
1
18-500 Final Project Report: 05/08/2019

SOS_bot

Author: Karen Johnson, Manini Amin, and Joseph Wang
Electrical and Computer Engineering, Carnegie Mellon

University

Abstract— A system capable of assessing the initial person
count in a disaster zone. The SOS_bot enters areas affected by
disasters such as earthquakes or fires and provides first
responders with information to aid in the supplies and number
of personnel needed to treat the situation. A combination of
autonomous path planning, obstacle avoidance and machine
learning algorithms, the SOS_bot is able to detect and report
the amount of people in a room so that human risk is limited in
the initial stages of disaster recovery.

Index Terms—Create2, Faster RCNN, Ultrasonic sensors, Path

Planning, Obstacle Avoidance, Human detection, Grid System,
COCO dataset, Pytorch

I. INTRODUCTION

During the initial stages of a disaster situation, safety is

the primary concern, for both the victims of the situation and
the first responders. In order to aid in the efforts to minimize
risk for both sides, the SOS_bot has been created to provide
immediate disaster recovery information. Currently, when a
scenario as described before occurs, first responders must
enter the zone without any information on what the present
situation looks like other than aerial shots from an overhead
helicopter. Often times, without any information these first
responders find themselves with either a severe lack of
medical equipment needed to treat victims or underestimation
of the personnel and/or tools needed to deal with the situation.
With SOS_bot however, first responders will be able send the
bot in to the zone beforehand so that it will autonomously
traverse the area and provide a total count on the victims
present for responders to then adjust with.

The SOS_bot must be able to autonomously navigate the
space, arriving to the three entered points of interest within a
margin of 0.5 feet. The bot must ensure complete avoidance of
any obstacles in its path, with a berth of 0.5 foot between itself
and the object- accounting for the case that the obstacle is an
injured human. Still photos must be taken with 360 degree
coverage of the room. Once the pictures have been sent to the
responder’s local computer, the SOS_bot UI must report the
count with a detection accuracy of at least 55% after using the
Faster RCNN model. The bot must give a clear picture of the
situation at hand to the responders.

II. DESIGN REQUIREMENTS
The SOS_bot will be evaluated on an obstacle course that is

design and built by us. The obstacle course will be a 10 foot
by 10 foot marked space filled with randomly sized obstacles
as well as people. The obstacles will be of size 1 foot by 1
foot. Their heights will be no taller than 2 feet. People will be
scattered around the course for the robot to detect.

The robot will be given the layout of the area, including

where it will be starting, the boundary of the space, as well as
the key locations it must go to to take panoramic views. The
robot will not have any information of any obstacles that may
potentially be between where it is and the destination. It must
be able to initially calculate the most efficient path between all
of the points of interests and arrive at each point with an error
margin of 0.5 feet. If the robot encounters an obstacle along
the way, it must not make contact with said obstacle but
instead move around it with at least 0.5 feet of clearance when
possible. Once it reaches it destination, it must rotate in a way
such that the camera is able to take pictures to cover a 360
degree view from where it is. These images will be sent back
to a local computer via wifi for further evaluation.

On the local computer, there will be a user interface that
sends the images to the cloud where a deep learning model
that is trained on the COCO dataset for people will be. The
model must achieve a mAP score of 55% on the COCO
dataset for people detection before it is deployed on our
machine. Furthermore, it should be biased towards false
positives. When running inference on the images taken by the
robot, no more than 10% of the detections should be false
positives and no more than 5% of the detections should be
false negatives. The model should be able to detect people in
rooms with poor and varied lighting. Lastly, the model should
be able to detect people even if only partial views of the
person are given. These partial views must have a major
identifying body part such as an arm, hand leg, or face. Once
the computer has finished detecting the images it must be able
to display it’s findings on a user interface at 1080p resolution.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
The SOS_bot will consist of 2 major components. The first

component is the physical robot itself. It will contain a
camera, sensors, and an iRobot that are all connected to a
Raspberry Pi. The robot will be handling any movement or
tasks in the obstacle course. This includes path planning,

2
18-500 Final Project Report: 05/08/2019

obstacle avoidance, and picture taking. It will also handle
sending images over to the local computer.

