
18-500 Design Review Report: 03/04/2019

1

Abstract—A system capable of taking a digital image and

painting a watercolor version on a physical canvas. The aim of the

project is to create an image which looks naturally painted, not a

replica of the source image. At minimum, this product will be able

to represent simple images or match the shape of the given image.

The resulting image should be similar in terms of color gradients

and general appearance and contrast. The system will consist of a

2-dimensional gantry system to physically draw the picture along

with a software component that will handle image processing.

Index Terms— Gantry, Image Processing, Painting, Robot

I. INTRODUCTION

NE of the biggest goals in robotics is to create systems

that behave more human-like. A large amount of research

today is focused on creating robotic systems that replicate

human tasks such as driving, speech comprehension and vision.

Our intent is to break down this barrier between humans and

robots in art. Our design is inspired by the gantry systems of 3D

printers, which we combine with image processing and control

systems to make a robot that can receive an image and paint it

on a canvas. The most difficult part of this is to make the

painting look natural and not robotic, while also maintaining

accuracy and speed. This project does not aim to replicate how

a printer makes an image pixel-by-pixel. To accomplish this

task, we paint the picture using a paint brush and human-like

strokes. Our approach takes the proven efficiency and accuracy

of 3D printers to allow us to paint a pre-processed image using

smooth and natural strokes.

Critical to our design is the ability to paint an image which is

an accurate representation of the source image. This is

measured using the structural similarity (SSIM) index, where

we aim for a score of at least 0.2. Additionally, the total time

for painting an image should be reasonable to the scale and

complexity of the image, limited to 8 hours in the worst case.

These metrics are key for our project to meet our goals of

connecting robotic systems with art through a design which

produces a painted image of good quality and can do so in a

reasonable amount of time.

II. DESIGN REQUIREMENTS

The first requirement is that a digital input image of any size

is capable of being rendered as the target image to paint and

displayed back to the user. This step allows for an image to be

rejected if the rendered painting is not of acceptable quality.

This requirement is purely digital in nature and therefore can be

tested using an image bank of 20 images which vary in image

size and complexity. The successful design will be able to

create renders of consistent quality across all scales and

complexities, and will scale images which exceed the bounds

of the painting space. This requirement will simply be measured

by the program’s success at processing the given input image.

Our next requirement is that we effectively use the full range

of the palette which is integrated into the system. When painting

an image the palette color with the lowest difference to the

desired color should be chosen, measured using the HSV (hue,

saturation, value) color model. Specifically, this color

difference will be measured using the following equation:

 Δ = (|H0 – Hr| + |S0 – Sr| + |V0 – Vr|) ()

In this equation, Δ is the color difference, H0 is the hue of the

original color from the image, Hr is the hue of the color chosen

by the robot, S0 is the saturation of the original color from the

image, Sr is the saturation of the color chosen by the robot, V0

is the value of the original color from the image, and Vr is the

value of the color chosen by the robot. This requirement can be

tested using an image of our own palette; the pigment in the

palette image should always be painted with that pigment.

Other images that contain basic color samples, such as the one

shown in Fig. 1, can also be used, in which case (1) will be

utilized. Together, these images will be used to verify that the

correct color is used.

Fig. 1. An example of a basic color sample image which will be used to test

our robot’s color selection.

Leonardo Da Robot

Authors: Eric Chang: Electrical and Computer Engineering, Carnegie Mellon University

Christopher Bayley: Electrical and Computer Engineering, Carnegie Mellon University

Harsh Yallapantula: Electrical and Computer Engineering, Carnegie Mellon University

O

18-500 Design Review Report: 03/04/2019

2

We require that our output painted image has a score of at

least 0.2 according to the structural similarity (SSIM) index.

This is a metric which is used to measure the perceived

similarity of an image to the source and is commonly used for

film and television [4]. We use this metric for this reason as it

corresponds closely to the goal of our project. After testing the

SSIM for various images, we found that professionally done

water painting images of customer supplied images was

roughly 0.4 on average. We will test our performance using an

image bank of 10 images, shown in Fig. 2, which features

images which grow in complexity. Using this bank, we will

paint the images and test that the SSIM score is at least 0.2 for

the first 8 images. The final two images are more complicated

and are our stretch goals once we reach the scores for the first

8.

