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Abstract— We implemented a system to track attendance and 

participation in a class room setting, providing instructors with 

useful metrics both live during class and afterwards. We develop 

an easy script to gather student training data and then detect when 

they are present on a second-by-second basis during class. 

Participation is measured by detecting when and how long a hand 

are raised.  

 
Index Terms— eigenfaces, PCA, LDA, facial recognition, facial 

detection, viola-jones, computer vision, machine learning 

I. INTRODUCTION 

For our project, we are building an intelligent attendance and 

participation system. The system is designed for a classroom 

environment where professors my want to keep track of student 

attendance and participation without having to do this 

manually. The system is computer vision and machine learning 

based and spans the Software System and Signals & Systems 

ECE areas.  

In order to track attendance and participation we set up a 

camera in a classroom and feed this footage into a laptop that 

will run all the software. To keep track of attendance, we detect 

when students enter and leave a class room. We use facial 

recognition to identify these students. In order to keep track of 

attendance, we detect when students raise their hands and how 

long they raise their hands for. 

 

II. DESIGN SPECIFICATION 

The application demands the following: a system that is able 

to track and record student attendance and participation in a 

classroom setting.  

A camera-based system naturally arises where the camera 

records the class and provides video input to a laptop (or other 

PC) that performs all of the monitoring through an 

application/program. 

The application running on the laptop can then address the 

problem by performing the following three functions: 

 

• Detecting faces and performing facial recognition on 

identified faces, matching them against the database of 

members of the class. 

• As part of recognition, also be able to detect strangers, 

i.e. faces detected that are not in the database 

• Upon detecting faces, detect and identify raised hands. 

This is a means of tracking participation during a class. 

• Consolidating this information showing attendance 

and displays participation data for each member of the 

class. 

 

A table with our desired results for accuracy is below.  

 

 
Fig 1 – Table showing our design specification metrics  

 

The metrics described in the table above were obtained 

considering that we ideally want a very high accuracy, but we 

also had to keep in mind that we were building our components 

from scratch and thus we dialed back the accuracy numbers so 

that the metrics were achievable.  
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III. ARCHITECTURE/ OVERALL DESIGN 

In this section we provide an overview of the IPAM system 

along with the block diagram. 

 From the block diagram above, the flow of information is 

fairly clear.  

Video capture is input to the Face Detection module that 

processes the video in real time computing bounding boxes for 

the faces in the camera’s field of view.  

The bounding box data is passed as input to the Facial 

Recognition module, which uses PCA and LDA (mostly) to 

perform facial recognition on the detected faces, associated 

each detected face with the appropriate matching student in the 

database, and marking absence of a face (i.e. student not 

present). This module also handles stranger detection, 

recognizing that a person is not part of the class if the detected 

face is not matched with any in the database. 

The results of the facial detection/recognition are then passed 

on to Raised-hand detection module, which first seeks to learn 

the pigments of each of the students faces. This is done by 

utilizing the fact that our recognition and detection gives us the 

faces and identifications of students for free. After this, we 

extract pigments from these faces and scan the portion of the 

image around each face for similar pigments.  

These results, along with the facial detection/recognition 

results will be sent to a basic frontend application that will 

display the updated attendance and participation records. The 

front-end/visualization part of the system provides the user with 

a live video capture from the webcam, overlaid with the face 

detection bounding boxes. Along with this live capture, there is 

a live plot showing the projection outputs of PCA + LDA along 

with the decision boundaries given to us by SVM.  

A key thing to note here is that Detection, PCA, LDA and 

Hand Raise Detection are all built from scratch with the major 

algorithms being written without using libraries or APIs. We do 

use OpenCV to capture video data and read images and it is 

important to note that the SVM component is performed using 

scikit-learn.   

Fig. 2 – Overall system block diagram 
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IV. SYSTEM DESCRIPTION AND IMPLEMENTATION 

DETAIL 

 

In this section we describe our system in depth, covering the 

final implementation detail and algorithms used in each of the 

modules in our complete solution, as well as discussing the 

experimentation and alternatives considered that allowed us to 

arrive at our proposed implementation plan for each module.  