The second major component is the people detection deep
learning algorithm running. The Faster RCNN model will be
trained on a GPU machine on AWS. It will be trained using
the COCO dataset, which contains several hundred thousand
images. When the images from the robot are transferred to the
local computer, they will be sent to the cloud. This is where
inference will take place and where the bounding boxes on the
images will be drawn. These detection images will then be
transferred back to the local computer to be displayed on the
UI for a given point of interest. This user interface allows
people to select where they want the bot to go to as well as see
the results of the inference.

 Figure 1: System Architecture

IV. DESIGN TRADE STUDIES
The SOS bot incorporates hardware and software decisions

made after assessing the tradeoffs of multiple approaches for
each component. These considerations were necessary to
ensure that the SOS bot detects the number of humans in a
disaster zone in an efficient, accurate, and practical way.
These tradeoffs will be discussed in the sections below.

A. Robot Design Tradeoffs

A mini drone and an iRobot Create 2 were the two major
components that we were looking at for the base of our robot.
Both have clear benefits and drawbacks. The drone is the more
practical choice in terms of its mobility and fit for the use case
of our robot. Rescue teams would mostly likely not send in a
slow moving vacuum cleaner into a disaster area to look for
humans. Drones would also offer us movement along 3 axis,
making navigation through an obstacle course much easier. It
would also allow us to have a better angle for pictures as we
can just fly up to a proper height before taking an image

3
18-500 Final Project Report: 05/08/2019

instead of being stuck on the ground. The main issues with
drones was that most drones on the market were not designed
to carry much weight nor are they able to fly for very long.
Furthermore, these drones usually do not come with libraries
that allow us to control. The drones that did have the
capabilities we were looking for cost well over our budget.
When reaching out to researchers in the Robotics Department,
we found that most of them built their own drones. This would
make the scope of our project too large.

Ultimately, we decided that even though the iRobot Create 2

would not be practical in a real search and rescue mission, it
would still be a good base for our demo as it had the battery
life as well as the movement libraries that we desired. We
would also not have to assemble the Create 2 ourselves like
we would have most likely for the drone and we also have the
added bonus of not being concerned that the Create 2 crashes
and damages itself since it is quite a slow moving machine.
This could potentially save us some more money from our
budget as we would not have to purchase any replacement
parts.

A. Human Detection Model Design Tradeoffs

YOLO and Faster RCNN are two of the most popular deep
learning models used for object detection. Faster RCNN is a
region based detection algorithm that utilizes a region
proposal method to generate regions of interest that are later
passed through fully connected layers for localization and
classification. YOLO, You Only Look Once, is a single shot
detection algorithm that predicts both the boundary box and
the classification at the same time with one Convolutional
Neural Network. This is in comparison to Faster RCNN which
requires a region proposal network followed by a
convolutional neural network.

The YOLO model has a low inference time and has the

ability to achieve real time object detection. However, one of
its limitations is the accuracy it can produce. As show in (1),
YOLOv3-608 achieves a mAP (mean Average Precision)
score of 33% when trained on the Microsoft COCO dataset
[1]. However, the model has an inference time of 51 ms and
can process a maximum of 91 frames per second [1]. In
comparison, Faster RCNN has a limitation of processing 17
frames per second, but achieves a mAP score of 34.9 % [1].

Single shot detection models, specifically YOLO,

cannot beat the accuracy that the Faster RCNN model can
produce. Although deeper analysis indicates that the accuracy
advantage Faster RCNN gives is usually not worth the
significant sacrifice in speed that occurs, our SOS_bot will
utilize the region-based Faster RCNN model. This decision
was made for the simple reason that we are not aiming to
achieve real time detection. Thus, the slight percentage
increase in accuracy is more valuable to our system. The
SOS_bot’s main goal is to provide accurate and reliable

information to first responders. As real time detection is not a
goal the robot must achieve, the sacrifice in speed is worth the
2% increase in accuracy. This design decision ensures that our
SOS_bot is designed with the application area in mind. This
model best aligns with the project’s goals of providing a
reliable count of the number of humans trapped in a disaster
zone.

