
18-500 Final Project Report

1

Abstract— We implemented a system to track attendance and

participation in a class room setting, providing instructors with

useful metrics both live during class and afterwards. We develop

an easy script to gather student training data and then detect when

they are present on a second-by-second basis during class.

Participation is measured by detecting when and how long a hand

are raised.

Index Terms— eigenfaces, PCA, LDA, facial recognition, facial

detection, viola-jones, computer vision, machine learning

I. INTRODUCTION

For our project, we are building an intelligent attendance and

participation system. The system is designed for a classroom

environment where professors my want to keep track of student

attendance and participation without having to do this

manually. The system is computer vision and machine learning

based and spans the Software System and Signals & Systems

ECE areas.

In order to track attendance and participation we set up a

camera in a classroom and feed this footage into a laptop that

will run all the software. To keep track of attendance, we detect

when students enter and leave a class room. We use facial

recognition to identify these students. In order to keep track of

attendance, we detect when students raise their hands and how

long they raise their hands for.

II. DESIGN SPECIFICATION

The application demands the following: a system that is able

to track and record student attendance and participation in a

classroom setting.

A camera-based system naturally arises where the camera

records the class and provides video input to a laptop (or other

PC) that performs all of the monitoring through an

application/program.

The application running on the laptop can then address the

problem by performing the following three functions:

• Detecting faces and performing facial recognition on

identified faces, matching them against the database of

members of the class.

• As part of recognition, also be able to detect strangers,

i.e. faces detected that are not in the database

• Upon detecting faces, detect and identify raised hands.

This is a means of tracking participation during a class.

• Consolidating this information showing attendance

and displays participation data for each member of the

class.

A table with our desired results for accuracy is below.

Fig 1 – Table showing our design specification metrics

The metrics described in the table above were obtained

considering that we ideally want a very high accuracy, but we

also had to keep in mind that we were building our components

from scratch and thus we dialed back the accuracy numbers so

that the metrics were achievable.

Neeraj Godbole, Electrical and Computer Engineering, Carnegie Mellon University

Kevan Dodhia, Electrical and Computer Engineering, Carnegie Mellon University

Omar Delen, Electrical and Computer Engineering, Carnegie Mellon University

Intelligent Attendance and Participation

Monitoring

18-500 Final Project Report

2

III. ARCHITECTURE/ OVERALL DESIGN

In this section we provide an overview of the IPAM system

along with the block diagram.

 From the block diagram above, the flow of information is

fairly clear.

Video capture is input to the Face Detection module that

processes the video in real time computing bounding boxes for

the faces in the camera’s field of view.

The bounding box data is passed as input to the Facial

Recognition module, which uses PCA and LDA (mostly) to

perform facial recognition on the detected faces, associated

each detected face with the appropriate matching student in the

database, and marking absence of a face (i.e. student not

present). This module also handles stranger detection,

recognizing that a person is not part of the class if the detected

face is not matched with any in the database.

The results of the facial detection/recognition are then passed

on to Raised-hand detection module, which first seeks to learn

the pigments of each of the students faces. This is done by

utilizing the fact that our recognition and detection gives us the

faces and identifications of students for free. After this, we

extract pigments from these faces and scan the portion of the

image around each face for similar pigments.

These results, along with the facial detection/recognition

results will be sent to a basic frontend application that will

display the updated attendance and participation records. The

front-end/visualization part of the system provides the user with

a live video capture from the webcam, overlaid with the face

detection bounding boxes. Along with this live capture, there is

a live plot showing the projection outputs of PCA + LDA along

with the decision boundaries given to us by SVM.

A key thing to note here is that Detection, PCA, LDA and

Hand Raise Detection are all built from scratch with the major

algorithms being written without using libraries or APIs. We do

use OpenCV to capture video data and read images and it is

important to note that the SVM component is performed using

scikit-learn.

Fig. 2 – Overall system block diagram

18-500 Final Project Report

3

IV. SYSTEM DESCRIPTION AND IMPLEMENTATION

DETAIL

In this section we describe our system in depth, covering the

final implementation detail and algorithms used in each of the

modules in our complete solution, as well as discussing the

experimentation and alternatives considered that allowed us to

arrive at our proposed implementation plan for each module.

