
18-500 Final Project Report: 05/08/2019

1

Abstract—This paper presents a hardware implementation of facial

detection, as part of a facial recognition system. We want to explore

the advantages of running detection on an FPGA rather than running it

purely in software. Our proposed solution is to use Vivado HLS to

synthesize C code onto a Xilinx Kintex-7 FPGA.

Index Terms—Facial Detection, Facial Recognition, FPGA

I. INTRODUCTION

Facial recognition has become very popular in the field of

computer vision and machine learning because of its wide range

of applications. It can be used to check attendance in classrooms

or in the workplace, and can improve security measures in

critical areas. Facial recognition can be divided into two steps:

detection and identification. Two of the most common methods

for performing the detection step are the Viola-Jones algorithm

and neural networks. We have chosen Viola-Jones algorithm in

the facial detection step because of its simplicity and

parallelism, which offer significant speedup potential on FPGA.

One common method for performing the identification step is

the Eigenface algorithm, which uses statistical methods to

approximate face features. Our goals in this project are: (1)

reach a detection accuracy of 80% for frontal faces, (2) reach

an identification accuracy of 80% for frontal faces, and (3)

reach a 5x speedup in our FPGA facial detection system over a

system completely implemented in software. We acknowledge

that I/O may be a bottleneck in our system, so we will measure

speedup without I/O.
This report has the following structure: Section II covers

what requirements our design has to meet. Section III describes

our system architecture. Section IV elaborates on trade-offs that

we considered before arriving at our final design. Section V

elaborates on the subsystems that make up the system

architecture described in Section III. Section VI covers results

from our project. Section VII covers project management.

Section VIII lists related work.

II. DESIGN REQUIREMENTS

Our project needs to meet the following requirements in both

accuracy and speedup.

A. 80% Accuracy on Frontal Face Detection

When taking frontal view pictures of people’s faces, our

system should be able to detect the face if there is one, or reject

the image if there isn’t any, at least 80% of the time. We will

determine this visually.

B. 80% Accuracy on Frontal Face Identification

During testing, we will get people to take frontal view

pictures in front of the camera and add their faces to a database

of faces. Assuming a person’s face is already in the database,

our system should be able to recognize the face and display the

correct name at least 80% of the time.

C. 5x Speedup in Hardware

We will measure the total time to recognize one face using

our system in both software and hardware. In software, we will

use the linux time command or the timing functions in standard

C. In hardware, we will measure the number of clock cycles at

our operating frequency. Our timing only measures the actual

time of the algorithm. Our goal is to achieve at least 5x speedup

on FPGA. We acknowledge that the I/O transfer to our FPGA

is a bottleneck of our system, so we will measure the speedup

without I/O.

Identity Checker on FPGA

Author: Junye Chen, Sheng-Hao Huang, Andy Shen, Electrical and Computer Engineering, Carnegie

Mellon University

18-500 Final Project Report: 05/08/2019

2

Figure 1: Block Diagram

III. ARCHITECTURE

Our system is mainly divided into three components: a

laptop (software), a FPGA (hardware), and a UART channel to

transfer data between our laptop and our FPGA.

Implementation details are discussed in Section V.

A. Laptop

The laptop captures camera input and downscales and

grayscales the raw image. In the software flow, the downscaled

and grayscaled image is passed into the software

implementation of the Viola-Jones cascading classifier. The

output of this classifier is a face rectangle. In the hardware flow,

the downscaled and grayscaled image is sent via UART to the

FPGA, to the hardware implementation of the Viola-Jones

cascading classifier. Similar to the software implementation,

this hardware implementation also outputs a face rectangle,

which is sent to the laptop via UART. The two flows converge

at the face cropper which takes the face rectangle in both flows

and crops the face out of the image. The cropped face is then

downscaled and sent to the facial identification module running

the Eigenface algorithm. This module outputs the index of the

face in the face database that is most similar to the face inputted

to it. The index is used to grab the corresponding name in the

face database.

B. FPGA

The FPGA receives the downscaled and grayscaled camera

image from the laptop via UART. It contains a hardware

implementation of the Viola-Jones cascading classifier, using

BRAM to store the classifier weights.