 

A. Face Detection Module 

We implemented the well-known Viola-Jones algorithm in 

order to detect faces. The algorithm can be summarized into 

the following components: 

1. Haar Features construction, which are used to match 

regularities in human faces. 

2. Integral image, which allows the features used by the 

detector be computed very quickly. 

3. AdaBoost training, which selects a small number of 

critical visual features from a larger set and yields 

extremely efficient classifiers. 

4. Cascading Classifiers, which results in a classifier 

that consist of several simpler classifiers that are 

applied to a region of interest until at some stage the 

candidate is rejected, or all the stages are passed. 

 

 
Fig. 3 – Block diagram outlining the Viola-Jones Facial Detection Algorithm 

 

The algorithm for AdaBoost training, which selects the T best 

features from 160,000 potential features is as follows: 

 

1. Initialize weights for 𝑚 negative and 𝑙 positive 

examples: 

𝑤1,𝑖 =
1

2𝑚
,

1

2𝑙
 

2. For 𝑡 = 1, . . , 𝑇: 
a. Normalize the weights. 

b. For each feature, train to find optimal 

threshold and polarity. 

c. Choose a feature with the lowest error, ∈𝑡. 

d. Update weights for all positive and negative 

examples: 

 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 (
∈𝑡

1− ∈𝑡
)  if example was 

classified correctly, else 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 . 

 

We implemented and trained our AdaBoost classifier on AWS, 

using 8000 face and 10,000 non-faces images. With just 10 

features we got test accuracies of ~81%. With 75 features, we 

get 95% accuracy.   

 

       
     (a)             (b) 
 

Fig. 4 – Reconstruction with (a) 10 features and (b) 75 features 

 
In order to detect all faces in a frame, the algorithm would need 

to use 75 features in every 24x24 sub-window in the target 

frame. However, this makes detection very slow (~10s per 

frame). In order to increase speeds, we used a cascaded 

classifier with layers containing an increasing number of 

features in each layer. If in any layer the classifier does not think 

the sub-window contains a face, the cascade stops. Only sub-

windows with a high probability of being a face will make it 

through all the layers. In their paper, Viola and Jones introduce 

an algorithm that selects the optimal number of features in each 

layer in order to minimize the false positive rate per layer. 

However, for the sake of simplicity we manually chose the 

design on each layer. We chose layers of size 1, 5, 10, 25, 50 

and 75. 

 

 
 

Fig. 5 – Diagrammatic depiction of detection cascade used. 

 

After training a cascaded classifier, we maintained accuracies 

of 95% and managed to achieve a 10x speedup for detection for 

a single frame. With cascading we managed to reduce the 

detection time to 1s per frame. 

Upon running this algorithm, we get bounding boxes around 

all faces in a frame. However, the algorithm will always find 

multiple bounding boxes surrounding every face in the frame. 

While all the bounding boxes may be valid, it is important to 

merge all the overlapping bounding boxes so that the detector 

doesn’t report back that multiple faces have been found when 

there is only one. We used Non-maximum suppression in order 

to merge the images. 
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Fig. 6 – Example of bounding boxes outputted from the Viola-Jones Facial 

Detection Algorithm 

 

B. Recognition 

Our method of recognition involves using PCA, LDA and 

SVM. 

We begin with using PCA and eigenfaces for recognition. 

PCA allows you to take a higher dimensional space and project 

it into a smaller space. This is useful because images are 𝑚 ∙ 𝑛 

dimensionality (where m denotes width and n denotes height) 

and we cannot compare and cluster images for recognition with 

such high dimensionality. Thus, PCA develops a set of basis 

vectors, eigenvectors of a covariance matrix to be precise, 

which span the vector space of the face image. PCA is followed 

by LDA in order to better separate our classes so that 

classification produces better results, and also to reduce the 

dimensionality of our image. Finally, we apply SVM to the 

projected training samples to obtain our decision boundaries. 

Below we detail the entire recognition pipeline.  

 

The first stage of the recognition pipeline, PCA, is 

implemented as follows: 

 

1. Collect all N training images, each with dimensions 

(k x k) into one matrix X with dimensions (k2 x N). 

Each column of X is an image vector, with the image 

reshaped into a 1-D column vector.  

2. Compute the mean image vector µ, and subtract µ 

from each column of X. 

