
1
18-500 Design Project Report: 03/04/2019

Identity Checker on FPGA

Author: Junye Chen, Sheng-Hao Huang, Andy Shen,​ ​Electrical and Computer Engineering, Carnegie Mellon
University

Abstract​—A facial detection and recognition system that runs

on an FPGA. We want to explore the advantages of running the
system on an FPGA rather than running the system purely in
software. Our proposed hardware architecture is in
SystemVerilog and implemented mainly on a Xilinx Kintex-7
FPGA.

Index Terms​—Facial Detection, Facial Recognition, FPGA

I. INTRODUCTION
F​acial recognition has become very popular in the field of

computer vision and machine learning because of its wide
range of applications. It can be used to check attendance in
classrooms or in the workplace, and can improve security
measures in critical areas. Facial recognition can be divided
into two steps: detection and identification. Two of the most
common methods for performing the detection step are the
Viola-Jones algorithm and neural networks. One common
method for performing the identification step is the Eigenface
algorithm. Most systems, including the ones that use the
aforementioned algorithms, implement facial recognition
purely in software. However, since both steps involve many
image processing techniques, there is significant potential for
speedup if the techniques are performed in hardware. In this
project, we want to explore whether implementing a facial
recognition system on hardware will achieve a significant
speedup. Our goals are to reach a detection accuracy of 90%
for frontal faces, reach an identification accuracy of 80% for
frontal faces and reach a 5x-10x speedup over a system
completely implemented in software. We acknowledge that
I/O may be a bottleneck in our system, so we will measure
speedup both with and without I/O.

This report has the following structure: Section II covers
what requirements our design has to meet. Section III
describes our system architecture. Section IV elaborates on
trade-offs that we considered before arriving at our final
design. Section V elaborates on the subsystems that make up
the system described in Section III. Section VI covers project
management. Section VII lists related work.

II. DESIGN REQUIREMENTS
Our project needs to meet the following requirements in

both accuracy and speedup.

● 90% Accuracy on Frontal Face Detection

When taking frontal view pictures of people’s faces,

our system should be able to detect a bounding box
that exactly encompasses the face 90% of the time.
We will determine this visually.

● 80% Accuracy on Frontal Face Identification
During testing, we will get people to take frontal
view pictures in front of the camera and add their
faces to a database of faces. When taking pictures of
random people whose faces may or may not already
be in the database, our system should be able to
recognize the face and display the correct name or
correctly determine the face isn’t in the database at
least 80% of the time.

● 5x Speedup over a Software Implementation
We will measure the total time to recognize one face
using our system in both software and hardware. In
software, we will use the linux time command or the
timing functions in standard C. In hardware, we will
measure the number of clock cycles at our operating
frequency. Our timing will start from when the
camera takes a picture of the person whose face we
are trying to detect. Our goal is to achieve at least 5x,
ideally 10x, speedup in hardware. We acknowledge
that the I/O transfer to our FPGA is a bottleneck of
our system, so we will measure the speedup both
with and without I/O.

2
18-500 Design Project Report: 03/04/2019

III. ARCHITECTURE
Our system is mainly divided into three components: a

laptop (software), a FPGA (hardware), and a UART channel
to transfer data between our laptop and our FPGA. We break
our block diagram into two parts and explain each part in
more detail here. The full block diagram can be found at the
end of the report.

Laptop - The laptop is responsible for capturing camera
input and preprocessing the corresponding images of people.
The preprocessing includes downscaling the input image and
converting the input image to grayscale.

● Downscale Module
The size of the raw image from a laptop camera is
roughly 4500 pixels by 2500 pixels. The facial
detection algorithm is more optimal for smaller input
image sizes, so the downscaling function converts
the raw image to 160 pixel by 120 pixel.

● Grayscale Module
We expect I/O to be one of the main bottlenecks in
our system. Thus, the fewer bytes of data that we
have to transfer over to our FPGA, the better. The
laptop camera image is in RGBA scale, which takes
4 bytes per pixel. The grayscale function converts it
to grayscale, which takes only 1 byte per pixel,
reducing the amount of data to transfer by 75%.