C. UART

The UART channel transfers bits at a specified baud rate,

921600 bits/second in this case.

18-500 Final Project Report: 05/08/2019

3

IV. DESIGN TRADE STUDIES

A. Choosing an FPGA

We mainly considered the Nexys Video Artix-7 FPGA

Board before we had access to the course inventory. This was

the board with the most logic cells and Configurable Logic

Blocks that we could find within our budget. Once we were

given access to the course inventory, we realized that this

board couldn’t compare to the Kintex-7 KC705 board or the

Virtex-7 VC707 board in the inventory, as these two boards

had specs that reflected costs of 3x-6x our budget of $600. We

put in a request for either board and ended up getting the

KC705 board, so we ended up using that for this project.

B. Method of Data Transfer

We briefly considered PCIe for transferring data quickly

between our laptop and our FPGA. However, getting PCIe to

adapt to the ports on a laptop is really tough, and in the

adaptation process the PCIe transfer speed get bottlenecked to

the speed of the port it’s trying to adapt to. Thus, we decided

to go with UART for transferring data, as it is simple to

understand and since we can dial up the baud rate easily.

C. Algorithm for Facial Detection

We considered two algorithms for facial detection, the Viola-

Jones algorithm we mentioned in the previous section, and a

convolutional neural network. We summarize the tradeoffs

between the two approaches in the following table.

Criteria Viola-Jones Neural Network

Familiarity Good, a lot of

documentation in

OpenCV and

related work on

FPGA.

Not ideal because it

is hard to find

existing neural

networks for facial

detection on FPGA.

Computation

Intensity
Not ideal, because

of simple operations

at each stage, but

can pipeline stages.

Ideal on FPGA,

heavy computations.

More likely to see

the speedup.

Training No training,

because we can use

pre-trained weights.

Long training, need

to train it ourselves

or use weights from

a pre-trained

network.

Difficulty Conceptually easy

to understand, but

hard to optimize

Complicated

network, but each

layer does similar

things.

Table 1: Tradeoff between Viola-Jones and Neural Network

After considering the criteria in Table 1 and the timeline of

our project, we decided to use Viola-Jones because it has good

documentation to refer to, and because we don’t have to worry

about training.

D. Software Storage Method for Face Database

We considered two methods of storing the face database on

our laptop: storing it locally and storing on a cloud storage,

such as Amazon S3. For storing in the cloud, we would need

to use additional protocols to access the images and vectors in

our database. Additional latency would be introduced if we

were to try and store our data in the cloud. The benefit would

be that we would essentially have no limit in terms of how

much storage we have to work with. However, once we

computed how much storage we actually needed, we don’t

think there is any issue with storing the face database locally.

Thus, we decided to store face database locally on our laptop.

E. Using Vivado HLS or Handwritten HDL

To implement facial detection in HDL, we considered using

two options: Vivado High-Level Synthesis (HLS) and writing

an implementation from scratch in Verilog. HLS easily

converts C code to Verilog HDL and VHDL, but produces the

HDL jumbled such that it’s too hard to track all the signals

and logic in the design. The only way to optimize the output

HDL is to modify the HLS parameters, making the

optimization very uncustomizable. Writing an

HDL implementation from scratch in Verilog would provide

much more customizable optimization. Thus, we chose to go

with the handwritten HDL implementation. However, our

implementation was too big to fit on the FPGA, even after we

implemented multiple optimization approaches. Below are a

few challenges we encountered when trying to handwrite our

own HDL implementation:
1. Big Image Size

Our input image size is 160 pixels by 120 pixels. If we

used registers to store our image, our flip-flop and look-

up table counts exceed number available on our FPGA.

If we stored the image in block RAM, we would have

had to design a finite state machine to load the image

from block RAM one pixel at a time. This would entail

complicated waiting/handshaking logic between every

module needing the image.
2. Trade Off between Parallelism and Utilization

Since we need to evaluate many feature classifiers on the

image, we could either perform all of them at the same

time, or divide them into stages. Performing all the

classifiers at the same time would need more logic cells

than available on the FPGA, but dividing the feature

classifiers into stages would require us to store results

from previous stages. This would in turn require a lot of

registers, exceeding our flip-flop and look-up table

limits.
3. Long Synthesis Time

Vivado takes a long time to synthesize our design

because our design is relatively big. Every time we finish

18-500 Final Project Report: 05/08/2019

4

an optimization, it takes hours for synthesis to finish,

further preventing us from quickly figuring out if the

optimization is functionally or if it meets our

expectations for a minimum viable product.