Our final requirement is that our design operates in a

reasonable amount of time as a function of image size and

complexity, which we define using the following equation:

 t = (1 + 𝝰) * (𝛃 * s) ()

 In this equation, t is the estimated time, 𝝰 is a measure of

image complexity, measured as 4 * (uncompressed image size

/ JPEG compressed size), s is the size of the painted image in

square inches, and 𝛃 is a constant scaling factor of 4 (translating

to 4 minutes to paint each square inch). The equation for 𝝰

follows the logic that JPEG compression uses DCT-II

coefficients to compress the image from a raw uncompressed

size of the total image size and dimensions, meaning that the

JPEG compressed size of an image gives rough estimate of how

much information is contained in an image [5]. The image size

painted can be variable, but is limited to 7.5x10 inches, and

from experimental testing 𝝰 can be up to 0.70 for a very

complex landscape image, and as low as 0.04 for a single line.

Equation (2) gives a rough estimate of the upper limit of the

testing time, and is designed to have a limit of roughly 8 hours

for the largest and most complex image. We will test our design

using the same image bank from Fig. 2, which contains variably

sized images as well, and will ensure that they all print in a time

corresponding to (2).

Fig. 2. The test image bank we will use in testing.

18-500 Design Review Report: 03/04/2019

3

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our project will primarily be split into a physical hardware

component and a software image processing component. The

overall architecture of our project is represented in the block

diagram depicted in Fig. 3. The physical component will be the

robot itself, which includes the base and frame that supports the

2D gantry system. The gantry system is supported by a frame

that lies on the base of the robot. The gantry system’s purpose

is to move a painting head around the XY coordinate space

above the paper, water, and palette which are lying on the base.

The painting head will control a paintbrush which is attached

by a servomotor, and the head will be moved around by two

stepper motors. These motors will be controlled by a Raspberry

Pi. The servomotor is connected to the Raspberry Pi through a

GPIO pin, while the stepper motors are controlled using the I2C

interface which is provided by a Raspberry Pi motor shield.

The software component of our project centers on using

image processing to convert a digital input image into

instructions for our motors in order to successfully paint an

image. A monitor will be connected to the Raspberry Pi which

will allow the user to submit the digital image they wish to be

painted. The monitor will also be used to display the result of

the image segmentation process to the user, in order to show the

user what the approximate final result of the painting will be.

The input image will go through our image processing

algorithm, which will first modify the image to be easier to

paint, in the process of image segmentation. This process will

reduce details and cluster colors together to create a simpler

image for painting, which is what will be displayed to the user

on the monitor. The image segmentation process will output

data and information such as edges and colors, which will then

be used in our stroke creation algorithm. This process will

generate the sequence of strokes that our robot will need to

perform in order to paint the image, with information such as

color, length, and direction encoded.

This sequence of strokes will be given to the stroke routine,

which will control the motors. The motor shield for the

Raspberry Pi that we are using comes with a library of motor

controls, which we will use in our stroke routine algorithm. A

list of strokes with a specified color and location are provided

to the stroke routine, and the routine will instruct the motors of

our robot to dip the brush into the water, paint, and finally onto

the paper. Our motor control routines are the bridge between

the software containing information of what to paint and the

hardware which is capable of painting. The interface from the

lowest level of motor drivers allow the stepper motors to rotate

a set number of steps in a set delay time between each step. The

servomotor is controlled through PWM, and its driver has an

interface that allows the motor to be set to a certain angle. These

interfaces are used by the control routines to abstract to higher

level concepts such as dipping the brush to grab pigment or

performing a stroke at set locations. These control routines

receive input from the painting and stroke generation

algorithms.

Fig. 3. The block diagram showing our project’s archiecture and subsystems.

