Identity Checker with FPGA

Team C7 Junye (Hans) Chen (junyec) Sheng-Hao Huang (shenghah) Andy Shen (asshen)

Application Area

Functionality

Facial Detection

Software+Hardware (FPGA)

Facial Recognition

Software

Areas

Why FPGA?

Significant parallelism in Image processing algorithms

Solution Approach - Overall

Software

Laptop with Camera

Django Framework (webapp)

Viola-Jones Algorithm (detection)

Eigenface Algorithm (recognition)

Hardware

KC-705 FPGA Board

Viola-Jones Algorithm (detection)

Solution Approach - Facial Detection

Solution Approach - Facial Recognition

Yale Faces Database 15 subjects, 166 images

Training

- 1. Prepare a face database with 8 20x20 images per subject.
- 2. Use a set of eigenvectors to represent how each face differs from the mean face.
- The eigenvectors are called "eigenfaces". They measure the "variance" of the face database.

Classification

- Project new test image onto eigenfaces. This tells us how different the test image is from the mean face.
- 2. Find a face that differs the same way as the input image. That face is the closest match.

Block Diagram

Complete Solution - Add Face

Identity Checker

Check Identity

Identity Checker

Enter your name for the Identity Checker:

Junye		
Chen		

Submit

Identity Checker

Complete Solution - Recognize Face

Identity Checker

Identity Checker

Identity Checker

You must be:Junye Chen

Restart

Metrics and Validation - Correctness

Yale Faces Database 15 subjects, 166 images

Facial Detection

Facial Recognition

- Goal: 80% accuracy
 - "box" the face if there is one
 - Reject if no face
- <u>166</u> images
- 163 Faces correct
- <u>98%</u> accuracy
- Good lighting

- Goal: 80% accuracy
 - Identify person's name, assuming face is in database
 - 163 images, 8*15=120 training images
- <u>43</u> test images
- <u>37</u> correctly recognized
- <u>86%</u> accuracy

Metrics and Validation - Speedup

Target: 0.05s (detect one face on software)

FPGA Baseline: 0.17s

Goal: 5x speedup

Optimization Step	Improvement	
Faster clock: 50MHz => 200MHz	0.17s => 0.0826s	
Loop pipeline	0.0826s => 0.037s	
Loop unroll	0.037s => 0.031s	

Result: 1.6x speedup

Project Management

Lessons Learned

- Always have contingency plans
- Identify dependencies between tasks, and follow schedule closely
- Diversification of team members is very important