A. Face Detection Module

We implemented the well-known Viola-Jones algorithm in

order to detect faces. The algorithm can be summarized into

the following components:

1. Haar Features construction, which are used to match

regularities in human faces.

2. Integral image, which allows the features used by the

detector be computed very quickly.

3. AdaBoost training, which selects a small number of

critical visual features from a larger set and yields

extremely efficient classifiers.

4. Cascading Classifiers, which results in a classifier

that consist of several simpler classifiers that are

applied to a region of interest until at some stage the

candidate is rejected, or all the stages are passed.

Fig. 3 – Block diagram outlining the Viola-Jones Facial Detection Algorithm

The algorithm for AdaBoost training, which selects the T best

features from 160,000 potential features is as follows:

1. Initialize weights for 𝑚 negative and 𝑙 positive

examples:

𝑤1,𝑖 =
1

2𝑚
,

1

2𝑙

2. For 𝑡 = 1, . . , 𝑇:
a. Normalize the weights.

b. For each feature, train to find optimal

threshold and polarity.

c. Choose a feature with the lowest error, ∈𝑡.

d. Update weights for all positive and negative

examples:

 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 (
∈𝑡

1− ∈𝑡
) if example was

classified correctly, else 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 .

We implemented and trained our AdaBoost classifier on AWS,

using 8000 face and 10,000 non-faces images. With just 10

features we got test accuracies of ~81%. With 75 features, we

get 95% accuracy.

 (a) (b)

Fig. 4 – Reconstruction with (a) 10 features and (b) 75 features

In order to detect all faces in a frame, the algorithm would need

to use 75 features in every 24x24 sub-window in the target

frame. However, this makes detection very slow (~10s per

frame). In order to increase speeds, we used a cascaded

classifier with layers containing an increasing number of

features in each layer. If in any layer the classifier does not think

the sub-window contains a face, the cascade stops. Only sub-

windows with a high probability of being a face will make it

through all the layers. In their paper, Viola and Jones introduce

an algorithm that selects the optimal number of features in each

layer in order to minimize the false positive rate per layer.

However, for the sake of simplicity we manually chose the

design on each layer. We chose layers of size 1, 5, 10, 25, 50

and 75.

Fig. 5 – Diagrammatic depiction of detection cascade used.

After training a cascaded classifier, we maintained accuracies

of 95% and managed to achieve a 10x speedup for detection for

a single frame. With cascading we managed to reduce the

detection time to 1s per frame.

Upon running this algorithm, we get bounding boxes around

all faces in a frame. However, the algorithm will always find

multiple bounding boxes surrounding every face in the frame.

While all the bounding boxes may be valid, it is important to

merge all the overlapping bounding boxes so that the detector

doesn’t report back that multiple faces have been found when

there is only one. We used Non-maximum suppression in order

to merge the images.

18-500 Final Project Report

4

Fig. 6 – Example of bounding boxes outputted from the Viola-Jones Facial

Detection Algorithm

B. Recognition

Our method of recognition involves using PCA, LDA and

SVM.

We begin with using PCA and eigenfaces for recognition.

PCA allows you to take a higher dimensional space and project

it into a smaller space. This is useful because images are 𝑚 ∙ 𝑛

dimensionality (where m denotes width and n denotes height)

and we cannot compare and cluster images for recognition with

such high dimensionality. Thus, PCA develops a set of basis

vectors, eigenvectors of a covariance matrix to be precise,

which span the vector space of the face image. PCA is followed

by LDA in order to better separate our classes so that

classification produces better results, and also to reduce the

dimensionality of our image. Finally, we apply SVM to the

projected training samples to obtain our decision boundaries.

Below we detail the entire recognition pipeline.

The first stage of the recognition pipeline, PCA, is

implemented as follows:

1. Collect all N training images, each with dimensions

(k x k) into one matrix X with dimensions (k2 x N).

Each column of X is an image vector, with the image

reshaped into a 1-D column vector.

2. Compute the mean image vector µ, and subtract µ

from each column of X.