After determining which model would best align with our
target use case, model training trade-offs were considered.
First, the dataset we wanted to use for training was
determined. Two popular datasets used for object detection
algorithms are the PASCAL VOC and COCO datasets. The
COCO dataset (19GB train/val) is significantly larger than the
PASCAL VOC dataset (450MB train/val). Since the COCO
dataset is larger, the variation in images is higher which leads
to better and more robust model training. However, this larger
dataset comes at a price. Not only does this lead to a huge
increase in training time it also requires more money to
support the increased memory and training time required on
AWS resources. When training this faster RCNN model on a
P2.8xlarge (8 GPU optimized EC2 AWS machine) with the
COCO dataset, the average training time per epoch is 6.0
hours. On the other hand with PASCAL VOC, this time drops
to .17 hours. In the end, we made the decision to allocate more
space in our budget for more robust and accurate training.

One final design tradeoff we made was whether to run the
model on a local computer or on the cloud. At first we wanted
the the model to be trained on the cloud and run on the
computer but after further evaluation we found it very difficult
to get the model on to a local computer and it’s speed would
be extremely slow. We ultimately decided that it would make
more sense to run the person detection model on the cloud.

Table 1

Model mAP Score
(mean Average
Precision)

FPS (Frames per
second)

Faster RCNN 34.9% 17

YOLO 33% 91

Figure 2: Models Trained on MS COCO dataset

V. SYSTEM DESCRIPTION

The SOS_bot is comprised of two major subsystems. The
first subsystem constitutes the robot itself that moves around
the designated room and takes the still pictures of the space.
The second subsystem is related to the machine learning
model that examines the pictures taken and details the human
count to the interactive user interface.

4
18-500 Final Project Report: 05/08/2019

A. Subsystem A

Figure 3: Subsystem A

As shown in the diagram above, subsystem A is comprised

of the iRobot Create2, the ultrasonic sensors, a pi compatible
camera and the Raspberry Pi 3 itself. The pi will be serially
sending commands to the Create2 using a USB cable and
connected to the camera via the camera port. The ultrasonic
sensors are connected via the GPIO pins.

The SOS_bot takes in the coordinates from that the user

interface sends via SSH and precalculates the most optimal
path between points. Then, the robot moves at a set velocity
for a the correct amount of time to reach each point. Angles
are also calculated in a similar fashion. We set a
predetermined velocity for each wheel of the iRobot, one
positive and one negative, and this allows us to turn in place.
Once the robot completes movement at an angle, we always
readjust to forward. This is to negate an accumulation of error
due to inaccurate movement. During the movement phase, the
robot is constantly checking the ultrasonic sensors for any
potential obstacles that it may encounter.

For obstacle avoidance, we have two ultrasonic sensors

pointing forward, one on the left side of the robot and the
other on the right. This allows us to choose the most efficient

way to avoid anything we encounter. If the left sensor picks up
an obstacle the right sensor does not, we turn right. If the right
sensor picks up an obstacle and the left one does not, the robot
turns left. Finally, if both sensors pick up an obstacle, we
default to turning right.

When the robot reaches an interest point, the robot reorients

itself to facing forward and begins to take 6 pictures. Between
each image the robot turns 60 degrees. This is to so that we
can create the panoramic view that we want. Once the images
are taken, the robot does a 360 degree turn in the opposite
direction to eliminate any accumulated errors and continues to
it’s next point.

B. Subsystem B
The second subsystem of the SOS_bot is the program that

runs on the laptop as well as on Amazon Web Services. The
program consists of two parts: the user interface to control the
SOS_bot along with the deep learning algorithm the does the
detection on the images. The user interface is written using
python and the tkinter library. It consists of a grid layout of the
obstacle course that users can place up to 3 interest points for
the robot to go to. Once users have selected the points of
interests that they want to go to, they can press start and the
program will upload the map along with the interest points
onto the robot via SSH through WIFI. The user interface then
waits for the robot to arrive at the interest points and take
images. Once the images are taken, the user interface copies
them back on to the laptop via SSHFS. It is worth noting that
this is done as soon as the robot reaches an interest point so
users do not have to wait for all interest points before
receiving the images.

