentation Algorithm 

There were a few methods we considered for implementing 

an algorithm to pre-process the image. The reason that we 

needed to pre-process was because of the limitations of the 

physical system. The brush width must stay constant throughout 

the entire painting process, and thus we cannot draw something 
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thinner than this width. The second limitation is that we have 

24 colors available. This means that all colors have to be 

approximated to those 24 colors. The third limitation is time. 

Since this is a physical system where motors have to move 

everything around, there are time constraints. To tackle these 

constraints, we considered the following pre-processing 

algorithms: blurring, edge drawing, k-means image 

segmentation, and mean shift segmentation. After some 

consideration, we decided to discard the idea of blurring. The 

original image used to test all of these image segmentation 

algorithms, depicting a fruit basket, is shown in Fig. 6. The 

result of blurring it is shown in Fig. 7. 

Although blurring removes the detailed parts of the image, it 

still has gradients, which are very difficult to produce. It also 

becomes difficult to see where one object ends and another 

begins. Therefore, we decided to further explore drawing only 

the edges and image segmentation. To choose between these 

three methods, we calculated the accuracy of the output along 

with how complex the output image was. For accuracy, we 

looked at the output image and used the Structural Similarity 

Index to classify the methods. For complexity, we took the 

output JPEG file and compared it with the original JPEG file in 

terms of file size. As stated earlier, the JPEG file format 

compression is correlated to how complex an image is, so the 

more compressed the output file is, the less complex it is [5]. 

Table 1 shows the complexity and similarity for the three 

methods. 

The conclusions we can draw are that the k-means clustering 

and mean shift clustering are far better than edge drawing in 

both accuracy and complexity. Mean shift clustering is 27% 

less complex than k-means clustering but still manages to beat 

out k-means in terms of accuracy. It also returns objects of 

defined edges and uniform color, which is much easier for the 

physical system to draw than what k-means returns. The 

following images show the output of edge detection, k-means 

clustering, and mean shift segmentation. Fig. 8 shows the 

output of the original image after running edge detection, Fig. 

9 shows the result of running k-means, and Fig. 10 shows the 

result of running mean shift segmentation. All these images use 

the original fruit basket image in Fig. 6 as input. 

TABLE I.  STRUCTURAL SIMILARITY AND COMPLEXITY RATIO OF 

DIFFERENT IMAGE SEGMENTATION ALGORITHMS 

 SSIM Complexity Ratio 

Edge detection 0.0335 1.8982 

Mean shift 0.9432 0.7654 

k-means 0.9352 1.0471 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The original image of a fruit basket used in our image processing 

experimentation. 

Fig. 7. The result of blurring the image in Fig. 6. 

Fig. 8. The result of running edge detection on the image in Fig. 6. 

Fig. 9. The result of running k-means on the image in Fig. 6. 

Fig. 10.  The result of running mean shift segmentation on the image in Fig. 6. 
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V. SYSTEM DESCRIPTION 

Our project is split into three main subsystems: the 2D gantry 

system, which is the physical component that controls 

movement of the brush; the gantry control layer, which controls 

the motors of the gantry; and image processing and stroke 

generation, which is the software component of our project. 

A. 2D Gantry System 

The gantry system forms the physical portion of the project. 

This is a system of shafts, pulleys, and motors which allow the 

robot to dip a paintbrush in water, collect pigment from a 

palette, and perform a stroke on the paper. The design for our 

gantry follows the gantry design used in the Ultimaker line of 

3D printers, which is proven to be effective and accurate. 

Ultimaker is also entirely open source, and we were able to 

modify their CAD files as well as design our own which match 

our design more precisely. Our design does not use the 

Ultimaker parts, although they are available for purchase online 

through 3D printer repair sites. This is because by modifying 

the Ultimaker designs or creating our own we are able to keep 

costs low by 3D printing these parts, as well as make custom 

parts which match our design requirements more precisely. For 

example, the carriages were redesigned to fit an axes 

arrangement which was simpler for us to execute, as well as to 

carry the print head with the crossbar shafts in a different 

arrangement than the original design. 