18-500 Design Review Report: 03/04/2019

4

IV. DESIGN TRADE STUDIES

In designing our project, there were numerous trade-offs and

options to consider when finalizing decisions. Two of the most

important aspects of our design were the 2D gantry system,

which is the primary physical and hardware component of our

robot, and the image segmentation algorithm, which is the first

step of our software component. A significant amount of

testing, research, and experimentation was conducted in order

to choose the best option to proceed with in these two

subsystems.

A. 2D Gantry System

There were several possible implementation paths available

for designing the 2D gantry, and all would meet the major

constraints of our project which are having a large enough

workspace and a fine enough granularity. Because of this, the

main considerations made when choosing the gantry design

were complexity, cost, and risk. Our original plan was to use

threaded rods which would support the carriage, allowing

rotation of the threads to carry the device. We found that these

designs were generally used for much larger constructions, as it

can support a much heavier payload. For this reason, we chose

to use a belt-based design as is commonly used in 3D printers,

as these designs are commonly used for lighter loads and there

are plenty of reference implementations available in the form of

3D printers.

When considering possible belt-based gantry designs, we

found some of the most common designs are the Hbot system

(depicted in Fig. 4), CoreXY (depicted in Fig. 5), and the

Ultimaker style [2]. The Hbot uses a single very long belt

arranged in the shape of an H, but the force applied is uneven

and results in a moment created on the edge of the print head.

The CoreXY system solves this problem using two belts

arranged in an H shape which cross near the top. This design is

fairly complicated, and the exact arrangement of the belts and

pulleys required leaves a lot of room for error. Based on these

factors, we chose the design used by the Ultimaker printers.

This design uses several sets of belts which run in one direction

and is almost entirely symmetric, making it simpler to

implement. Additionally, Ultimaker is open source, allowing us

Fig. 4. The Hbot gantry design.

Fig. 5. The CoreXY gantry design.

to leverage their proven system with small modifications to

work in our own design. We selected the gantry specification

based on the simplicity of the Ultimaker style and the low risk

due to the open-source nature of Ultimaker.

 The final aspect of our design decision with respect to the

gantry was to use existing parts or design our own. By designing

and 3D printing our own parts, we allow for a more custom

design, fast part availability, and an overall lower cost than

purchasing the Ultimaker parts. The drawbacks are that this

allows room for error by modifying an existing design which is

known to work well. The Ultimaker parts were not available

from any major retailers in the US, and additionally the

replacement part packs were expensive and contained many

parts we wouldn’t need. For these reasons we chose to design

our own parts and have them 3D printed. This design choice has

allowed us to save over $100 of our budget, and allowed us to

expand the working space of the head considerably. Inevitably

the print head would have to be a custom part as well, and by

modifying all of the other parts we reduced the number of

constraints on the geometry of the print head which allowed us

to pursue a clean and simple design.

 Overall, our gantry design decision diverged first between

a threaded rod or belt design, between several different belt

designs, and finally on using custom or premade parts. We

made the choice of a belt-based design for its prevalence in an

area which is very similar to our goal, allowing us to keep risk

low and manage complexity by using well documented existing

designs. The Ultimaker design was chosen among other belt-

based designs again for its simpler design and proven

effectiveness, which greatly lower our risk. Finally, the decision

to modify the parts came at the price of a small increase in risk

for the benefit of a significantly less constrained design space

and lower cost.

B. Image Segmentation Algorithm

There were a few methods we considered for implementing

an algorithm to pre-process the image. The reason that we

needed to pre-process was because of the limitations of the

physical system. The brush width must stay constant throughout

the entire painting process, and thus we cannot draw something

18-500 Design Review Report: 03/04/2019

5

thinner than this width. The second limitation is that we have

24 colors available. This means that all colors have to be

approximated to those 24 colors. The third limitation is time.

Since this is a physical system where motors have to move

everything around, there are time constraints. To tackle these

constraints, we considered the following pre-processing

algorithms: blurring, edge drawing, k-means image

segmentation, and mean shift segmentation. After some

consideration, we decided to discard the idea of blurring. The

original image used to test all of these image segmentation

algorithms, depicting a fruit basket, is shown in Fig. 6. The

result of blurring it is shown in Fig. 7.

