
Identity Checker with FPGA
Junye (Hans) Chen (junyec)

Sheng-Hao Huang (shenghah)
Andy Shen (asshen)

Team C7

Use Case
● Facial detection + facial recognition on FPGA
● Steps:

○ Detect 1 face on camera
○ Add face to database OR
○ Recognize face

● Areas:
○ Software systems
○ Hardware Systems

● Image processing algorithms have significant parallelism, and thus large
potential for speedup

Requirements
● Enough FPGA block RAM to store grayscale face database

○ 50 people * 5 faces/person * 20x20 pixels/face * 1 byte/pixel = ~ 0.1 MB of RAM
● Enough LUTs, flip-flops, and DSP slices on FPGA

○ 44800 LUTs, 89600 FFs, and 128 DSPs used by reference paper
● Correctly detect a still face on screen within 5 seconds
● Recognize a face correctly at least 80% of the time
● Speedup of 5x ~ 10x

○ Measure with I/O and without I/O

Key Technical Challenges
● Having the right FPGA

○ Reference paper uses Virtex-5 XC5VFX70T
○ Artix-7 100T or 200T have similar/better specs
○ $300 and $500 respectively

● Minimizing UART time
○ Need high baud rate
○ Also need high operating frequency for FPGA

● Minimizing time to scan laptop camera image during facial detection
○ May limit the laptop camera size
○ May also scale down the image before using it
○ Convert image to grayscale (1 byte/pixel vs 4 bytes/pixel for color)

Key Technical Challenges
● Training multi-stage classifier for Viola-Jones algorithm (facial detection

algorithm)
○ Find optimal number of stages and types of facial feature classifiers
○ Need high training and validation accuracy for detecting faces

● Increasing parallelism for eigenface algorithm (facial recognition algorithm)
○ Need to compare face data against all existing face data
○ The more simultaneous comparisons the better
○ The more parallel matrix multiplication the better

● Learning Vivado
○ Be able to use module wizards for UART and block RAM
○ Also may need to learn how to use Vivado HLS to synthesize C code onto FPGA

Key Technical Challenges
● Keeping track of existing face data in cloud/local storage

○ Need to send this over on startup of device
● Finding a suitable method for data transfer from the app to the FPGA

○ Current idea: Transfer data through UART
● Trial and error with image preprocessing

○ What type of preprocessing (B&W, scaledown, etc)
○ Keep image file size low

Components

FPGA + Board Laptop with Camera UART Cable

Design
● Device boots up
● App sends existing face data bank to FPGA via UART transaction
● FPGA stores data in block RAMs
● Scenario A: person tries to add face to data bank

○ Person stands in front of laptop camera and takes a picture
○ App preprocesses the image (scale down, apply grayscale) and sends it to FPGA
○ FPGA sends face picture through facial detection logic
○ FPGA sends back signal that indicates whether face was detected

Design
● Scenario B: person tries to check their identity

○ Person stands in front of laptop camera
○ App samples image from laptop camera every 5 seconds
○ App preprocesses the image (scale down, apply grayscale) and sends it to FPGA
○ FPGA sends face picture through facial detection logic
○ If a face is detected, FPGA sends face data through recognition logic
○ Recognition finds face that matches the most and gives similarity measurement
○ FPGA sends back signal that indicates whether similarity measurement was high

enough

Testing
● Vivado’s reported FPGA resource usage must be less than 100%
● We want the accuracy of the facial recognition system to be at least 80%
● Be able to add a face during demo, then recognize the person
● Record the time to run the complete pipeline of the system, and compare the

running time on FPGA vs on software
○ Measure the system runtime on FPGA, and specifically measure I/O transfer time
○ Measure the system runtime on selected CPU model
○ Measure the speedup between the two models, and check if it scales as our face

bank gets bigger

Tasks/Division of Labor
● Sheng-Hao - Hardware / FPGA

○ Re-acquaint with Vivado and shows Hans how to use it
○ Learn algorithms with/from Hans
○ Work with Hans to code up algorithms in RTL and optimize them

● Hans - ML / Algorithms
○ Learn Viola-Jones algorithm
○ Learn Eigenface algorithm
○ Work with Sheng-Hao to code up algorithms in RTL and optimize them

● Andy - Software / App
○ Design the app interface
○ Figure out when to preprocess image (B&W, scale down, etc.)
○ Create a local or cloud database to keep track of face data

Schedule

● Gantt chart

