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Abstract—This paper presents a hardware implementation of facial 

detection, as part of a facial recognition system. We want to explore 

the advantages of running detection on an FPGA rather than running it 

purely in software. Our proposed solution is to use Vivado HLS to 

synthesize C code onto a Xilinx Kintex-7 FPGA. 

 
Index Terms—Facial Detection, Facial Recognition, FPGA 

 

I. INTRODUCTION 

Facial recognition has become very popular in the field of 

computer vision and machine learning because of its wide range 

of applications. It can be used to check attendance in classrooms 

or in the workplace, and can improve security measures in 

critical areas. Facial recognition can be divided into two steps: 

detection and identification. Two of the most common methods 

for performing the detection step are the Viola-Jones algorithm 

and neural networks. We have chosen Viola-Jones algorithm in 

the facial detection step because of its simplicity and 

parallelism, which offer significant speedup potential on FPGA. 

One common method for performing the identification step is 

the Eigenface algorithm, which uses statistical methods to 

approximate face features. Our goals in this project are: (1) 

reach a detection accuracy of 80% for frontal faces, (2) reach 

an identification accuracy of 80% for frontal faces, and (3) 

reach a 5x speedup in our FPGA facial detection system over a 

system completely implemented in software. We acknowledge 

that I/O may be a bottleneck in our system, so we will measure 

speedup without I/O. 
This report has the following structure: Section II covers 

what requirements our design has to meet. Section III describes 

our system architecture. Section IV elaborates on trade-offs that 

we considered before arriving at our final design. Section V 

elaborates on the subsystems that make up the system 

architecture described in Section III. Section VI covers results 

from our project. Section VII covers project management. 

Section VIII lists related work. 

II. DESIGN REQUIREMENTS 

Our project needs to meet the following requirements in both 

accuracy and speedup. 

 

A. 80% Accuracy on Frontal Face Detection 

 

When taking frontal view pictures of people’s faces, our 

system should be able to detect the face if there is one, or reject 

the image if there isn’t any, at least 80% of the time. We will 

determine this visually. 

 
B. 80% Accuracy on Frontal Face Identification 

 

During testing, we will get people to take frontal view 

pictures in front of the camera and add their faces to a database 

of faces. Assuming a person’s face is already in the database, 

our system should be able to recognize the face and display the 

correct name at least 80% of the time. 
 
C. 5x Speedup in Hardware 

 

We will measure the total time to recognize one face using 

our system in both software and hardware. In software, we will 

use the linux time command or the timing functions in standard 

C. In hardware, we will measure the number of clock cycles at 

our operating frequency. Our timing only measures the actual 

time of the algorithm. Our goal is to achieve at least 5x speedup 

on FPGA. We acknowledge that the I/O transfer to our FPGA 

is a bottleneck of our system, so we will measure the speedup 

without I/O. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identity Checker on FPGA 

Author: Junye Chen, Sheng-Hao Huang, Andy Shen, Electrical and Computer Engineering, Carnegie 

Mellon University 



18-500 Final Project Report: 05/08/2019 

 

2 

Figure 1: Block Diagram 

III. ARCHITECTURE 

Our system is mainly divided into three components: a 

laptop  (software), a FPGA (hardware), and a UART channel to 

transfer data between our laptop and our FPGA. 

Implementation details are discussed in Section V. 

 

A. Laptop 

 

The laptop captures camera input and downscales and 

grayscales the raw image. In the software flow, the downscaled 

and grayscaled image is passed into the software 

implementation of the Viola-Jones cascading classifier. The 

output of this classifier is a face rectangle. In the hardware flow, 

the downscaled and grayscaled image is sent via UART to the 

FPGA, to the hardware implementation of the Viola-Jones 

cascading classifier. Similar to the software implementation, 

this hardware implementation also outputs a face rectangle, 

which is sent to the laptop via UART. The two flows converge 

at the face cropper which takes the face rectangle in both flows 

and crops the face out of the image. The cropped face is then 

downscaled and sent to the facial identification module running 

the Eigenface algorithm. This module outputs the index of the 

face in the face database that is most similar to the face inputted 

to it. The index is used to grab the corresponding name in the 

face database. 
 