3. Now we find the covariance of the mean subtracted 

X, denoting this as Σ. 

4. We then optimize: 

max 𝝎𝑇𝚺𝝎  𝑠. 𝑡 |𝝎| = 1 

5. This simplifies to an eigenvalue problem and we 

obtain a matrix of eigenvectors V, sorted by 

decreasing eigenvalue. These values are obtained 

using numpy’s linalg module. We then discard the 

columns corresponding to eigenvalues we don’t want.  

6. We compute P = VT(X – q) which  is our matrix of 

basis coefficients.  

7. It is this matrix of basis coefficients P that is the 

input to LDA.  

8. The PCA function outputs P, the mean vector µ and 

the eigenvectors V. 

 

We next perform LDA with the following process: 

1. LDA takes inputs P (final matrix of basis coefficients 

for each training image), and an imgToClass list 

which allows us to find which class each image (or 

column of P) belongs to.  

2. Using the two inputs, compute the between-class 

scatter matrix SB and the within-class scatter matrix 

SW.  

3. We then optimize the following equation: 

max
𝝎𝑇𝑺𝑩𝝎

𝝎𝑇𝑺𝑾𝝎
 𝑠. 𝑡 |𝜔| = 1 

This simplifies to an eigenvalue problem, and we 

obtain a matrix of eigenvalues W, which is used to 

project our input onto a vector space of a smaller 

dimensionality than the input and one in which the 

classes are more scattered.  

 

Finally, we must now classify the faces in our training set and 

this is done using SVM. This is the one component of the 

project that was not implemented from scratch. We instead used 

scikit-learn. This is because the decision to use an SVM was 

made very late in the project’s development.  SVM aims to find 

decision boundaries for the classes such that the margins from 

the decision boundaries to the training samples nearest to the 

decision boundary, are maximized.  

Therefore, when given a new test image, the recognition 

pipeline/procedure is as follows: 

 

1. Reshape the image into a 1-D column vector and 

subtract µ (mean vector output from PCA) from it. We 

denote this using J.  

2. We now want to project this image onto the vector 

space we obtained through PCA + LDA. To do this we 

first obtain basis coefficients for the image, Pim = VTJ. 

3. Now we project the image by computing WTPim.  

4. We now use the decision boundaries obtained by SVM 

to classify this projected sample.  

 

Below is a plot display our PCA eigenvalues for all of our 

eigenvectors. Note, it is a log plot on the y-axis. The first three 

eigenvalues were rather large, and we suspected they were 

representing meaningless brightness variations in the images.  

 
Fig. 7 – Eigenvalues obtained through PCA for training set 
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Initially, we did not achieve good performance with our PCA 

and LDA implementation. Our data showed poor separation of 

classes, and we had to rewrite our PCA code along with fine 

tuning parameters, such as how many eigenvectors to keep, how 

many training images to have, what lighting conditions we 

should take training images in etc.   

After some experimentation, we observed that the following 

changes were necessary to improve PCA and LDA 

performance: 

• Rather than drop the first three PCA eigenvectors we 

instead drop the first two. 

• Instead of gathering only around 40 images per class, 

gather more than a hundred per class. Our demo 

training set consisted of 100 images per class.  

• After discarding the first two PCA eigenvectors, use 

as many as possible. We keep 90 eigenvectors in our 

implementation. 

 

After these changes we observed that the PCA + LDA pipeline 

did an excellent job of projecting the data into a vector space 

where the classes are nicely separated, i.e. the between class 

scatter was increased.  

During our design stage, we had decided on using K-means 

clustering to perform final classification. Our K-means 

clustering was not performing as we liked, and our accuracies 

were hovering in the 50 – 60 percent range. It would often 

confused predictions for clusters that appeared elongated (when 

intra-class variance was not reduced enough). This is why we 

switched to an SVM for classification of points in this 

eigenspace. We experimented with both linear and non-linear 

SVM and we settled upon a linear SVM as our data-set was 

well-suited to being separated by straight lines. The figure 

below shows the outputs of one of our later training sets once 

projected using PCA and LDA, along with the decision 

boundaries found. As can be seen, there is excellent separation 

of the classes and the decision boundaries can be roughly 

deduced by eye.  