With all these challenges in mind, we decided to switch to

using Vivado HLS to convert C code into Verilog.

F. Real Time Face Detection

We considered doing real-time facial detection at 15 fps,

which was slower than the rate the software facial detection

implementation was able to run at. However, since we have

the I/O bottleneck from transferring data through UART, a

setup running real-time facial detection through the FPGA

wouldn’t be able to run at 15 fps. If there was a camera and a

HDMI monitor attached to the FPGA, this might have been

possible, since the I/O would be much faster in this setup.

Thus, we did not do real time face detection.

V. SYSTEM DESCRIPTION

We break down this section into three parts: laptop, FPGA,

and UART channel.

A. Laptop

The laptop captures camera input, then downscales and

grayscales the image. It can perform the complete software

pipelines for both facial detection and identification.

1) Downscale Module
The app downloads the camera-captured image as a 160

pixels by 120 pixels image, which is the input accepted by

our facial detection module.

2) Grayscale Module
Since our detection and recognition algorithms work best

on grayscale images, we grayscale the image taken on the

laptop during preprocessing. This also minimizes I/O transfer

delay, since we also need to transfer the image to the FPGA

for facial detection. The laptop camera image is in RGBA

scale, which takes 4 bytes per pixel. The grayscale image

takes only 1 byte per pixel, reducing the amount of data to

transfer by 75%.

3) Facial Detection Module
The facial detection module uses the Viola-Jones algorithm

to detect the position of the face within the input image. It

uses pre-trained weights from OpenCV and our own

classifier implementation. We perform the following steps to

detect any faces in the image:

1. Build an image pyramid for the input image. Each

pyramid is the input image at a different scale, with

each progressive pyramid level representing the image

downscaled one more time. This makes our algorithm

more robust against faces of variable sizes. In our

solution, we use a downscaling factor of 1.2.

2. Compute the integral image for each image pyramid.

Each pixel in the integral image is the sum of all pixels

to its left and above. Integral image is useful later

because we need to quickly compute the sum of pixels

in an arbitrary area. In the image below, assume we

want to compute the sum of pixels in area D. If we

have the integral image, we can compute the area as

II(4) + II(1) - II(2) - II(3), which are all constant-time

operations.

Figure 2: Integral Image Explained

3. A 24-by-24 scanning window is moved across each

level of the image pyramid in order, eventually

scanning all the levels. Each scanning window is

considered a face candidate and is passed through a

pipeline to determine if it is a face.
4. Each stage of the pipeline contains a number of feature

classifiers that each generate a feature score based on

the face candidate. In each stage, the sum of all feature

scores needs to exceed a threshold for the face

candidate to pass the stage. A face candidate is only

considered a face if it passes all the pipeline stages.

Some example feature classifiers are shown below.

We take the difference between the sum of pixels in

the black area and the sum of pixels in the white area.

Notice that the sum of pixels can be computed using

integral image. The feature in the middle image tries

to detect the contrast between the eye area and cheek

area. The feature in the rightmost image tries to detect

the contrast between the eye area and the nose area.

We can see both of them try to capture the

characteristics on a typical human face.

Figure 3: Example Feature Classifiers

5. When multiple faces are detected, the face with the

highest total feature scores is chosen. Its coordinates

are outputted from the facial detection module.

18-500 Final Project Report: 05/08/2019

5

Figure 4: Facial Detection Process

4) Face Cropper and Downscaling Modules

Once the detection module outputs the face rectangle, the

face cropper module crops the face out of the image, and the

downscaling module downscales the cropped face into a 20

pixel by 20 pixel image. These dimensions are the input size

to our identification module.

5) Facial Identification Module
We use the eigenface algorithm for our facial identification

module. The algorithm is divided into a training phase and a

testing phase.