 

 

 

  

 

B. FPGA 

 

The FPGA receives the downscaled and grayscaled camera 

image from the laptop via UART. It contains a hardware 

implementation of the Viola-Jones cascading classifier, using 

BRAM to store the classifier weights. 
 

C. UART 

 

The UART channel transfers bits at a specified baud rate, 

921600 bits/second in this case. 
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IV. DESIGN TRADE STUDIES 

A. Choosing an FPGA 

 

We mainly considered the Nexys Video Artix-7 FPGA 

Board before we had access to the course inventory. This was 

the board with the most logic cells and Configurable Logic 

Blocks that we could find within our budget. Once we were 

given access to the course inventory, we realized that this 

board couldn’t compare to the Kintex-7 KC705 board or the 

Virtex-7 VC707 board in the inventory, as these two boards 

had specs that reflected costs of 3x-6x our budget of $600. We 

put in a request for either board and ended up getting the 

KC705 board, so we ended up using that for this project. 
 

B. Method of Data Transfer 

 

We briefly considered PCIe for transferring data quickly 

between our laptop and our FPGA. However, getting PCIe to 

adapt to the ports on a laptop is really tough, and in the 

adaptation process the PCIe transfer speed get bottlenecked to 

the speed of the port it’s trying to adapt to. Thus, we decided 

to go with UART for transferring data, as it is simple to 

understand and since we can dial up the baud rate easily. 
 

C. Algorithm for Facial Detection 

 

We considered two algorithms for facial detection, the Viola-

Jones algorithm we mentioned in the previous section, and a 

convolutional neural network. We summarize the tradeoffs 

between the two approaches in the following table. 
 

Criteria Viola-Jones Neural Network 

Familiarity Good, a lot of 

documentation in 

OpenCV and 

related work on 

FPGA. 

Not ideal because it 

is hard to find 

existing neural 

networks for facial 

detection on FPGA. 

Computation 

Intensity 
Not ideal, because 

of simple operations 

at each stage, but 

can pipeline stages. 

Ideal on FPGA, 

heavy computations. 

More likely to see 

the speedup. 

Training No training, 

because we can use 

pre-trained weights. 

Long training, need 

to train it ourselves 

or use weights from 

a pre-trained 

network. 

Difficulty Conceptually easy 

to understand, but 

hard to optimize  

Complicated 

network, but each 

layer does similar 

things. 

Table 1: Tradeoff between Viola-Jones and Neural Network 

After considering the criteria in Table 1 and the timeline of 

our project, we decided to use Viola-Jones because it has good 

documentation to refer to, and because we don’t have to worry 

about training.  
 

D. Software Storage Method for Face Database 

 

We considered two methods of storing the face database on 

our laptop: storing it locally and storing on a cloud storage, 

such as Amazon S3. For storing in the cloud, we would need 

to use additional protocols to access the images and vectors in 

our database. Additional latency would be introduced if we 

were to try and store our data in the cloud. The benefit would 

be that we would essentially have no limit in terms of how 

much storage we have to work with. However, once we 

computed how much storage we actually needed, we don’t 

think there is any issue with storing the face database locally. 

Thus, we decided to store face database locally on our laptop. 
 

E. Using Vivado HLS or Handwritten HDL 

 

To implement facial detection in HDL, we considered using 

two options: Vivado High-Level Synthesis (HLS) and writing 

an implementation from scratch in Verilog. HLS easily 

converts C code to Verilog HDL and VHDL, but produces the 

HDL jumbled such that it’s too hard to track all the signals 

and logic in the design. The only way to optimize the output 

HDL is to modify the HLS parameters, making the 

optimization very uncustomizable. Writing an 

HDL implementation from scratch in Verilog would provide 

much more customizable optimization. Thus, we chose to go 

with the handwritten HDL implementation. However, our 

implementation was too big to fit on the FPGA, even after we 

implemented multiple optimization approaches. Below are a 

few challenges we encountered when trying to handwrite our 

own HDL implementation: 
1. Big Image Size 

Our input image size is 160 pixels by 120 pixels. If we 

used registers to store our image, our flip-flop and look-

up table counts exceed number available on our FPGA. 