 
Fig 8 – Chart depicting the eigenspace with class data points plotted, as 

well as faces gathered live being plotted. 

 

We also utilize a boosting technique. We make use of several 

classifiers/learners, each classifier training in a somewhat 

different manner. The logic for this is that if each classifier is 

better than random guessing and if each has insight that others 

do not have, then combining their results boosts overall 

performance. Each classifier not only looked at a randomized 

subset of a training image but the size of that subset was also 

somewhat randomized. Furthermore, each classifier utilized a 

different dimension (red, blue, green, or gray) for the images. 

We experimented with using Hue as well but that did not help. 

After each classifier runs, they all vote on the final prediction. 

To ameliorate the results even further, we introduced a 

Random Sample Consensus, RANSAC, algorithm. For 

example, we spin up 100 classifiers, measure their test accuracy 

individually, then take the top 10% classifiers and use them to 

vote in the above-mentioned boosting algorithm. This was 

helpful because taking certain subsets of training data led to 

better results (removed certain bad data) and classifiers that 

were randomly assigned these subsets did very well.   

 

Stranger Detection 

We devised two methods for detecting strangers: 

 

1. Use an image’s E2 K-means distance. This distance 

is its distance to the nearest centroid. If this distance 

is larger than some threshold, we consider the image 

as that of a stranger. We decide the threshold value 

by taking it as the E2 K-means distance of the 

training data (e.g. 75% of training data images had 

E2 distance < 500 so the threshold is 500) 

2. Similar threshold to before except we use the cosine 

distance as a metric. 

 

The E2 distance method seemed promising, but we ran into 

some difficulties. Below is a chart summarizing the source of 

inaccuracies we detected in our training and testing. The False 

Positive part of the stacked bar represent errors where our k-

means correctly predicted the identity but because of our 

thresholding we designated that image as a stranger. 

 

 
Fig 9 – Chart depicting source of inaccuracies, with dark blue as poor 

clustering test error, light blue as false positive test error and red and orange 

depicting the same for train error respectively. Each set of bars represents a 

different person 

 

After experimentation, we narrowed down the cause of this 

poor E2 performance to be that we were not collecting enough 

training data and our thresholding was too stringent. We 

gathered more than 300 images total of training data (thus 

getting more of a representative view of the E2 distances of the 

training set) and then took threshold of nearly 100%.  

We also utilized cosine distance as a metric for detecting 

strangers. Understanding whether to use E2 or cosine was given 

lots of analysis. Below we plot their histograms (top row) and 

percentile distributions (bottom row). We seek to understand 

which gives a better delineation between stranger and non-

stranger data points. We deemed that cosine gave the best 
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delineation. Notice the top right plot shows cosine distances 

having the training distances being concentrated in a large 

spike. This means most training images had very low cosine 

distances. The top left plot shows E2 having more overlap and 

less distinction.  

 
 

Fig 10 – Plotting E2 and cosine distances as histograms (top row) and 
percentile distributions (bottom row). 

 

Eventually we deemed the best approach was to use both. 

They both gathered useful insights that the other did not have. 

If either threshold was exceeded, the image was considered a 

stranger.  

 

C. Participation – Hand Raise Detection  

We had many different ideas for the design We eventually 

settled upon a simple, yet effective algorithm. First, we seek to 

learn the pigments of each of the students faces. This is done by 

utilizing the fact that our recognition and detection gives us the 

faces and identifications of students for free. After this, we 

extract pigments from these faces and scan the portion of the 

image around each face for similar pigments. 

More specifically we learn the pigments of the face by taking 

a circle centered at the face bounding box and gathering all 

pixels in that region. It’s important we do not get any hair or 

background pixels. These pixels are each in 3-D (for RGB 

colors) and we perform k-means in 3-dimensions with some 

small number of clusters (about 6 clusters). These clusters 

represent the main colors on the persons faces.  

 
Fig. 11 – The 5 dominant clusters following k-mean. Each cluster centroid is 

displayed by displaying its RGB color above. 