Although blurring removes the detailed parts of the image, it

still has gradients, which are very difficult to produce. It also

becomes difficult to see where one object ends and another

begins. Therefore, we decided to further explore drawing only

the edges and image segmentation. To choose between these

three methods, we calculated the accuracy of the output along

with how complex the output image was. For accuracy, we

looked at the output image and used the Structural Similarity

Index to classify the methods. For complexity, we took the

output JPEG file and compared it with the original JPEG file in

terms of file size. As stated earlier, the JPEG file format

compression is correlated to how complex an image is, so the

more compressed the output file is, the less complex it is [5].

Table 1 shows the complexity and similarity for the three

methods.

The conclusions we can draw are that the k-means clustering

and mean shift clustering are far better than edge drawing in

both accuracy and complexity. Mean shift clustering is 27%

less complex than k-means clustering but still manages to beat

out k-means in terms of accuracy. It also returns objects of

defined edges and uniform color, which is much easier for the

physical system to draw than what k-means returns. The

following images show the output of edge detection, k-means

clustering, and mean shift segmentation. Fig. 8 shows the

output of the original image after running edge detection, Fig.

9 shows the result of running k-means, and Fig. 10 shows the

result of running mean shift segmentation. All these images use

the original fruit basket image in Fig. 6 as input.

TABLE I. STRUCTURAL SIMILARITY AND COMPLEXITY RATIO OF

DIFFERENT IMAGE SEGMENTATION ALGORITHMS

 SSIM Complexity Ratio

Edge detection 0.0335 1.8982

Mean shift 0.9432 0.7654

k-means 0.9352 1.0471

Fig. 6. The original image of a fruit basket used in our image processing

experimentation.

Fig. 7. The result of blurring the image in Fig. 6.

Fig. 8. The result of running edge detection on the image in Fig. 6.

Fig. 9. The result of running k-means on the image in Fig. 6.

Fig. 10. The result of running mean shift segmentation on the image in Fig. 6.

18-500 Design Review Report: 03/04/2019

6

V. SYSTEM DESCRIPTION

Our project is split into three main subsystems: the 2D gantry

system, which is the physical component that controls

movement of the brush; the gantry control layer, which controls

the motors of the gantry; and image processing and stroke

generation, which is the software component of our project.

A. 2D Gantry System

The gantry system forms the physical portion of the project.

This is a system of shafts, pulleys, and motors which allow the

robot to dip a paintbrush in water, collect pigment from a

palette, and perform a stroke on the paper. The design for our

gantry follows the gantry design used in the Ultimaker line of

3D printers, which is proven to be effective and accurate.

Ultimaker is also entirely open source, and we were able to

modify their CAD files as well as design our own which match

our design more precisely. Our design does not use the

Ultimaker parts, although they are available for purchase online

through 3D printer repair sites. This is because by modifying

the Ultimaker designs or creating our own we are able to keep

costs low by 3D printing these parts, as well as make custom

parts which match our design requirements more precisely. For

example, the carriages were redesigned to fit an axes

arrangement which was simpler for us to execute, as well as to

carry the print head with the crossbar shafts in a different

arrangement than the original design.

The core of the gantry design is outlined in Fig. 11. Two

stepper motors are located at one corner of the gantry and can

be positioned anywhere in the z plane below the axes. Two sets

of parallel axes are positioned to form a square, mounted in a

bearing allowing the shafts to rotate easily. Both the stepper

motors and the axes have a pulley around them, and are

connected by a timing belt, labelled purple. This translates the

rotation of the stepper motor to the axes. Each set of parallel

axes are connected by two belts as well, labelled red and blue,

which coordinate their rotations. A carriage rests on the axes

and is attached to the belts, which allows the rotational motion

of the opposite axes to be transferred into translational motion

Fig. 11. The Ultimaker gantry design.

on the carriage. The carriages carry shafts which support a paint

head in the center space, allowing the head to be coordinated in

two dimensions. The paint head carries a servomotor which has

a brush connected, allowing the brush to be raised from the page

or lowered to make contact. This is suspended via a frame of T-

slotted aluminum, allowing the paint head to travel a fixed

distance above the base. The implementation of our design is

shown in Fig. 12.