If we stored the image in block RAM, we would have 

had to design a finite state machine to load the image 

from block RAM one pixel at a time. This would entail 

complicated waiting/handshaking logic between every 

module needing the image. 
2. Trade Off between Parallelism and Utilization 

Since we need to evaluate many feature classifiers on the 

image, we could either perform all of them at the same 

time, or divide them into stages. Performing all the 

classifiers at the same time would need more logic cells 

than available on the FPGA, but dividing the feature 

classifiers into stages would require us to store results 

from previous stages. This would in turn require a lot of 

registers, exceeding our flip-flop and look-up table 

limits.  
3. Long Synthesis Time 

Vivado takes a long time to synthesize our design 

because our design is relatively big. Every time we finish 
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an optimization, it takes hours for synthesis to finish, 

further preventing us from quickly figuring out if the 

optimization is functionally or if it meets our 

expectations for a minimum viable product. 
 

With all these challenges in mind, we decided to switch to 

using Vivado HLS to convert C code into Verilog. 
 

F. Real Time Face Detection 

We considered doing real-time facial detection at 15 fps, 

which was slower than the rate the software facial detection 

implementation was able to run at. However, since we have 

the I/O bottleneck from transferring data through UART, a 

setup running real-time facial detection through the FPGA 

wouldn’t be able to run at 15 fps. If there was a camera and a 

HDMI monitor attached to the FPGA, this might have been 

possible, since the I/O would be much faster in this setup. 

Thus, we did not do real time face detection. 

 

V. SYSTEM DESCRIPTION 

We break down this section into three parts: laptop, FPGA, 

and UART channel. 

 

A. Laptop 

 

The laptop captures camera input, then downscales and 

grayscales the image. It can perform the complete software 

pipelines for both facial detection and identification. 
 

1) Downscale Module 
The app downloads the camera-captured image as a 160 

pixels by 120 pixels image, which is the input accepted by 

our facial detection module. 
 

2) Grayscale Module 
Since our detection and recognition algorithms work best 

on grayscale images, we grayscale the image taken on the 

laptop during preprocessing. This also minimizes I/O transfer 

delay, since we also need to transfer the image to the FPGA 

for facial detection. The laptop camera image is in RGBA 

scale, which takes 4 bytes per pixel. The grayscale image 

takes only 1 byte per pixel, reducing the amount of data to 

transfer by 75%. 
 

3) Facial Detection Module 
The facial detection module uses the Viola-Jones algorithm 

to detect the position of the face within the input image. It 

uses pre-trained weights from OpenCV and our own 

classifier implementation. We perform the following steps to 

detect any faces in the image: 

1. Build an image pyramid for the input image. Each 

pyramid is the input image at a different scale, with 

each progressive pyramid level representing the image 

downscaled one more time. This makes our algorithm 

more robust against faces of variable sizes. In our 

solution, we use a downscaling factor of 1.2. 

2. Compute the integral image for each image pyramid. 

Each pixel in the integral image is the sum of all pixels 

to its left and above. Integral image is useful later 

because we need to quickly compute the sum of pixels 

in an arbitrary area. In the image below, assume we 

want to compute the sum of pixels in area D. If we 

have the integral image, we can compute the area as 

II(4) + II(1) - II(2) - II(3), which are all constant-time 

operations. 

 

 
Figure 2: Integral Image Explained 

 

3. A 24-by-24 scanning window is moved across each 

level of the image pyramid in order, eventually 

scanning all the levels. Each scanning window is 

considered a face candidate and is passed through a 

pipeline to determine if it is a face. 
4. Each stage of the pipeline contains a number of feature 

classifiers that each generate a feature score based on 

the face candidate. In each stage, the sum of all feature 

scores needs to exceed a threshold for the face 

candidate to pass the stage. A face candidate is only 

considered a face if it passes all the pipeline stages. 

Some example feature classifiers are shown below. 

We take the difference between the sum of pixels in 

the black area and the sum of pixels in the white area. 

Notice that the sum of pixels can be computed using 

integral image. The feature in the middle image tries 

to detect the contrast between the eye area and cheek 

area. The feature in the rightmost image tries to detect 

the contrast between the eye area and the nose area. 