Once the program receives the images, it send them to the

an AWS cloud instance through WIFI. The instance runs the
images through the second part of the subsystem: the Faster
RCNN deep learning model. The model is implemented using
Pytorch and trained on a subset of the COCO dataset,
specifically the one that contains images of people. The model
outputs a binary classification of the presence of humans in
the image along with the estimated bounding box of where
that human is. We retrained the Faster RCNN model to
perform binary classification in place of multiway
classification. The model is biased towards false positives for
human detection and runs on a p2.8xlarge system on AWS and
will show where any humans are in the images that the robot
sent. The biasing was incorporated into the Cross Entropy
Loss function for the classification neural network. The bias
was a parameter that penalized false negatives more heavily
than false positives. We trained the model for 3 epochs with a
batch size of 16 and a learning rate of .001. The network
architecture we used was res101. Once the model inference is

5
18-500 Final Project Report: 05/08/2019

done, the new images with bounding boxes are sent back to
the laptop. The user interface then stitches the images together
using the Python Image Library and display the panoramic for
users to see.

Figure 4: Subsystem B

V. PROJECT MANAGEMENT

A. Schedule
The schedule that we ended up with was somewhat different

from the schedule that we started with. As SOS_bot was
worked on, the areas that are more time consuming have
become more apparent and the schedule has been adjusted
accordingly. An area that was initially underestimated was the
time spent waiting for parts to arrive. This delay took longer
than the week of slack that was allocated for delivery. Thus,
the firmware for the bot has been pushed farther along as the
hardware components were necessary for testing was not
present.

We also spent quite a bit of time on refining the movement
of the robot. This is because while there exists a library for
movement with the iRobot, we found that it was not up to our
specification in terms of our accuracy. Therefore, Karen ended
up having to write her own library and finetune the velocity

and time traveled to get the accuracy that was desired. This
caused significant delays in or schedule, forcing us to move
some of our tasks around.

One task that we moved due to the delays caused by
movement was the user interface. We also originally planned
for the user interface to be developed towards the end of the
project but because Joseph could not work with the Raspberry
Pi on obstacle avoidance while Karen was writing a new
library for movement, he started to work on the user interface
early. This allowed us to stay relatively on schedule to
finishing by the end of the semester but also allowed us to test
integration early.

Once movement was finished, we moved on to obstacle
avoidance. We spent a few weeks on implementing and
refining this and by mid-April we were able to have a fairly
accurate movement and obstacle avoidance implemented.
Once movement was at a place that we wanted, we spent a
week integrating everything together.

The development of the detection model happened in
parallel to the hardware portion of the SOS_bot. We spent a
lot of time in the beginning researching the best approaches to
human detection and decided on the Faster RCNN model.
From there, we spent a lot of time on implementing, biasing,
and training the model. By the first week of April, however,
Manini was able to have a preliminary model setup and
outputting what we wanted. From there, she kept fine tuning
the model and implementing the pipeline of sending and
receiving the images to and from the cloud.

After all the subsystems were implemented, we began to
integrate everything with the user interface. Our schedule
allowed us to stagger the ending of movement and model
development approximately 2 weeks apart. This allowed
ample time to test the integration of movement with the user
interface before having to integrate the model. Once
everything was integrated, we did one final week of testing
before out public demonstration.

We were able to mostly stick to our schedule throughout the
semester with ample amounts of testing individual subsystems
as well as the full system. While some things took longer than
we thought they would, the slack weeks that we planned in our
original schedule allowed us to make up for the time lost and
finish the project on time.

6
18-500 Final Project Report: 05/08/2019

Figure 5: Gantt Chart

Figure 6: Detailed Schedule of Tasks

B. Team Member Responsibilities

Our responsibilities were split based on the skills that each

team member possessed. Karen has extensive hardware
experience so she primarily worked with the iRobot Create 2
and the Raspberry Pi. She made sure that the Pi and the Create
2 were able to efficiently communicate with each other and
that the Pi was capable of controlling the Create 2. Karen also
set up the initial movement commands as well as the path
planning algorithm for the Create 2. Finally, Karen’s
secondary responsibility was designing and building the
obstacle course.