Training:
We use the Yale faces database for training. There are 15

subjects and 166 images in the database. The following steps

are performed for training:
1. Preparation. Crop all the faces out with our detection

module and downscale all faces into 20 pixel by 20

pixel images. This process gives us 163 images,

because there are no faces detected in 3 of the images.

We use 8 images for each subject for training, so there

are a total of 120 training images, each of which is 20

pixels by 20 pixels. If we put one face in a column, we

have a matrix of size 400-by-N (height: 400, width:

N), where N is the number of training subjects

multiplied by 8.

2. Normalization. Compute the average face in the

database, and subtract each face from the average face.

3. Compute Eigenvectors. Compute the eigenvectors

and eigenvalues of the covariance of the training

matrix. The eigenvectors represent how much each

face differs from the average face, so they represent

the variance of the face database. The covariance of

the training matrix is a 400-by-400 matrix. After

taking the eigenvectors and eigenvalues, we only use

the first 36 eigenvalues because they represent more

than 95% of the total eigenvalues. The resulting

eigenvector matrix has size 36-by-400 (height: 36,

width: 400).

4. Projection. Project each face in the training database

onto the eigenvectors. This is done by directly

multiplying the eigenvector matrix (36-by-400) by the

training face matrix (400-by-N), which gives a 36-by-

N matrix. This matrix is called the weight matrix.

Notice that the dimension of each training face is

essentially reduced from 400 to 36.

Figure 5: Yale Faces Database (15 subjects, 166 images)

Testing:
When doing identification, given an input 20-by-20 image,

the following steps are performed:
1. Normalization. The input face is subtracted from the

average face to achieve normalization as was done in

training. The result is an image vector with length

400.

2. Projection. Project the result image onto the

eigenvectors, so multiply the eigenvector matrix (36-

by-400) by the input image vector (400-by-1), giving

a resulting vector of length 36. This vector describes

how the input image differs from the average face.

3. Find Face. Recall that the weight matrix has size 36-

by-N. We compute the euclidean distance between

the projection vector in the previous step and every

column in the weight matrix. The column with the

smallest distance corresponds to the face that has the

closest match.

B. FPGA

The FPGA we are using is the Kintex-7 XC7K325T FPGA,

on the Xilinx KC705 Development Board. It is responsible for

performing facial detection because we want to visualize the

speedup achieved by implementing our facial detection

algorithm on an FPGA. We use the Vivado High-Level

Synthesis (HLS) tool to synthesize our C code for detection into

a Verilog module. We integrate that module with our

SystemVerilog UART implementation, along with some

overhead logic for queueing up face rectangles and some

miscellaneous logic. We compile the final design along with a

chip configuration file into a bitstream, which is programmed

via JTAG onto the FPGA. We also generate a memory

configuration file using the bitstream and program that file into

the BPI Flash on the development board. Because of this, the

design can be directly programmed from BPI Flash via the

program button on the development board.
We perform the following steps in Vivado HLS to speed up

our hardware facial detection implementation:
1. Faster Clock. We use the fastest clock possible, while

still making sure all the operations can finish within a

clock cycle. In other words, the critical path has to be

less than the clock period.

2. Loop Pipeline. We use the loop pipelining optimization

clause in HLS, which allows loop iterations to start as

early as possible.

3. Loop Unroll. We use the loop unrolling optimization

clause in HLS to tell FPGA the exact operations to

perform. This allows Vivado to better optimize the

code.

18-500 Final Project Report: 05/08/2019

6

C. UART

The UART channel is responsible for transferring the

downscaled and grayscaled input from the laptop camera to the

FPGA. Once the FPGA finds the face rectangle, the UART

channel transfers the coordinates of the face rectangle back to

the laptop. The transfer of the input from the laptop camera

takes the longest. We use a baud rate of 921600 bits per second.

The 160 pixel by 120 pixel input image, with each pixel

encoded in a byte and each byte requiring one start bit and one

stop bit to transfer (192000 bytes total), takes around 0.208

seconds to transfer.

VI. RESULTS

We evaluate our project using two metrics: accuracy and

speedup.

A. Accuracy

We evaluate the accuracy of facial detection and facial

identification separately.

Facial Detection:
 Goal: 80%

 Standard: Detect the bounding box around the face if

there is a face in the image, or reject the image if there is

no face.