We can see both of them try to capture the 

characteristics on a typical human face.  

 

 
Figure 3: Example Feature Classifiers 

 

5. When multiple faces are detected, the face with the 

highest total feature scores is chosen. Its coordinates 

are outputted from the facial detection module. 
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Figure 4: Facial Detection Process 

 
4) Face Cropper and Downscaling Modules 

Once the detection module outputs the face rectangle, the 

face cropper module crops the face out of the image, and the 

downscaling module downscales the cropped face into a 20 

pixel by 20 pixel image. These dimensions are the input size 

to our identification module. 
 

5) Facial Identification Module 
We use the eigenface algorithm for our facial identification 

module. The algorithm is divided into a training phase and a 

testing phase. 
 

Training: 
We use the Yale faces database for training. There are 15 

subjects and 166 images in the database. The following steps 

are performed for training: 
1. Preparation. Crop all the faces out with our detection 

module and downscale all faces into 20 pixel by 20 

pixel images. This process gives us 163 images, 

because there are no faces detected in 3 of the images. 

We use 8 images for each subject for training, so there 

are a total of 120 training images, each of which is 20 

pixels by 20 pixels. If we put one face in a column, we 

have a matrix of size 400-by-N (height: 400, width: 

N), where N is the number of training subjects 

multiplied by 8. 

2. Normalization. Compute the average face in the 

database, and subtract each face from the average face. 

3. Compute Eigenvectors. Compute the eigenvectors 

and eigenvalues of the covariance of the training 

matrix. The eigenvectors represent how much each 

face differs from the average face, so they represent 

the variance of the face database. The covariance of 

the training matrix is a 400-by-400 matrix. After 

taking the eigenvectors and eigenvalues, we only use 

the first 36 eigenvalues because they represent more 

than 95% of the total eigenvalues. The resulting 

eigenvector matrix has size 36-by-400 (height: 36, 

width: 400). 

4. Projection. Project each face in the training database 

onto the eigenvectors. This is done by directly 

multiplying the eigenvector matrix (36-by-400) by the 

training face matrix (400-by-N), which gives a 36-by-

N matrix. This matrix is called the weight matrix. 

Notice that the dimension of each training face is 

essentially reduced from 400 to 36.  

 
Figure 5: Yale Faces Database (15 subjects, 166 images) 

 
Testing: 
When doing identification, given an input 20-by-20 image, 

the following steps are performed: 
1. Normalization. The input face is subtracted from the 

average face to achieve normalization as was done in 

training. The result is an image vector with length 

400. 

2. Projection. Project the result image onto the 

eigenvectors, so multiply the eigenvector matrix (36-

by-400) by the input image vector (400-by-1), giving 

a resulting vector of length 36. This vector describes 

how the input image differs from the average face. 

3. Find Face. Recall that the weight matrix has size 36-

by-N. We compute the euclidean distance between 

the projection vector in the previous step and every 

column in the weight matrix. The column with the 

smallest distance corresponds to the face that has the 

closest match.  

 
B. FPGA 

 

The FPGA we are using is the Kintex-7 XC7K325T FPGA, 

on the Xilinx KC705 Development Board. It is responsible for 

performing facial detection because we want to visualize the 

speedup achieved by implementing our facial detection 

algorithm on an FPGA. We use the Vivado High-Level 

Synthesis (HLS) tool to synthesize our C code for detection into 

a Verilog module. We integrate that module with our 

SystemVerilog UART implementation, along with some 

overhead logic for queueing up face rectangles and some 

miscellaneous logic. We compile the final design along with a 

chip configuration file into a bitstream, which is programmed 

via JTAG onto the FPGA. We also generate a memory 

configuration file using the bitstream and program that file into 

the BPI Flash on the development board. Because of this, the 

design can be directly programmed from BPI Flash via the 

program button on the development board. 
We perform the following steps in Vivado HLS to speed up 

our hardware facial detection implementation: 
1. Faster Clock. We use the fastest clock possible, while 

still making sure all the operations can finish within a 

clock cycle. In other words, the critical path has to be 

less than the clock period. 