 

The core of the gantry design is outlined in Fig. 11. Two 

stepper motors are located at one corner of the gantry and can 

be positioned anywhere in the z plane below the axes. Two sets 

of parallel axes are positioned to form a square, mounted in a 

bearing allowing the shafts to rotate easily. Both the stepper 

motors and the axes have a pulley around them, and are 

connected by a timing belt, labelled purple. This translates the 

rotation of the stepper motor to the axes. Each set of parallel 

axes are connected by two belts as well, labelled red and blue, 

which coordinate their rotations. A carriage rests on the axes 

and is attached to the belts, which allows the rotational motion 

of the opposite axes to be transferred into translational motion  

Fig. 11. The Ultimaker gantry design. 

 

on the carriage. The carriages carry shafts which support a paint 

head in the center space, allowing the head to be coordinated in 

two dimensions. The paint head carries a servomotor which has 

a brush connected, allowing the brush to be raised from the page 

or lowered to make contact. This is suspended via a frame of T-

slotted aluminum, allowing the paint head to travel a fixed 

distance above the base. The implementation of our design is 

shown in Fig. 12.  

The major constraints on this system are that the brush head 

have a movable space which is large enough and that the brush 

can be controlled with sufficient precision. The working space 

must fit a standard sheet of paper, 8.5x11 inches, our watercolor 

palette, about 3.5x8.5 inches, and a cup of water, about 2x2 

inches. This totals a working space requirement of 12x12 

inches. Our design consists of a frame of aluminum with inner 

dimensions of 16x16 inches. The entire inner dimension is not 

usable however, due to the space required within the frame for 

the axes to run uninterrupted. Considering the space required 

for the axes, as well as the pulleys and carriages mounted on the 

axes, the dimensions of the working space are 14x14 inches. 

Then this meets our requirement for the brush to be able to 

move over a sufficiently large area. Additionally, the mounting 

height of the entire gantry is adjustable, but fixed during 

operation. This allows us to modify the height to fine tune the 

amount of contact the brush makes with the paper as it is rotated 

by the servomotor. This is the advantage of using T-slotted 

aluminum as well as our own designed mounts for the axes.  

To address the precision allowed by this design, we must 

consider the precision of the stepper motors and the dimensions 

of the pulleys and timing belts. The stepper motors step size 

translates to a rotation of the axes by the same amount, as they 

are coupled by a timing belt. The rotation of the axes will result 

in a translational movement of the belt which carries the 

carriage according to the degree change and the radius of the 

pulley. From this we can form the equation x = 2𝜋r * (𝜃 / 360), 

where x is the translation of the carriage, r is the radius of the  

pulley, and 𝜃 is the change in angle of the axes. The pulley used 

in the Ultimaker, which we use in our design with a small  

change to the inner radius, has a radius of 0.25 in. Our stepper  

motors have 200 steps / revolution, which translates to a 1.8  

Fig. 12. A CAD model of our gantry system. 
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degree step size. Of all the cost-effective stepper motors we 

considered, this step size was standard. This gives us a 

minimum horizontal translation x = 2𝜋 * (0.25 in) * (1.8 / 360) 

≈ 0.008 in. or 0.2 mm. This means we can operate the paint head 

with a granularity of 0.008 inches, which is more than sufficient 

to carry out all the requisite strokes and operations. 

The integration of the gantry into our overall design is at the 

motors. The two stepper motors are connected to a motor shield 

mounted on the Pi, and the servomotor are connected directly 

to the Raspberry Pi. Low level drivers are used for basic control 

of these devices, allowing their rotations to be orchestrated into 

an operating gantry system. 

B. Gantry Control Layer 

The gantry control layer consists of the motors that will 

control the 2D gantry system as well as the software in the 

Raspberry Pi that controls the motors. The code for this 

subsystem will be written in Python, and will use libraries to 

help interface the motors with the Pi. The servomotor, which 

controls the painting head, will be wired to the Raspberry Pi 

through a GPIO pin. We will be using the library gpiozero to 

interface with the servomotor, specifically the AngularServo 

class, which extends the Servo class [6]. This class allows 

control of a rotational PWM-controlled servomotor, and gives 

us the ability to set it to specific angles. For the library to work, 

we must set the servo to its maximum position and its minimum 

position and measure its angles, and input these angles as the 

constructor for an instance of the class. This setup will let us 

move the servomotor to any angle in between. 