 Result: 98%, exceeding our expectations

 We use 166 images from the Yale faces database as test

images. We are able to correctly detect the faces in 163

out of 166 images. That gives us an accuracy of

163/166=98%. This number is rather subjective, because

the images in the database have good contrast between

the face and the background.

Figure 6: Successful Facial Detection Demo

Facial Identification:
 Goal: 80%

 Standard: Assuming the person in the input image is in

the database, correctly identify the person.

 Result: 86%, exceeding our expectations

 We use the 163 correctly detected faces from the facial

detection module. Since we use 120 images for training,

we have 43 images left for testing. Among the 43 images,

we correctly identify 37 of them. That gives us an

accuracy of 37/43=86%.

Figure 7: Successful Facial Identification Demo

B. Speedup

We measure the facial detection implementation in C with the

time command in Linux. We measure the FPGA

implementation in number of clock cycles, and we multiply that

number by the clock period.

 Goal: 5x speedup

 Result: 1.6x speedup, below our expectations

 Our baseline version on FPGA without any optimization

takes 0.17s. The table below shows the improvement of

each optimization technique.

Optimization Step Improvement

Faster Clock:
50MHz => 200MHz

0.17s => 0.0826s

Loop Pipeline 0.0826s => 0.037s

Loop Unroll 0.037s => 0.031s

Table 2: Speedup Process

Figure 8: FPGA Utilization Graph

Our speedup result is less than ideal. The CPU facial detection

is already very fast, so the room for optimization is very little.

Some optimization techniques such as loop unrolling give us

less ideal results than expected. We think loop unrolling should

be a very effective technique, because it tells the FPGA the

exact operations to perform. However, in our project, we were

unable to unroll some big for loops either because the loop limit

couldn’t be determined at compile runtime, or because the loop

limit was too large.

18-500 Final Project Report: 05/08/2019

7

VII. PROJECT MANAGEMENT

A. Schedule

Below is a rough description of the tasks we work on by

week. We have attached the full gantt chart at the end of this

document.

Week of Task(s)

3/3 1. facial detection in C,
2. setup UART example project

3/7 1. facial detection testing,
2. design our own implementation of facial

detection in Verilog

3/24 1. integrate software facial detection with app,
2. implement UART channel between software

and FPGA,
3. implement facial detection in Verilog

3/31 1. optimize facial detection in Verilog

4/7 1. facial identification in Python,
2. shift to HLS for a baseline version on FPGA

4/14 1.facial identification improvement/testing,
2. integrate facial identification with app,
3. finish HLS implementation and connect with

our UART channel

4/21 1. HLS optimizations

4/28 1. Integration test

Table 3: Tasks by Week

B. Team Member Responsibilities

Junye - Implement Viola-Jones cascading classifier in C,

implement eigenface algorithm in Python, generate HLS output

and optimizations
Sheng-Hao - Re-acquaint with Vivado and show Hans how

to use it, work with Hans to convert algorithms to RTL and

optimize them.
Andy - Design app interface, preprocess image (grayscale,

downscale)

C. Budget

We have included a spreadsheet of our budget at the end of

this report.

D. Risk Management

I/O - We identify that I/O is a major bottleneck for the

speedup of our system. Assume our input is a 160 by 120 image.

If we set baud rate to 921600 bits/second and use 1 start bit and

1 stop bit, it takes about 160x120x10 / 921600 = 0.208s to

transfer the data from software and FPGA. The FPGA we have

right now can support as much as 921600 bits/second. We will

also make sure that we account for the speedup without I/O.

VIII. RELATED WORK

This project is mainly inspired by a series of past research

projects that eventually convened in implementing facial

recognition fully on an FPGA. They reuse their HDL facial

detection implementation, which uses the same algorithm as

our facial detection implementation does. The series of

research projects are listed below:

[1] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “Fpga-based face detection

system using haar classifiers,” in International Symposium on Field
Programmable Gate Arrays, February 2009.

[2] J. Cho, B. Benson, and R. Kastner, “Hardware acceleration of multi-

view face detection,” in IEEE Symposium on Application Specific
Processors, July 2009.