2. Loop Pipeline. We use the loop pipelining optimization 

clause in HLS, which allows loop iterations to start as 

early as possible. 

3. Loop Unroll. We use the loop unrolling optimization 

clause in HLS to tell FPGA the exact operations to 

perform. This allows Vivado to better optimize the 

code. 
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C. UART 

 

The UART channel is responsible for transferring the 

downscaled and grayscaled input from the laptop camera to the 

FPGA. Once the FPGA finds the face rectangle, the UART 

channel transfers the coordinates of the face rectangle back to 

the laptop. The transfer of the input from the laptop camera 

takes the longest. We use a baud rate of 921600 bits per second. 

The 160 pixel by 120 pixel input image, with each pixel 

encoded in a byte and each byte requiring one start bit and one 

stop bit to transfer (192000 bytes total), takes around 0.208 

seconds to transfer. 

VI. RESULTS 

We evaluate our project using two metrics: accuracy and 

speedup. 

 

A. Accuracy 

 

We evaluate the accuracy of facial detection and facial 

identification separately. 
 
Facial Detection: 
 Goal: 80% 

 Standard: Detect the bounding box around the face if 

there is a face in the image, or reject the image if there is 

no face. 

 Result: 98%, exceeding our expectations 

 We use 166 images from the Yale faces database as test 

images. We are able to correctly detect the faces in 163 

out of 166 images. That gives us an accuracy of 

163/166=98%. This number is rather subjective, because 

the images in the database have good contrast between 

the face and the background. 

 

 
Figure 6: Successful Facial Detection Demo  

 
Facial Identification: 
 Goal: 80% 

 Standard: Assuming the person in the input image is in 

the database, correctly identify the person. 

 Result: 86%, exceeding our expectations 

 We use the 163 correctly detected faces from the facial 

detection module. Since we use 120 images for training, 

we have 43 images left for testing. Among the 43 images, 

we correctly identify 37 of them. That gives us an 

accuracy of 37/43=86%. 

 

 
Figure 7: Successful Facial Identification Demo 

 

B. Speedup 

 

We measure the facial detection implementation in C with the 

time command in Linux. We measure the FPGA 

implementation in number of clock cycles, and we multiply that 

number by the clock period. 

 
 Goal: 5x speedup 

 Result: 1.6x speedup, below our expectations 

 Our baseline version on FPGA without any optimization 

takes 0.17s. The table below shows the improvement of 

each optimization technique. 

 

Optimization Step Improvement 

Faster Clock: 
50MHz => 200MHz 

0.17s => 0.0826s 

Loop Pipeline 0.0826s => 0.037s 

Loop Unroll 0.037s => 0.031s 

Table 2: Speedup Process 
 

 
Figure 8: FPGA Utilization Graph 

 
Our speedup result is less than ideal. The CPU facial detection 

is already very fast, so the room for optimization is very little. 

Some optimization techniques such as loop unrolling give us 

less ideal results than expected. We think loop unrolling should 

be a very effective technique, because it tells the FPGA the 

exact operations to perform. However, in our project, we were 

unable to unroll some big for loops either because the loop limit 

couldn’t be determined at compile runtime, or because the loop 

limit was too large.  
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VII. PROJECT MANAGEMENT 

A. Schedule 

 

Below is a rough description of the tasks we work on by 

week. We have attached the full gantt chart at the end of this 

document. 
 

Week of Task(s) 

3/3 1. facial detection in C, 
2. setup UART example project 

3/7 1. facial detection testing, 
2. design our own implementation of facial 

detection in Verilog 

3/24 1. integrate software facial detection with app, 
2. implement UART channel between software 

and FPGA, 
3. implement facial detection in Verilog 

3/31 1. optimize facial detection in Verilog 

4/7 1. facial identification in Python, 
2. shift to HLS for a baseline version on FPGA 

4/14 1.facial identification improvement/testing, 
2. integrate facial identification with app, 
3. finish HLS implementation and connect with 

our UART channel 

4/21 1. HLS optimizations 

4/28 1. Integration test 

Table 3: Tasks by Week 
 

B. Team Member Responsibilities 

 

Junye - Implement Viola-Jones cascading classifier in C, 

implement eigenface algorithm in Python, generate HLS output 

and optimizations 
Sheng-Hao - Re-acquaint with Vivado and show Hans how 

to use it, work with Hans to convert algorithms to RTL and 

optimize them. 
Andy - Design app interface, preprocess image (grayscale, 

downscale) 
 

C. Budget 

 

We have included a spreadsheet of our budget at the end of 

this report. 
 