The major constraints on this system are that the brush head

have a movable space which is large enough and that the brush

can be controlled with sufficient precision. The working space

must fit a standard sheet of paper, 8.5x11 inches, our watercolor

palette, about 3.5x8.5 inches, and a cup of water, about 2x2

inches. This totals a working space requirement of 12x12

inches. Our design consists of a frame of aluminum with inner

dimensions of 16x16 inches. The entire inner dimension is not

usable however, due to the space required within the frame for

the axes to run uninterrupted. Considering the space required

for the axes, as well as the pulleys and carriages mounted on the

axes, the dimensions of the working space are 14x14 inches.

Then this meets our requirement for the brush to be able to

move over a sufficiently large area. Additionally, the mounting

height of the entire gantry is adjustable, but fixed during

operation. This allows us to modify the height to fine tune the

amount of contact the brush makes with the paper as it is rotated

by the servomotor. This is the advantage of using T-slotted

aluminum as well as our own designed mounts for the axes.

To address the precision allowed by this design, we must

consider the precision of the stepper motors and the dimensions

of the pulleys and timing belts. The stepper motors step size

translates to a rotation of the axes by the same amount, as they

are coupled by a timing belt. The rotation of the axes will result

in a translational movement of the belt which carries the

carriage according to the degree change and the radius of the

pulley. From this we can form the equation x = 2𝜋r * (𝜃 / 360),

where x is the translation of the carriage, r is the radius of the

pulley, and 𝜃 is the change in angle of the axes. The pulley used

in the Ultimaker, which we use in our design with a small

change to the inner radius, has a radius of 0.25 in. Our stepper

motors have 200 steps / revolution, which translates to a 1.8

Fig. 12. A CAD model of our gantry system.

18-500 Design Review Report: 03/04/2019

7

degree step size. Of all the cost-effective stepper motors we

considered, this step size was standard. This gives us a

minimum horizontal translation x = 2𝜋 * (0.25 in) * (1.8 / 360)

≈ 0.008 in. or 0.2 mm. This means we can operate the paint head

with a granularity of 0.008 inches, which is more than sufficient

to carry out all the requisite strokes and operations.

The integration of the gantry into our overall design is at the

motors. The two stepper motors are connected to a motor shield

mounted on the Pi, and the servomotor are connected directly

to the Raspberry Pi. Low level drivers are used for basic control

of these devices, allowing their rotations to be orchestrated into

an operating gantry system.

B. Gantry Control Layer

The gantry control layer consists of the motors that will

control the 2D gantry system as well as the software in the

Raspberry Pi that controls the motors. The code for this

subsystem will be written in Python, and will use libraries to

help interface the motors with the Pi. The servomotor, which

controls the painting head, will be wired to the Raspberry Pi

through a GPIO pin. We will be using the library gpiozero to

interface with the servomotor, specifically the AngularServo

class, which extends the Servo class [6]. This class allows

control of a rotational PWM-controlled servomotor, and gives

us the ability to set it to specific angles. For the library to work,

we must set the servo to its maximum position and its minimum

position and measure its angles, and input these angles as the

constructor for an instance of the class. This setup will let us

move the servomotor to any angle in between.

The two stepper motors will be connected through the motor

shield on the Pi using the I2C interface. The motor shield comes

with its own library to control the motors, which is available

through GitHub [7]. The library allows us to control a stepper

motor by moving it either forward or backward, and defining

the number of steps it moves and the time interval between each

step. These functions will be used to manipulate the two stepper

motors into moving the belts, which will rotate the rods that will

translate the painting head around the 2D axis system. The

library comes with the feature of letting the user define what the

“forward” and “reverse” directions are on the motor without

any rewiring.