Figure 1. Laptop Block Diagram

FPGA - The FPGA we are using is the Kintex-7 XC7K325T

FPGA, on the Xilinx KC705 Board. It is responsible for
performing facial detection and identification on the input
image. The image database will be stored in Block RAM and
the input image will be stored in distributed RAM.

● Facial Detection Module
The facial detection module will use the Viola-Jones
algorithm to detect the position of the face within the
input image. Since we already have a pre-trained
version of the algorithm from OpenCV, we will
include all the pre-trained weights as part of the
module when programming the FPGA. The detection
module outputs a rectangle encompassing the

detected face’s location and sends its coordinates to
the laptop and subsequent recognition modules.

● Face Cropper and Downscaling Modules
Once the detection module outputs the face
rectangle, the face cropper module crops the face out
of the image, and the downscaling module
downscales the cropped face into a 20 pixel by 20
pixel image, which is the input size to our
identification module.

● Identification (Eigenface) Module
This module uses the Eigenface algorithm to perform
facial identification. It compares the data for the
input image with all data for the faces in the database
(stored in BRAM) and outputs a face index, which is
sent back to the laptop through UART.

Figure 2. FPGA Block Diagram

UART - The UART channel is responsible for transferring

the downscaled and grayscaled input from the laptop camera
to the FPGA on system startup, as well as the face feature
rectangle and the face index from the FPGA to the laptop. The
transfer of the input from the laptop camera will take the
longest. Assuming a baud rate of 460800 bits per second, the
160 pixel by 120 pixel converted input image, 153600 bits
total, would take around 0.33 seconds to transfer.

3
18-500 Design Project Report: 03/04/2019

IV. DESIGN TRADE STUDIES

A. Choosing an FPGA
We mainly considered the Nexys Video Artix-7 FPGA

Board before we had access to the course inventory. This was
the board with the most logic cells and Configurable Logic
Blocks that we could find within our budget. Once we were
given access to the course inventory, we realized that this
board couldn’t compare to the Kintex-7 KC705 board or the
Virtex-7 VC707 board in the inventory, as these two boards
had specs that reflected costs of 3x-6x our budget of $600. We
put in a request for either board and ended up getting the
KC705 board, so we ended up using that for this project.

B. Method of Data Transfer
We briefly considered PCIe for transferring data quickly

between our laptop and our FPGA. However, getting PCIe to
adapt to the ports on a laptop is really tough, and in the
adaptation process the PCIe transfer speed get bottlenecked to
the speed of the port it’s trying to adapt to. Thus, we decided
to go with UART for transferring data, as it is simple to
understand and since we can dial up the baud rate easily.

C. Algorithm for Facial Detection
We have considered two algorithms for facial detection, the

Viola-Jones algorithm we mentioned in the previous section,
and a convolutional neural network. We summarize the
tradeoffs between the two approaches in the following table.

Criteria Viola-Jones Neural Network

Familiarity Good, a lot of
documentation in

OpenCV and
related work on

FPGA.

Not ideal because it is
hard to find existing
neural networks for
facial detection on

FPGA.

Computation
Intensity

Not ideal, because
of simple

operations at each
stage, but can

pipeline stages.

Ideal on FPGA,
because of heavy

computations. More
likely to see the

speedup on FPGA.

Training No training,
because we can
use pre-trained

weights.

Long training, need to
train it ourselves or
use weights from a
pre-trained network.

Difficulty Conceptually easy
to understand, but
hard to optimize

Complicated network,
but each layer does

similar things.

Table 1. Tradeoff between Viola-Jones and Neural Network

After considering these criteria and the timeline of our
project, we decided to use Viola-Jones because it has good
documentation to refer to, and because we don’t have to
worry about training.