D. Risk Management 

 

I/O - We identify that I/O is a major bottleneck for the 

speedup of our system. Assume our input is a 160 by 120 image. 

If we set baud rate to 921600 bits/second and use 1 start bit and 

1 stop bit, it takes about 160x120x10 / 921600 = 0.208s to 

transfer the data from software and FPGA. The FPGA we have 

right now can support as much as 921600 bits/second. We will 

also make sure that we account for the speedup without I/O.  
 

VIII. RELATED WORK 

This project is mainly inspired by a series of past research 

projects that eventually convened in implementing facial 

recognition fully on an FPGA. They reuse their HDL facial 

detection implementation, which uses the same algorithm as 

our facial detection implementation does. The series of 

research projects are listed below: 
 
[1]  J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “Fpga-based face detection 

system using haar classifiers,” in International Symposium on Field 
Programmable Gate Arrays, February 2009. 

[2]  J. Cho, B. Benson, and R. Kastner, “Hardware acceleration of multi-

view face detection,” in IEEE Symposium on Application Specific 
Processors, July 2009. 

[3]  J. Matai, A. Irturk, R. Kastner, “Design and Implementation of an 

FPGA-based Real-Time Face Recognition System,” in IEEE 
 

IX. SUMMARY 

A. Design Specifications 

 

Our system was able to meet the accuracy requirements that 

we set for ourselves. Owing to time constraints, we were not 

able to meet the 5x speedup requirement for detection that we 

set. However, we are still content that we were able to get some 

speedup, especially with an FPGA running at only 200 MHz 

when our laptop was running at upwards of 2.8 GHz. 

 

B. Future Work 

 

In facial detection, we can try attaching a camera and a 

HDMI monitor to the FPGA to perform real-time facial 

detection, providing a feasible setup to try and achieve real-

time speedup in. 
In facial identification, we can try to detect if a face is not in 

the database by checking if the closest match meets a 

threshold.  
In hardware, we can try inputting images with bigger sizes 

and more faces. We believe we will observe more speedup if 

we make the computation more intense. 
In hardware, we can also implement facial recognition, and 

achieve speedup there. 
 

C. Lessons Learned 

 

1. Always have contingency plans. 

If we didn’t have the contingency plan of switching to 

Vivado HLS, we would not have a demo-able project.  
2. Identify dependencies between tasks, and follow your 

schedule closely. 

The schedule was the only way for us to tell if we were 

doing things on time. We had to follow it religiously, or 

risk running out of time to finish at the end. 
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3. Responsible delegation of work to team members is very 

important. 

While we had team members each doing their own 

separate parts of the project to begin with, we quickly 

realized we had underestimated the amount of work 

required for the FPGA portion. Our software/algorithms 

specialist had to step in to help our hardware specialist 

with the FPGA portion, since our app designer didn’t 

know how to do hardware. Instead of only caring about 

separation of responsibilities, we should have considered 

the delegation of equal work to each member. In our 

case, we could have given the work for the app and the 

software/algorithms portions to one person, then had the 

remaining two completely focused on hardware. 
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https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://link.springer.com/content/pdf/bbm%3A978-81-322-2791-5%2F1.pdf
https://link.springer.com/content/pdf/bbm%3A978-81-322-2791-5%2F1.pdf
https://reference.digilentinc.com/learn/software/tutorials/vivado-xdc-file
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
https://en.wikipedia.org/wiki/Eigenface
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Part Cost 

Laptop (from us) $1000 ($0) 

KC705 Board Kit (from course inventory) $1685 ($0) 

Vivado License (from CMU) - BRAM modules $3595 ($0) 

Pre-trained Viola-Jones weights $0 

Total $0 

 

 
 

 

 
 

 

 
 

 

 
 