3. Now we find the covariance of the mean subtracted

X, denoting this as Σ.

4. We then optimize:

max 𝝎𝑇𝚺𝝎 𝑠. 𝑡 |𝝎| = 1

5. This simplifies to an eigenvalue problem and we

obtain a matrix of eigenvectors V, sorted by

decreasing eigenvalue. These values are obtained

using numpy’s linalg module. We then discard the

columns corresponding to eigenvalues we don’t want.

6. We compute P = VT(X – q) which is our matrix of

basis coefficients.

7. It is this matrix of basis coefficients P that is the

input to LDA.

8. The PCA function outputs P, the mean vector µ and

the eigenvectors V.

We next perform LDA with the following process:

1. LDA takes inputs P (final matrix of basis coefficients

for each training image), and an imgToClass list

which allows us to find which class each image (or

column of P) belongs to.

2. Using the two inputs, compute the between-class

scatter matrix SB and the within-class scatter matrix

SW.

3. We then optimize the following equation:

max
𝝎𝑇𝑺𝑩𝝎

𝝎𝑇𝑺𝑾𝝎
 𝑠. 𝑡 |𝜔| = 1

This simplifies to an eigenvalue problem, and we

obtain a matrix of eigenvalues W, which is used to

project our input onto a vector space of a smaller

dimensionality than the input and one in which the

classes are more scattered.

Finally, we must now classify the faces in our training set and

this is done using SVM. This is the one component of the

project that was not implemented from scratch. We instead used

scikit-learn. This is because the decision to use an SVM was

made very late in the project’s development. SVM aims to find

decision boundaries for the classes such that the margins from

the decision boundaries to the training samples nearest to the

decision boundary, are maximized.

Therefore, when given a new test image, the recognition

pipeline/procedure is as follows:

1. Reshape the image into a 1-D column vector and

subtract µ (mean vector output from PCA) from it. We

denote this using J.

2. We now want to project this image onto the vector

space we obtained through PCA + LDA. To do this we

first obtain basis coefficients for the image, Pim = VTJ.

3. Now we project the image by computing WTPim.

4. We now use the decision boundaries obtained by SVM

to classify this projected sample.

Below is a plot display our PCA eigenvalues for all of our

eigenvectors. Note, it is a log plot on the y-axis. The first three

eigenvalues were rather large, and we suspected they were

representing meaningless brightness variations in the images.

Fig. 7 – Eigenvalues obtained through PCA for training set

18-500 Final Project Report

5

Initially, we did not achieve good performance with our PCA

and LDA implementation. Our data showed poor separation of

classes, and we had to rewrite our PCA code along with fine

tuning parameters, such as how many eigenvectors to keep, how

many training images to have, what lighting conditions we

should take training images in etc.

After some experimentation, we observed that the following

changes were necessary to improve PCA and LDA

performance:

• Rather than drop the first three PCA eigenvectors we

instead drop the first two.

• Instead of gathering only around 40 images per class,

gather more than a hundred per class. Our demo

training set consisted of 100 images per class.

• After discarding the first two PCA eigenvectors, use

as many as possible. We keep 90 eigenvectors in our

implementation.

After these changes we observed that the PCA + LDA pipeline

did an excellent job of projecting the data into a vector space

where the classes are nicely separated, i.e. the between class

scatter was increased.

During our design stage, we had decided on using K-means

clustering to perform final classification. Our K-means

clustering was not performing as we liked, and our accuracies

were hovering in the 50 – 60 percent range. It would often

confused predictions for clusters that appeared elongated (when

intra-class variance was not reduced enough). This is why we

switched to an SVM for classification of points in this

eigenspace. We experimented with both linear and non-linear

SVM and we settled upon a linear SVM as our data-set was

well-suited to being separated by straight lines. The figure

below shows the outputs of one of our later training sets once

projected using PCA and LDA, along with the decision

boundaries found. As can be seen, there is excellent separation

of the classes and the decision boundaries can be roughly

deduced by eye.

Fig 8 – Chart depicting the eigenspace with class data points plotted, as

well as faces gathered live being plotted.