D. Software Storage Method for Face Database
We considered two methods of storing the face database on

our laptop: storing it locally and storing on a cloud storage,
such as Amazon S3. For storing in the cloud, we would need
to use additional protocols to access the images and vectors in
our database. Additional latency would be introduced if we
were to try and store our data in the cloud. The benefit would
be that we would essentially have no limit in terms of how
much storage we have to work with. However, once we
computed how much storage we actually needed, we found
that we only need a weight vector of 59 elements and a 20
pixel by 20 pixel picture for each face that we want to store,
so there would be no storage issues with storing the face
database locally. Thus, we decided to store face database
locally on our laptop.

E. Hardware Storage Method for Face Database
We considered two methods of storing the face database on

our FPGA: block RAM and using an sd card. We have limited
block RAM on our FPGA, so if our face database gets too
large, it would cause space issues. An sd card would resolve
this problem, since it has so much storage. On the other hand,
an sd card would be off chip, requiring us to use
communication protocols to access the data on it. This plus
lengthy access times would increase the amount of time face
identification takes, changing it into a bottleneck. Block RAM
is on chip, so if we use it we wouldn’t have to worry about
complicated communication protocols or lengthy access
times. In the end, we decided to go with block RAM and just
limited the size of the face database to the data for 100 faces,
100 being a large enough number to encompass all the faces
that we might possibly add.

F. Using Vivado HLS or Pure HDL
We considered using Vivado HLS to program our FPGA,

since it easily converts C code to Verilog HDL and VHDL.
However, we felt that using HLS would make the project too
software oriented, as it would obfuscate any hardware
optimizations that were performed under the hood. We felt
that our HDL skills were good enough to convert C code to
HDL ourselves and then optimize it, so we decided to not use
HLS.

G. Storing Viola-Jones Classifier Weights
We considered storing the Viola-Jones classifier weights in

distributed RAM vs storing the weights in block RAM.
Storing them in distributed RAM would mean that we lose a

4
18-500 Design Project Report: 03/04/2019

lot of distributed RAM just to store a bunch of floats, but it
would save us memory latency, which is important since each
stage in the Viola-Jones classifier is computationally heavy.
Storing the weights in block RAM would give us more
distributed RAM to implement all our modules with, but we
would have to deal with memory latency and most likely have
to deal with waiting multiple clock cycles to read all the
weights out of each block RAM (we can’t store each weight
in its own block RAM since we have finite block RAMs
available). We chose to use distributed RAM to store the
classifier weights for convenience.

V. SYSTEM DESCRIPTION

A. Facial Detection Module
Once the downscaled and grayscaled 160 pixel by 120 pixel

image arrives at the FPGA via UART, it will be stored in
distributed RAM. A 24 pixel by 24 pixel section (called a
scanning window) of the stored image will be inputted into a
4608 bit (576 pixels times 8 bits per pixel) input of the
cascading classifier portion of this module once every clock
cycle. This scanning window input is denoted as a “face
candidate” since it will go through each stage of the cascading
classifier to check if it has the necessary features for a face.
The specific bits being inputted will be determined by indexes
being incremented by counters every clock cycle. The
cascading classifier portion of this module will be pipelined
such that the inputted face candidate goes through one stage in
the classifier every clock cycle. Each stage only needs to
transfer on the face candidate and whether or not it found the
feature(s) it was searching for onto the next stage, allowing
for a very pipeline-able design.

To ensure high accuracy, we decided to use a multiscale
cascading classifier. Since a face cannot always be captured
by our scanning window, we need to scale the input image
down continuously until we detect a face. We chose to use a
scaling factor of 1.2 based on past projects that we looked at.
Once all the scanning windows have been inputted into the
cascading classifier, we will have an finite state machine that
waits for the classifier to finish and checks if any faces were
detected. If no faces were detected, it will reset the index
counters, as well as replace the image in distributed RAM
with a downscaled version of itself calculated previously in
parallel when the scanning windows were being inputted. This
will repeat until a face is detected or until the dimensions of
the image in distributed RAM are smaller than the dimensions
of the scanning window.