Manini has experience with machine learning so she was
primarily responsible for the deep learning algorithms of this
project. Particularly, she was in charge of the training, biasing,
and fine tuning the existing Faster-RCNN architecture so that
we can get the desired specifications. Finally, Manini also
wrote the pipeline script that transferred the images from the
local computer to the AWS instance in the cloud.

Joseph also has experience with machine learning so he
started by assisting Manini with setting up the model and with

7
18-500 Final Project Report: 05/08/2019

debugging. Afterwards, he worked on obstacle avoidance and
integrated that with the path planning and initial movement
commands that Karen set up. He also created the UI for the
robot and worked with both Karen and Manini to integrate
everything together. Finally, he assisted Karen in designing
and building the obstacle course.

C. Budget
The majority of our budget was spent on the robotics

portion of the project. The Create2 was the most expensive
piece, around $200, and all other component prices have been
detailed in Figure 7- outlining the costs associated with the
bot. An important note is that the entirety of the work done on
Amazon Web Services was covered by the free credits that
each member was allocated. Thus the detection algorithm and
all parts connected to it were essentially free and did not cut
into our budget. We were also able to access free breadboards
and ultrasonic sensors through various resources around
campus. All other free softwares, IDE and languages that were
used are also listed below.

Figure 7. Budget

AWS Credit Allocation

We used approximately $300 of AWS credits for this project.
This included 30 instance hours on a p2.xlarge instance for
research and initial testing purposes. Another 35 hours on a
p2.8xlarge were used for distributed model training across 8
GPUS and for model inference during our demo and
integration tests. These AWS credits were greatly appreciated
as our project would not have been possible without the
distributed training ML resources the AWS P2 instances
provide.

D. Risk Management

We planned on handling our project risk by planning for
complexity and anticipating challenges with integration
amongst the hardware and software components of our
project. We also scheduled multiple slack weeks to account
for any unforeseen issues such as the movement library of
iRobot being inaccurate.

One of the biggest ways we mitigated risk was by choosing
to use an iRobot Create 2 rather than a drone for our project.
Drones have a high chance of crashing when piloted
incorrectly and since we are trying to achieve a form of
autonomous movement, there would most likely be a lot of
crashes. This could lead to potential damage on the drone and
thus increase our budget significantly. Furthermore, drones
require a lot of batteries to use as they have a relatively short
flight time. The iRobot, on the other hand, moves relatively
slowly so crashing is less concerning. Teams in the past have
also been successful with using the iRobot Create 2 so this is a
relatively safe solution to our movement problems.

Since we are manipulating the movement of the Roomba
using mathematical calculations, we also anticipated error
accumulation and therefore planned for extensive testing of
basic movement. This was extremely useful as we found
through the testing that the iRobot’s built-in package for
movement was extremely inaccurate and thus we wrote our
own code for movement.

Another major risk we had was the possibility that the Faster
RCNN model would not work properly. Our risk mitigation
plan was to pivot to the YOLO deep learning model if at any
point we decide that Faster RCNN no longer suits our project.
We extensively researched both of these models and we
believed that Faster RCNN was best suited for the project at
hand. However, if anything went ary were were prepared to
pivot to YOLO as it is a model that we can always work with
instead of Faster RCNN.

We also anticipated that training the model would take a
good amount of time and therefore started early in obtaining
access to Amazon Web Services instances and credits. We
significantly limited the classes within the COCO dataset we
trained our model on since we are classifying humans instead
of general objects to greatly reduce training time.

Finally, we were able to shift different tasks around when
certain things were not completed in time. This was especially
true when we both experienced a shipping delay and when we
found out that the iRobot movement library was not very
accurate. During these times we were able to shift the user
interface development up to ensure that time was not wasted.
This shift inadvertently proved to be another risk management
move as it allowed us to approach integration much earlier.

8
18-500 Final Project Report: 05/08/2019

Finally, we dedicated multiple weeks to end to end testing
and integration. This time was necessary because combining
the various components of our project was surprisingly
difficult as we had communication errors between the user
interface and the rest of the programs. We were able to
overcome this due to the shift in the schedule mentioned
above as once we were able to integrate movement with the
user interface early.