 

Of these colors we select a few of them (about 2) to use in 

masking the region of the image around the persons face. These 

two colors would be the dominant centroids. We take the 

portion of the image around the detected face and for each pixel 

in that region we decide whether that pixel’s color is “close 

enough” to one of our two dominant colors we got from the 

face. Closeness is decided using Euclidean distance. More 

specifically, for all the training pixels from the face that were 

assigned to dominant color number i, we find at what E2 

distance does 60% of those training pixels lie below. This 

distance is used now as a threshold for pixels lying outside the 

face (i.e. above the face where a raised hand would be). If the 

pixel E2 distance to the dominant color is less than the threshold 

distance, then that pixel is kept. Thus, this produced a mask 

(below). 

 
 

Fig. 12 – Mask produced from the hand raise detection algorithm 

Finally, we perform another k-means. This time we perform it 

on the masked image, where the data points are only the kept 

pixel row and column locations. We use two centroids. Thus, if 

a hand was raised, the first centroid would be on the face and 

the second would be on the hand (see above image). If no hand 

was raised, k-means would seek to put both centroids in the 

face, in which case we can easily detect that.  

This simple algorithm performed remarkably well.  

 

D. Front-End UI/ Visualization 

Our front-end UI consists of three different live plots. The first 

of these is the live video capture that is developed using 

OpenCV. The video capture shows the user the facial bounding 

boxes given by Face Detection and also shows the classification 

of the face above the bounding box. An example of this is found 

in Figure 13.  

 Next, we have a live plot which shows the user where the 

detected faces in the current video frame are projected to in the 

PCA + LDA computed vector space. This plot shows the 

training images, colored by class, along with the decision 

boundaries. An example of this is found in Figure 8.  

 Finally, we have a plot for each student which shows when 

the camera detects them as present and has dots plotted on the 

line when it detects a hand raise. It also has a row for stranger 

where it plots when strangers were detected in the video frame. 

An example of this is found in Figure 14.  
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Fig. 13 – Live Video Capture 

 

 
 

Fig 14 – Live graph showing who has been detected in the video during the 
video capture session and at what point they raised hands.   

 

We developed a script to very easily gather a student’s 

training images. The student must simply look into a camera for 

100 seconds, changing his or her facial expressions and head 

tilt while the script does all of the work of gathering clean data.  

 

In summary, the various components of the implementation and 

how they are developed, i.e. library handled or developed from 

scratch are below: 

 

Detection 

Viola/Jones algorithms from scratch, using OpenCV and 

numpy for image I/O, numpy for matrix operations.  

 

Recognition 

We developed all algorithms (PCA, LDA) from scratch 

with the exception of basic math functions like eigenvalue 

computation, matrix multiplication, done using numpy. For eye 

detection, we will use OpenCV and Dlib. For the SVM 

component, we use scikit-learn SVM. 

Participation 

We develop this from scratch, with the help of scikit K-means.  

 

Collection of Results 

The live plots are done using OpenCV and Matplotlib.  

 

V. FINAL RESULTS 

The testing for our project is two-fold, automated and manual. 

Since all the separate algorithms can be developed and tested 

individually, we use automated testing for each of them as they 

are developed. This involves having set testing images that are 

fed to each of the modules with known truth values that we 

compare the results to. Manual testing refers to testing done 

with the live webcam.  

 Automated testing for detection resulted in an accuracy of 

95.2% in detecting faces  

 In the automated testing on our test image set for recognition 

we obtained 100% accuracy on our final test set, where we 

collected training data in the same lighting conditions as test 

conditions. Our stranger detection accuracy was 92% on this 

test set as well. These results clear our original metrics table 

(Figure 1).  

 Our live testing for facial detection produced very good 

results (as seen in Fig. 5). Lighting conditions played a role in 

detection rates, with poorly lit rooms resulting in the worst 

detection. We adjust the threshold value to handle the different 

lighting conditions.  

 Live testing for recognition had similar performance to 

detection. When training data was obtained from lighting 

conditions similar to testing conditions, we obtain very high 

accuracy in recognition. It was difficult to obtain exact numbers 

on live testing since testing with the still image test set was more 

straightforward to collect results.  