Using these two libraries, an interface will be created for use

by the painting routines. The gantry control layer will act as the

intermediary between the software and hardware components

of our project, allowing our code to easily call functions that

will move the motors how we desire. This layer exposes a single

interface which is the stroke routine, which can receive a list of

xy coordinates which define a series of straight line segments

and a number corresponding to one of the available colors in

the palette. This function will then paint the entire stroke and

return when completed. Doing so will require the paint head be

moved to wash the brush, grab pigment from the palette, and

trace the line segments on the page. It may be necessary to

gather more water and more pigment while painting a single

stroke, which is the responsibility of this layer to control. The

layer above provides no information on how frequently to

collect pigment.

In creating the stroke routine which is exposed to the layer

above, routines for washing the brush and collecting a specific

pigment are required. These routines are also a part of the motor

control layer but are not exposed to the layer above. These are

used internally by the stroke routine when it is necessary to wet

the brush and collect pigment. As the locations of all of the

needed objects to carry out these routines are fixed, much of the

control routines will be moving to hard-coded locations, not

operating by some feedback informing the head where the

objects are. For this to work this layer must also always keep

track of the precise location of where the head is. An additional

challenge is that the coordinate systems used by the image must

match the coordinate system used by the control layer. To

address this the layer also exposes an initialization routine

which will receive information from the above layer regarding

the image size and desired output size, in inches. This

information allows the future routines to normalize the pixels

received and translate to its own coordinate system which is

rooted in the physical space rather than a digital space.

This layer bridges the gap between the hardware and

software in our design. Built up from the provided device

drivers for the motors, this layer offers a single control routine

for painting a desired stroke with a specified color. This

abstraction allows the painting to be easily performed from the

above layer after a list of strokes representing the image has

been created.

C. Image Processing and Stroke Generation

The Image Processing and Stroke Generation algorithms

form the software component of this project. The first part is the

Image Processing algorithm. This converts the original digital

image into something that the physical apparatus can draw. The

reason this is required is that the physical part of the robot has

3 main constraints: brush width, number of colors, and time.

The width of the brush is constant from the beginning to the end

of the painting process, since we won’t swap out brushes during

a painting. We are using 24 colors, so the robot will have to

select the closest color to the 24 colors. There is also a time

limitation. Therefore an image clustering algorithm called

Mean Shift Segmentation was used. This algorithm takes

regions of similar color that are close together and turns them

into segments of uniform color. Three parameters are used to

toggle the properties of the segmentation algorithm. The first

parameter is the distance from the center that a point can be such

that it is still able to be part of that segment. This is called the

spatial radius. The second parameter is the range radius, which

specifies the range of colors that can be in the segment. The

third parameter is the minimum density of points, which

indicates the number of pixels that can be inside one segment,

thereby dictating the size of the largest segment. These

parameters ensure that the objects are wide enough to be drawn

by the brush. This algorithm reduces the complexity of the

image significantly (about 24%) while keeping the accuracy

close to the original. The second benefit is that the algorithm

outputs a map with the labeled regions for each pixel, which

allows us to have objects with defined edges and uniform color.

This makes it simple for the next part of the software

18-500 Design Review Report: 03/04/2019

8

component, namely the Stroke Generation algorithm.

The Mean Shift Segmentation algorithm is an open source

function implemented in the pymeanshift library [8]. By

changing the parameters, we are able to segment an image in

whichever way the problem requires. Fig. 13 shows the result

of running light segmentation while Fig. 14 shows the result of

running stronger segmentation.

The second part of the software component is Stroke

Generation. Once the segmented image has been created, the

segments are separated into lists of strokes. There are two

different kinds of strokes: perimeter strokes and fill-in strokes.

Each object in the segmented image is made up of one perimeter

stroke and one fill-in stroke. The perimeter strokes trace the

outline of an object with the color of that object. The fill-in

strokes fill in the object with horizontal straight lines of that

color. First the perimeter stroke is drawn for one object, and

then that object is filled in with fill-in strokes. The order of

objects to be drawn is based on the length of the perimeter

stroke, to make sure that the lowest detailed objects are drawn

first. A perimeter stroke is made up of several very small line

segments which trace the outline of the object. A fill-in stroke

is made up of several horizontal line segments which go from

the top of the object to the bottom.