I. Related Work

The use of drones or robots for search and rescue is not a
foreign one. Theoretically any drone with a camera could be
sent out to a disaster area to survey for victims. One thing that
makes our robot slightly more unique than the typical drone
with a camera is that it uses a coordinate system to allow users
to determine where to go and then autonomously travels to
that location while avoiding obstacles. Another unique feature
of our system is how it sends images that the robot takes to the
cloud for people detection. Similar robots in this area would
be the MIT drone that is capable of navigating a hiking trail
and avoiding trees [2] and the work done on creating a swarm
of flying drones that are equipped with cameras and thermal
sensors to help first responders perform search and rescue [3].

II. Summary

Overall, the SOS_bot was able to successfully complete
most of the design specifications. In terms of the ground
movement we were able to traverse the grid and arrive at the
point of interest with accuracy of 0.5 ft from the specified
point. The most optimal path is always calculated by
preprocessing the data to find the shortest distance. There is
100% avoidance of obstacles and a distance of 0.5 ft is always
maintained throughout the avoidance process. For the human
detection portion, we were able to achieve a map score of
53%, which is lower than the original specification of 55%.
While this metric was not completely met, we were able to
observe high accuracy during the testing and demo phases.
We were also able meet and go beyond the specification for
the inference time per image on the cloud GPU, lowering from
1 second to 0.8 seconds.

While all the requirements were met, there is always room
for growth. If given more time, there are few changes that
could be made to the system. Right now, when the bot is taken
out of a enclosed space, the ultrasonic sensors are affected by
the noise in the environment and detect “obstacles” even when
this might not be the case. For better performance, the
ultrasonic sensors could be replaced with higher quality
sensors or even a Lidar sensor. Additionally, if there was more
time, we would be able to widen our scope, allowing for
obstacles of larger size. This would require that when an
obstacle is detected the bot would retry after a set distance. If
the obstacle was of larger size it would have to keep retrying,
until the obstacle was cleared. Another way to approach this

problem would be to use computer vision to detect the
obstacles and estimate how large they are and set the
appropriate avoidance procedures. Finally, we could also
include a better PID controller or use computer vision to
achieve better accuracy of reaching the points of interest.

For a better user experience, it would also be of interest to
indicate where on the grid an obstacle was detected and send
that image to the user interface as the robot is traversing the
grid. It would also be better if the images showed which way
the robot was pointing when it took that picture so that first
responders could have a better picture of the disaster area.
Finally, a system to track where the robot is and give live
camera view from the ribot would greatly improve the
usability of the robot as first responders would know exactly
where the robot is and what it is seeing.

A. Lessons Learned

 To future students, we would recommend using a different
base for movement. The iRobot Create was overall a very
difficult piece of technology to work with. As the robot was
run over time, it would respond to commands with less
accuracy. This made testing over a prolonged period of time
difficult since performance in later hours could not be trusted.
Additionally, the library associated with the Create was not a
reliable source, and the majority of the functions had to be
re-written. We would also recommend students research into
better localization methods so that the bot’s location can
always be tracked in relation to the grid. This will enable an
easier process with obstacle avoidance and accuracy.

REFERENCES
[1] Medium.,

HTTPS://MEDIUM.COM/@JONATHAN_HUI/OBJECT-DETECTION-SPEED

-AND-ACCURACY-COMPARISON-FASTER-R-CNN-R-FCN-SSD-AND-YO

LO-5425656AE359.
[2] https://www.theverge.com/2016/2/11/10965414/autonom

ous-drones-deep-learning-navigation-mapping
[3] https://gcn.com/articles/2019/04/12/ai-drone-search-rescu

e.aspx
[4] https://github.com/jwyang/faster-rcnn.pytorch
[5] https://medium.com/@hichamtout/enabling-bias-in-machi

ne-learning-22cec5d3b820

https://gcn.com/articles/2019/04/12/ai-drone-search-rescue.aspx
https://gcn.com/articles/2019/04/12/ai-drone-search-rescue.aspx
https://github.com/jwyang/faster-rcnn.pytorch
https://medium.com/@hichamtout/enabling-bias-in-machine-learning-22cec5d3b820
https://medium.com/@hichamtout/enabling-bias-in-machine-learning-22cec5d3b820