The two stepper motors will be connected through the motor 

shield on the Pi using the I2C interface. The motor shield comes 

with its own library to control the motors, which is available 

through GitHub [7]. The library allows us to control a stepper 

motor by moving it either forward or backward, and defining 

the number of steps it moves and the time interval between each 

step. These functions will be used to manipulate the two stepper 

motors into moving the belts, which will rotate the rods that will 

translate the painting head around the 2D axis system. The 

library comes with the feature of letting the user define what the 

“forward” and “reverse” directions are on the motor without 

any rewiring. 

Using these two libraries, an interface will be created for use 

by the painting routines. The gantry control layer will act as the 

intermediary between the software and hardware components 

of our project, allowing our code to easily call functions that 

will move the motors how we desire. This layer exposes a single 

interface which is the stroke routine, which can receive a list of 

xy coordinates which define a series of straight line segments 

and a number corresponding to one of the available colors in 

the palette. This function will then paint the entire stroke and 

return when completed. Doing so will require the paint head be 

moved to wash the brush, grab pigment from the palette, and 

trace the line segments on the page. It may be necessary to 

gather more water and more pigment while painting a single 

stroke, which is the responsibility of this layer to control. The 

layer above provides no information on how frequently to 

collect pigment. 

In creating the stroke routine which is exposed to the layer 

above, routines for washing the brush and collecting a specific 

pigment are required. These routines are also a part of the motor 

control layer but are not exposed to the layer above. These are 

used internally by the stroke routine when it is necessary to wet 

the brush and collect pigment. As the locations of all of the 

needed objects to carry out these routines are fixed, much of the 

control routines will be moving to hard-coded locations, not 

operating by some feedback informing the head where the 

objects are. For this to work this layer must also always keep 

track of the precise location of where the head is. An additional 

challenge is that the coordinate systems used by the image must 

match the coordinate system used by the control layer. To 

address this the layer also exposes an initialization routine 

which will receive information from the above layer regarding 

the image size and desired output size, in inches. This 

information allows the future routines to normalize the pixels 

received and translate to its own coordinate system which is 

rooted in the physical space rather than a digital space. 

This layer bridges the gap between the hardware and 

software in our design. Built up from the provided device 

drivers for the motors, this layer offers a single control routine 

for painting a desired stroke with a specified color. This 

abstraction allows the painting to be easily performed from the 

above layer after a list of strokes representing the image has 

been created. 

C. Image Processing and Stroke Generation 

The Image Processing and Stroke Generation algorithms 

form the software component of this project. The first part is the 

Image Processing algorithm. This converts the original digital 

image into something that the physical apparatus can draw. The 

reason this is required is that the physical part of the robot has 

3 main constraints: brush width, number of colors, and time. 

The width of the brush is constant from the beginning to the end 

of the painting process, since we won’t swap out brushes during 

a painting. We are using 24 colors, so the robot will have to 

select the closest color to the 24 colors. There is also a time 

limitation. Therefore an image clustering algorithm called 

Mean Shift Segmentation was used. This algorithm takes 

regions of similar color that are close together and turns them 

into segments of uniform color. Three parameters are used to 

toggle the properties of the segmentation algorithm. The first 

parameter is the distance from the center that a point can be such 

that it is still able to be part of that segment. This is called the 

spatial radius. The second parameter is the range radius, which 

specifies the range of colors that can be in the segment. The 

third parameter is the minimum density of points, which 

indicates the number of pixels that can be inside one segment, 

thereby dictating the size of the largest segment. These 

parameters ensure that the objects are wide enough to be drawn 

by the brush. This algorithm reduces the complexity of the 

image significantly (about 24%) while keeping the accuracy 

close to the original. The second benefit is that the algorithm 

outputs a map with the labeled regions for each pixel, which 

allows us to have objects with defined edges and uniform color. 

This makes it simple for the next part of the software 
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component, namely the Stroke Generation algorithm.  

The Mean Shift Segmentation algorithm is an open source 

function implemented in the pymeanshift library [8]. By 

changing the parameters, we are able to segment an image in 

whichever way the problem requires. Fig. 13 shows the result 

of running light segmentation while Fig. 14 shows the result of 

running stronger segmentation. 