Figure 3. Pyramid Scaling for Cascading Classifier

B. Face Database

The face database needs to store an average face from our
training images of size 20 pixel by 20 pixel, as well as 59
eigenvectors of size 20 pixel by 20 pixel. For each face, it also
needs to store a weight vector of 59 16-bit elements. These are
all for performing the Eigenface algorithm[3] in our facial
identification module. These will all go into block RAM. If
we store the average image in its own 18 Kb block RAM,
store each of the 59 eigenvectors in their own 18 Kb block
RAMs (why we do this is covered in Section ​V.C.​) and store
the weight vectors for 100 faces in six 36 Kb block RAMs,
this comes out to sixty 18 Kb block RAMs and six 36 Kb
block RAMs. The XC7K325T FPGA has 890 18 Kb block
RAMs (each pair can be converted to a 36 Kb block RAM) so
we have more than enough block RAM.

C. Facial Identification Module

Once a 20 pixel by 20 pixel face arrives from the
downscaling module, the facial identification module will
retrieve the average face from block RAM and perform
normalization in parallel on each of the 400 pixels. It will then
compute each of the 59 weight vector elements for the image
in parallel, by retrieving each of the 59 eigenvectors from
block RAM in parallel and multiplying those by the
normalized image. The final weight vector of 59 elements
will then be compared to the existing weight vector for each
image stored in block RAM, using one clock cycle for each
comparison, meaning the number of clock cycles to find the
closest weight vector is equal to the number of existing faces
in our database. The difference between the closest weight
vector and the current weight vector will then be compared to
a threshold, to determine if the face is actually within the
database or not.

5
18-500 Design Project Report: 03/04/2019

VI. PROJECT MANAGEMENT

A. Schedule
Below is a rough deadline for all our tasks. We have

attached the full gantt chart at the end of this document.

Task Deadline

Viola-Jones cascading classifier in C
UART setup

3/3

Viola-Jones testing 3/7

Viola-Jones on FPGA 3/24

Test face detection only on FPGA 3/31

Eigenface recognition in C 4/7

Eigenface testing 4/14

Eigenface recognition on FPGA 4/21

Integration test 4/28

Table 2. Rough Deadlines

B. Team Member Responsibilities
Junye - Implement Viola-Jones cascading classifier,

implement eigenface algorithm in C, assist in converting C
code to RTL code.

Sheng-Hao - Re-acquaint with Vivado and show Hans how
to use it, work with Hans to convert algorithms to RTL and
optimize them.

Andy - Design app interface, preprocess image (grayscale,
downscale), create a local database to keep track of face data.

C. Budget
We have included a spreadsheet of our budget at the end of

this report.

D. Risk Management
I/O - We identify that I/O is a major bottleneck for the

speedup of our system. Assume our input is a 160 by 120
image. If we set baud rate to 460800 bits/second, it takes
about 160x120x8 / 460800 = 0.33s to transfer the data from
software and FPGA. The FPGA we have right now can
support as much as 921600 bits/second, but we use 460800
bits/second here just to be safe. We will also make sure that
we account for the speedup with and without I/O.

VII. RELATED WORK
[1] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “Fpga-based face detection

system using haar classifiers,” in International Symposium on Field
Programmable Gate Arrays, February 2009.

[2] J. Cho, B. Benson, and R. Kastner, “Hardware acceleration of
multi-view face detection,” in IEEE Symposium on Application
Specific Processors, July 2009.

[3] J. Matai, A. Irturk, R. Kastner, “Design and Implementation of an
FPGA-based Real-Time Face Recognition System,” in IEEE

VIII. SUMMARY
We hope our system will be able to meet the design

specifications. For the final report, we will talk about future
work and lessons learned here.

6
18-500 Design Project Report: 03/04/2019

7
18-500 Design Project Report: 03/04/2019

8
18-500 Design Project Report: 03/04/2019

Part Cost

Laptop (from us) $1000 ($0)

KC705 Board Kit (from course inventory) $1685 ($0)

Vivado License (from CMU) - UART/BRAM modules $3595 ($0)

Pre-trained Viola-Jones weights $0

Total $0