Once the strokes have been created and ordered, they are

broken up into line segments which are defined by a starting

coordinate, ending coordinate, and color. The color is chosen to

be the closest color from the palette in terms of HSV values to

the original color. This list of coordinates and colors is sent to

the control layer.

Fig. 13. The result of light segmentation on the image in Fig. 6.

Fig. 14. The result of stronger segmentation on the image in Fig. 6.

18-500 Design Review Report: 03/04/2019

9

VI. PROJECT MANAGEMENT

A. Schedule

The schedule for the project is shown on page 10. Each task

is color coded based on which team member primarily worked

on it, and lines between tasks indicate which tasks depended on

the completion of others.

B. Team Member Responsibilities

So far, we have all been focusing on the physical portion of

the design. Since none of us have had any mechanical design

experience before, we have decided to frontload that part. Chris

has taken the lead on the mechanical design and has done most

of the designing and ordering of the parts. Harsh has taken

charge of the Software portion of the project. Eric has taken

charge of the control layer of the robot. Chris will be helping

out with the software and control layer since the mechanical

portion of the construction will be completed first. As the

schedule shows, we will all be sharing some responsibilities at

the end.

C. Budget

The budget consisted of ordered parts and 3D printed parts.

Refer to the Bill of Materials on page 11.

D. Risk Management

There are a few risks associated with this project. The first

one is that the robot may not be able to paint the images

accurately. We cannot test how accurate the robot will be able

to paint until the physical construction and the control layer

have been finished. In case the accuracy is undesirable and the

image cannot be replicated, we have put in a fail-safe. The

painting head can hold any type of writing or drawing

instrument, so if water color painting is not accurate, we can

always switch over to sketching with markers or pencil.

Another risk is that the colors may not be accurate. In this case

as well, we may switch over to sketching with a pencil. A final

major risk factor is that the paintings take too much time. Either

the motors may move the painting head too slowly or the

paintings may just be too complex. We will make sure that the

motors can move as fast as possible, and this shouldn’t be very

difficult since we already know that the similar design in the

Ultimaker moves the head at 70 mm per second. If the painting

is too complex, we will refine our image segmentation

parameters to make the image less complex.

VII. RELATED WORK

The goal of having an independent robot independently paint

an image is not unique to our project; this is the same goal of

the Robot Art Competition and Exhibition [1]. This is a

competition held annually for robotics enthusiasts to submit

images which were painted by their creations. From this

competition and the gallery of designs they provide we were

able to see how many of the best robots performed and how they

were designed. A stand out in the competition is a man named

Pindar Van Arman and his CloudPainter, which is an AI driven

robot which has both a robotic arm based design and a gantry

based design. His design is so effective that he has built a brand

and sells the paintings his robot creates for a large sum. Most

other designs featured on the Robot Art site use gantry-based

designs, including another watercolor painting robot. These

designs were our main source of confirmation that our idea for

a gantry-based painting robot could be a success.

REFERENCES

[1] https://robotart.org/
[2] https://maxdesign1990.wordpress.com/2016/05/22/gmtech-printer-motion-

platform-research/ - gantry designs
[3] https://imiloainf.wordpress.com/2012/06/13/mean-shift-segmentation/ -

Mean Shift Segmenttio

[4] http://www.imatest.com/docs/ssim/ - SSIM info
[5] https://en.wikipedia.org/wiki/JPEG - JPEG Compressions algo

[6] https://gpiozero.readthedocs.io/en/stable/api_output.html - gpiozero servo

library
[7] https://github.com/sbcshop/MotorShield - MotorShield library

[8] https://github.com/fjean/pymeanshift - Pymeanshift library

18-500 Design Review Report: 03/04/2019

10

18-500 Design Review Report: 03/04/2019

11