We also utilize a boosting technique. We make use of several

classifiers/learners, each classifier training in a somewhat

different manner. The logic for this is that if each classifier is

better than random guessing and if each has insight that others

do not have, then combining their results boosts overall

performance. Each classifier not only looked at a randomized

subset of a training image but the size of that subset was also

somewhat randomized. Furthermore, each classifier utilized a

different dimension (red, blue, green, or gray) for the images.

We experimented with using Hue as well but that did not help.

After each classifier runs, they all vote on the final prediction.

To ameliorate the results even further, we introduced a

Random Sample Consensus, RANSAC, algorithm. For

example, we spin up 100 classifiers, measure their test accuracy

individually, then take the top 10% classifiers and use them to

vote in the above-mentioned boosting algorithm. This was

helpful because taking certain subsets of training data led to

better results (removed certain bad data) and classifiers that

were randomly assigned these subsets did very well.

Stranger Detection

We devised two methods for detecting strangers:

1. Use an image’s E2 K-means distance. This distance

is its distance to the nearest centroid. If this distance

is larger than some threshold, we consider the image

as that of a stranger. We decide the threshold value

by taking it as the E2 K-means distance of the

training data (e.g. 75% of training data images had

E2 distance < 500 so the threshold is 500)

2. Similar threshold to before except we use the cosine

distance as a metric.

The E2 distance method seemed promising, but we ran into

some difficulties. Below is a chart summarizing the source of

inaccuracies we detected in our training and testing. The False

Positive part of the stacked bar represent errors where our k-

means correctly predicted the identity but because of our

thresholding we designated that image as a stranger.

Fig 9 – Chart depicting source of inaccuracies, with dark blue as poor

clustering test error, light blue as false positive test error and red and orange

depicting the same for train error respectively. Each set of bars represents a

different person

After experimentation, we narrowed down the cause of this

poor E2 performance to be that we were not collecting enough

training data and our thresholding was too stringent. We

gathered more than 300 images total of training data (thus

getting more of a representative view of the E2 distances of the

training set) and then took threshold of nearly 100%.

We also utilized cosine distance as a metric for detecting

strangers. Understanding whether to use E2 or cosine was given

lots of analysis. Below we plot their histograms (top row) and

percentile distributions (bottom row). We seek to understand

which gives a better delineation between stranger and non-

stranger data points. We deemed that cosine gave the best

18-500 Final Project Report

6

delineation. Notice the top right plot shows cosine distances

having the training distances being concentrated in a large

spike. This means most training images had very low cosine

distances. The top left plot shows E2 having more overlap and

less distinction.

Fig 10 – Plotting E2 and cosine distances as histograms (top row) and
percentile distributions (bottom row).

Eventually we deemed the best approach was to use both.

They both gathered useful insights that the other did not have.

If either threshold was exceeded, the image was considered a

stranger.

C. Participation – Hand Raise Detection

We had many different ideas for the design We eventually

settled upon a simple, yet effective algorithm. First, we seek to

learn the pigments of each of the students faces. This is done by

utilizing the fact that our recognition and detection gives us the

faces and identifications of students for free. After this, we

extract pigments from these faces and scan the portion of the

image around each face for similar pigments.

More specifically we learn the pigments of the face by taking

a circle centered at the face bounding box and gathering all

pixels in that region. It’s important we do not get any hair or

background pixels. These pixels are each in 3-D (for RGB

colors) and we perform k-means in 3-dimensions with some

small number of clusters (about 6 clusters). These clusters

represent the main colors on the persons faces.

Fig. 11 – The 5 dominant clusters following k-mean. Each cluster centroid is

displayed by displaying its RGB color above.

Of these colors we select a few of them (about 2) to use in

masking the region of the image around the persons face. These

two colors would be the dominant centroids. We take the

portion of the image around the detected face and for each pixel

in that region we decide whether that pixel’s color is “close

enough” to one of our two dominant colors we got from the

face. Closeness is decided using Euclidean distance. More

specifically, for all the training pixels from the face that were

assigned to dominant color number i, we find at what E2

distance does 60% of those training pixels lie below. This

distance is used now as a threshold for pixels lying outside the

face (i.e. above the face where a raised hand would be). If the

pixel E2 distance to the dominant color is less than the threshold

distance, then that pixel is kept. Thus, this produced a mask

(below).