[3] J. Matai, A. Irturk, R. Kastner, “Design and Implementation of an

FPGA-based Real-Time Face Recognition System,” in IEEE

IX. SUMMARY

A. Design Specifications

Our system was able to meet the accuracy requirements that

we set for ourselves. Owing to time constraints, we were not

able to meet the 5x speedup requirement for detection that we

set. However, we are still content that we were able to get some

speedup, especially with an FPGA running at only 200 MHz

when our laptop was running at upwards of 2.8 GHz.

B. Future Work

In facial detection, we can try attaching a camera and a

HDMI monitor to the FPGA to perform real-time facial

detection, providing a feasible setup to try and achieve real-

time speedup in.
In facial identification, we can try to detect if a face is not in

the database by checking if the closest match meets a

threshold.
In hardware, we can try inputting images with bigger sizes

and more faces. We believe we will observe more speedup if

we make the computation more intense.
In hardware, we can also implement facial recognition, and

achieve speedup there.

C. Lessons Learned

1. Always have contingency plans.

If we didn’t have the contingency plan of switching to

Vivado HLS, we would not have a demo-able project.
2. Identify dependencies between tasks, and follow your

schedule closely.

The schedule was the only way for us to tell if we were

doing things on time. We had to follow it religiously, or

risk running out of time to finish at the end.

18-500 Final Project Report: 05/08/2019

8

3. Responsible delegation of work to team members is very

important.

While we had team members each doing their own

separate parts of the project to begin with, we quickly

realized we had underestimated the amount of work

required for the FPGA portion. Our software/algorithms

specialist had to step in to help our hardware specialist

with the FPGA portion, since our app designer didn’t

know how to do hardware. Instead of only caring about

separation of responsibilities, we should have considered

the delegation of equal work to each member. In our

case, we could have given the work for the app and the

software/algorithms portions to one person, then had the

remaining two completely focused on hardware.

REFERENCES

[1] KC705 User Guide,
https://www.xilinx.com/support/documentation/boards_and_kits/kc705/

ug810_KC705_Eval_Bd.pdf

[2] 7 Series FPGA Data Sheet,
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Seri

es_Overview.pdf
[3] Programming BPI Flash,

https://scholar.princeton.edu/jbalkind/blog/programming-vc707-virtex-

7-bpi-flash
[4] Pyserial Documentation, https://pythonhosted.org/pyserial/

[5] Vivado HLS User Guide,

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017
_4/ug902-vivado-high-level-synthesis.pdf

[6] Clocking Wizard LogiCORE IP Product Guide,

https://www.xilinx.com/support/documentation/ip_documentation/clk_w
iz/v5_3/pg065-clk-wiz.pdf

[7] Integrated Logic Analyzer LogiCore IP Product Guide,

https://www.xilinx.com/support/documentation/ip_documentation/ila/v6

_2/pg172-ila.pdf

[8] Synthesizable Constructs,

https://link.springer.com/content/pdf/bbm%3A978-81-322-2791-
5%2F1.pdf

[9] What is a Constraints File,

https://reference.digilentinc.com/learn/software/tutorials/vivado-xdc-file
[10] Viola-Jones Object Detection Framework,

https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection

_framework
[11] Eigenface, https://en.wikipedia.org/wiki/Eigenface

https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://scholar.princeton.edu/jbalkind/blog/programming-vc707-virtex-7-bpi-flash
https://scholar.princeton.edu/jbalkind/blog/programming-vc707-virtex-7-bpi-flash
https://pythonhosted.org/pyserial/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_3/pg065-clk-wiz.pdf
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_3/pg065-clk-wiz.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://link.springer.com/content/pdf/bbm%3A978-81-322-2791-5%2F1.pdf
https://link.springer.com/content/pdf/bbm%3A978-81-322-2791-5%2F1.pdf
https://reference.digilentinc.com/learn/software/tutorials/vivado-xdc-file
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
https://en.wikipedia.org/wiki/Eigenface

18-500 Final Project Report: 05/08/2019

9

18-500 Final Project Report: 05/08/2019

10

Part Cost

Laptop (from us) $1000 ($0)

KC705 Board Kit (from course inventory) $1685 ($0)

Vivado License (from CMU) - BRAM modules $3595 ($0)

Pre-trained Viola-Jones weights $0

Total $0