 Hand Raise Detection also produced excellent results, once 

again with the caveat that results were sensitive to lighting and 

background changes. In a room with a plain white or gray 

background, the Hand Raise Detection detects correctly 

identifies hand raises between 90 – 100% of the time. This 

includes false positives where we accidentally classify 

segments in the background as a hand raise.  
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VI. PROJECT MANAGEMENT 

A. Member Responsibilities and Scheduling 

The division of labor for the project was as follows: 

 

Task Team 

Member 

Facial Recognition algorithm Neeraj, 

Omar  

Facial Detection Kevan 

Raised hand recognition algorithm Omar 

Integration of Facial Recognition with an 

Attendance system 

Everyone 

Testing and fine tuning the parameters for 

optimizing performance 

Everyone 

 

Fig. 15 – Table showing division of labor 

 

Our original schedule can be seen in Figure 16. We had to 

change our original schedule a decent amount over the course 

of the semester due to our performance for recognition and 

detection being much lower than desired. We did build the main 

file which integrates the various components when we were 

supposed to in the schedule but completed most of it earlier than 

expected and didn’t spend much more time on refining it since 

we wanted to work on our recognition and detection accuracy 

first. Hand detection was completed at the same time as the 

main file, as the skin tone matching was initially done as an 

experiment but produced very good results, and so we decided 

to use it as our final detection method. In summary, our project 

schedule ended up as follows: 

 

• (Feb 11 – March 11) Working in parallel on 

prototyping and implementing Viola Jones, PCA and 

LDA.  

• (March 12 – March 17) Main file for integrating 

detection and recognition completed along with Hand 

Raise Detection. 

• (March 18 – April 19) Continued work on Viola Jones, 

to improve accuracy, involving rewriting the base 

implementation, retraining with AWS.  

Also continued work on recognition. Involved rewrite 

of PCA and LDA, changing from K-means to SVM.  

• (April 20 – May 6) Final testing and fine-tuning 

parameters in all areas of the project for the demo and 

collecting results. Also involved collected many more 

sets of images for testing use.  

 

B. Tools Used, Bill of Materials 

The overall budget for the project is the cost of two camera 

stands, two web-cameras, and an extension cord. This was $128 

for the camera and $26 for the cables. 

 Otherwise all of the other requirements are software 

requirements which can all be satisfied using free and open 

source software. Combined with AWS credit we are still under 

the $600 budget for the project.  

 

 

 

Fig. 16 – Initial schedule of tasks to complete 

 

C. AWS Credits  

We used AWS to train our viola-jones classifier. Training 75 

features with 8000 positive and 10000 negative images took 5 

days on a 16 core GPU optimized instance.  Due to this, we used 

$450 worth of AWS credit to train multiple classifiers (with 

some trial and error runs). We made various changes to the 

training algorithm over the semester, which is why we had to 

train the classifier multiple times and used ~480 hours of AWS 

compute.  

We would like to thank Amazon for providing us with these 

AWS credits to help us complete our project. 
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VII. SUMMARY 

In conclusion our final implementation performed quite well. 

We met the specifications that we set out when it came to testing 

of still images and performed very well when it came to live 

testing when conditions matched those in our training database 

images. Given that we provide a means of easily collecting 

database images, it is reasonable that images can be collected 

in classroom conditions itself.  

Our projects limitations point to some very obvious areas for 

future work that would not require large amounts of effort. 

Lighting conditions impact our results quite a bit some obvious 

further work would be to include some preprocessing to make 

our implementation robust to lighting changes. We also could 

try and run the code on a GPU to improve our live demo 

framerate as that had a strongly negative impact on our ability 

to do live testing for the project.  

Overall, we are very proud of the results and work that went 

into this project as we built most of the components from the 

ground up, only using external libraries to assist in computing 

things such as equations. This allows us to claim that we truly 

understand the major components of our project in great depth 

and that is certainly pleasing.  

Lessons Learned 

We learned a lot from doing this project and there is definitely 

insightful advice that can be passed on to future students. First 

and foremost, we believe that more consideration could have 

gone into our schedule at the start of the semester. This would 

include splitting up larger tasks on the schedule into much 

smaller tasks and spending more time thinking about what 

would be challenging and consume larger amounts of time. We 

also believe that rewriting our code was very helpful when we 

had errors and wish we had done so sooner as the rewrite of our 

code resulted in our results improving significantly. Finally, 

when it comes to computer vision or machine learning related 

projects, better training data can sometimes make the difference 

when it comes to accuracy.  
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