Fig. 12 – Mask produced from the hand raise detection algorithm

Finally, we perform another k-means. This time we perform it

on the masked image, where the data points are only the kept

pixel row and column locations. We use two centroids. Thus, if

a hand was raised, the first centroid would be on the face and

the second would be on the hand (see above image). If no hand

was raised, k-means would seek to put both centroids in the

face, in which case we can easily detect that.

This simple algorithm performed remarkably well.

D. Front-End UI/ Visualization

Our front-end UI consists of three different live plots. The first

of these is the live video capture that is developed using

OpenCV. The video capture shows the user the facial bounding

boxes given by Face Detection and also shows the classification

of the face above the bounding box. An example of this is found

in Figure 13.

 Next, we have a live plot which shows the user where the

detected faces in the current video frame are projected to in the

PCA + LDA computed vector space. This plot shows the

training images, colored by class, along with the decision

boundaries. An example of this is found in Figure 8.

 Finally, we have a plot for each student which shows when

the camera detects them as present and has dots plotted on the

line when it detects a hand raise. It also has a row for stranger

where it plots when strangers were detected in the video frame.

An example of this is found in Figure 14.

18-500 Final Project Report

7

Fig. 13 – Live Video Capture

Fig 14 – Live graph showing who has been detected in the video during the
video capture session and at what point they raised hands.

We developed a script to very easily gather a student’s

training images. The student must simply look into a camera for

100 seconds, changing his or her facial expressions and head

tilt while the script does all of the work of gathering clean data.

In summary, the various components of the implementation and

how they are developed, i.e. library handled or developed from

scratch are below:

Detection

Viola/Jones algorithms from scratch, using OpenCV and

numpy for image I/O, numpy for matrix operations.

Recognition

We developed all algorithms (PCA, LDA) from scratch

with the exception of basic math functions like eigenvalue

computation, matrix multiplication, done using numpy. For eye

detection, we will use OpenCV and Dlib. For the SVM

component, we use scikit-learn SVM.

Participation

We develop this from scratch, with the help of scikit K-means.

Collection of Results

The live plots are done using OpenCV and Matplotlib.

V. FINAL RESULTS

The testing for our project is two-fold, automated and manual.

Since all the separate algorithms can be developed and tested

individually, we use automated testing for each of them as they

are developed. This involves having set testing images that are

fed to each of the modules with known truth values that we

compare the results to. Manual testing refers to testing done

with the live webcam.

 Automated testing for detection resulted in an accuracy of

95.2% in detecting faces

 In the automated testing on our test image set for recognition

we obtained 100% accuracy on our final test set, where we

collected training data in the same lighting conditions as test

conditions. Our stranger detection accuracy was 92% on this

test set as well. These results clear our original metrics table

(Figure 1).

 Our live testing for facial detection produced very good

results (as seen in Fig. 5). Lighting conditions played a role in

detection rates, with poorly lit rooms resulting in the worst

detection. We adjust the threshold value to handle the different

lighting conditions.

 Live testing for recognition had similar performance to

detection. When training data was obtained from lighting

conditions similar to testing conditions, we obtain very high

accuracy in recognition. It was difficult to obtain exact numbers

on live testing since testing with the still image test set was more

straightforward to collect results.

 Hand Raise Detection also produced excellent results, once

again with the caveat that results were sensitive to lighting and

background changes. In a room with a plain white or gray

background, the Hand Raise Detection detects correctly

identifies hand raises between 90 – 100% of the time. This

includes false positives where we accidentally classify

segments in the background as a hand raise.