The second part of the software component is Stroke 

Generation. Once the segmented image has been created, the 

segments are separated into lists of strokes. There are two 

different kinds of strokes: perimeter strokes and fill-in strokes. 

Each object in the segmented image is made up of one perimeter 

stroke and one fill-in stroke. The perimeter strokes trace the 

outline of an object with the color of that object. The fill-in 

strokes fill in the object with horizontal straight lines of that 

color. First the perimeter stroke is drawn for one object, and 

then that object is filled in with fill-in strokes. The order of 

objects to be drawn is based on the length of the perimeter 

stroke, to make sure that the lowest detailed objects are drawn 

first. A perimeter stroke is made up of several very small line 

segments which trace the outline of the object. A fill-in stroke 

is made up of several horizontal line segments which go from 

the top of the object to the bottom.  

Once the strokes have been created and ordered, they are 

broken up into line segments which are defined by a starting 

coordinate, ending coordinate, and color. The color is chosen to 

be the closest color from the palette in terms of HSV values to 

the original color. This list of coordinates and colors is sent to 

the control layer. 

Fig. 13. The result of light segmentation on the image in Fig. 6. 

Fig. 14. The result of stronger segmentation on the image in Fig. 6. 
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VI. PROJECT MANAGEMENT 

A. Schedule 

The schedule for the project is shown on page 10. Each task 

is color coded based on which team member primarily worked 

on it, and lines between tasks indicate which tasks depended on 

the completion of others. 

B. Team Member Responsibilities 

So far, we have all been focusing on the physical portion of 

the design. Since none of us have had any mechanical design 

experience before, we have decided to frontload that part. Chris 

has taken the lead on the mechanical design and has done most 

of the designing and ordering of the parts. Harsh has taken 

charge of the Software portion of the project. Eric has taken 

charge of the control layer of the robot. Chris will be helping 

out with the software and control layer since the mechanical 

portion of the construction will be completed first. As the 

schedule shows, we will all be sharing some responsibilities at 

the end. 

C. Budget 

The budget consisted of ordered parts and 3D printed parts. 

Refer to the Bill of Materials on page 11. 

D. Risk Management 

There are a few risks associated with this project. The first 

one is that the robot may not be able to paint the images 

accurately. We cannot test how accurate the robot will be able 

to paint until the physical construction and the control layer 

have been finished. In case the accuracy is undesirable and the 

image cannot be replicated, we have put in a fail-safe. The 

painting head can hold any type of writing or drawing 

instrument, so if water color painting is not accurate, we can 

always switch over to sketching with markers or pencil. 

Another risk is that the colors may not be accurate. In this case 

as well, we may switch over to sketching with a pencil. A final 

major risk factor is that the paintings take too much time. Either 

the motors may move the painting head too slowly or the 

paintings may just be too complex. We will make sure that the 

motors can move as fast as possible, and this shouldn’t be very 

difficult since we already know that the similar design in the 

Ultimaker moves the head at 70 mm per second. If the painting 

is too complex, we will refine our image segmentation 

parameters to make the image less complex. 

VII. RELATED WORK 

The goal of having an independent robot independently paint 

an image is not unique to our project; this is the same goal of 

the Robot Art Competition and Exhibition [1]. This is a 

competition held annually for robotics enthusiasts to submit 

images which were painted by their creations. From this 

competition and the gallery of designs they provide we were 

able to see how many of the best robots performed and how they 

were designed. A stand out in the competition is a man named 

Pindar Van Arman and his CloudPainter, which is an AI driven 

robot which has both a robotic arm based design and a gantry 

based design. His design is so effective that he has built a brand 

and sells the paintings his robot creates for a large sum. Most 

other designs featured on the Robot Art site use gantry-based 

designs, including another watercolor painting robot. These 

designs were our main source of confirmation that our idea for 

a gantry-based painting robot could be a success. 

REFERENCES 

[1] https://robotart.org/ 
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[3] https://imiloainf.wordpress.com/2012/06/13/mean-shift-segmentation/ - 
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[4] http://www.imatest.com/docs/ssim/ - SSIM info 
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library 
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