18-500 Final Project Report

8

VI. PROJECT MANAGEMENT

A. Member Responsibilities and Scheduling

The division of labor for the project was as follows:

Task Team

Member

Facial Recognition algorithm Neeraj,

Omar

Facial Detection Kevan

Raised hand recognition algorithm Omar

Integration of Facial Recognition with an

Attendance system

Everyone

Testing and fine tuning the parameters for

optimizing performance

Everyone

Fig. 15 – Table showing division of labor

Our original schedule can be seen in Figure 16. We had to

change our original schedule a decent amount over the course

of the semester due to our performance for recognition and

detection being much lower than desired. We did build the main

file which integrates the various components when we were

supposed to in the schedule but completed most of it earlier than

expected and didn’t spend much more time on refining it since

we wanted to work on our recognition and detection accuracy

first. Hand detection was completed at the same time as the

main file, as the skin tone matching was initially done as an

experiment but produced very good results, and so we decided

to use it as our final detection method. In summary, our project

schedule ended up as follows:

• (Feb 11 – March 11) Working in parallel on

prototyping and implementing Viola Jones, PCA and

LDA.

• (March 12 – March 17) Main file for integrating

detection and recognition completed along with Hand

Raise Detection.

• (March 18 – April 19) Continued work on Viola Jones,

to improve accuracy, involving rewriting the base

implementation, retraining with AWS.

Also continued work on recognition. Involved rewrite

of PCA and LDA, changing from K-means to SVM.

• (April 20 – May 6) Final testing and fine-tuning

parameters in all areas of the project for the demo and

collecting results. Also involved collected many more

sets of images for testing use.

B. Tools Used, Bill of Materials

The overall budget for the project is the cost of two camera

stands, two web-cameras, and an extension cord. This was $128

for the camera and $26 for the cables.

 Otherwise all of the other requirements are software

requirements which can all be satisfied using free and open

source software. Combined with AWS credit we are still under

the $600 budget for the project.

Fig. 16 – Initial schedule of tasks to complete

C. AWS Credits

We used AWS to train our viola-jones classifier. Training 75

features with 8000 positive and 10000 negative images took 5

days on a 16 core GPU optimized instance. Due to this, we used

$450 worth of AWS credit to train multiple classifiers (with

some trial and error runs). We made various changes to the

training algorithm over the semester, which is why we had to

train the classifier multiple times and used ~480 hours of AWS

compute.

We would like to thank Amazon for providing us with these

AWS credits to help us complete our project.

18-500 Final Project Report

9

VII. SUMMARY

In conclusion our final implementation performed quite well.

We met the specifications that we set out when it came to testing

of still images and performed very well when it came to live

testing when conditions matched those in our training database

images. Given that we provide a means of easily collecting

database images, it is reasonable that images can be collected

in classroom conditions itself.

Our projects limitations point to some very obvious areas for

future work that would not require large amounts of effort.

Lighting conditions impact our results quite a bit some obvious

further work would be to include some preprocessing to make

our implementation robust to lighting changes. We also could

try and run the code on a GPU to improve our live demo

framerate as that had a strongly negative impact on our ability

to do live testing for the project.

Overall, we are very proud of the results and work that went

into this project as we built most of the components from the

ground up, only using external libraries to assist in computing

things such as equations. This allows us to claim that we truly

understand the major components of our project in great depth

and that is certainly pleasing.

Lessons Learned

We learned a lot from doing this project and there is definitely

insightful advice that can be passed on to future students. First

and foremost, we believe that more consideration could have

gone into our schedule at the start of the semester. This would

include splitting up larger tasks on the schedule into much

smaller tasks and spending more time thinking about what

would be challenging and consume larger amounts of time. We

also believe that rewriting our code was very helpful when we

had errors and wish we had done so sooner as the rewrite of our

code resulted in our results improving significantly. Finally,

when it comes to computer vision or machine learning related

projects, better training data can sometimes make the difference

when it comes to accuracy.

VIII. REFERENCES

Here we provide references for sources that were helpful during

the project, even if they were not specifically used to write the

report.

[1] Rosebrook, Adrian. “Face Alignment with OpenCV and

Python.” PyImageSearch, 3 Aug. 2017,

www.pyimagesearch.com/2017/05/22/face-alignment-

with-opencv-and-python/.

[2] Wagner, Phillip. “Face Recognition with Python.”

Bytefish.de, 18 July 2012, www.bytefish.de/.

http://www.pyimagesearch.com/2017/05/22/face-alignment-with-opencv-and-python/
http://www.pyimagesearch.com/2017/05/22/face-alignment-with-opencv-and-python/

