ldentity Checker with FPGA

Junye (Hans) Chen (junyec)
Sheng-Hao Huang (shenghah)
Andy Shen (asshen)
Team C7

Use Case

e Facial detection + facial recognition on FPGA ‘ | Steve Jobs

e Steps:
o Detect 1 face on camera
o Add face to database OR
o Recognize face

e Areas:
o Software systems
o Hardware Systems

e Image processing algorithms have significant parallelism, and thus large

potential for speedup

Requirements

e Enough FPGA block RAM to store grayscale face database
o 50 people * 5 faces/person * 20x20 pixels/face * 1 byte/pixel = ~ 0.1 MB of RAM
e Enough LUTs, flip-flops, and DSP slices on FPGA
o 44800 LUTs, 89600 FFs, and 128 DSPs used by reference paper
e Correctly detect a still face on screen within 5 seconds
e Recognize a face correctly at least 80% of the time
e Speedup of 5x ~ 10x
o Measure with I/O and without 1/0

Key Technical Challenges

e Having the right FPGA
o Reference paper uses Virtex-5 XCS5VFX70T
o Artix-7 100T or 200T have similar/better specs
o $300 and $500 respectively
e Minimizing UART time
o Need high baud rate
o Also need high operating frequency for FPGA
e Minimizing time to scan laptop camera image during facial detection
o May limit the laptop camera size
o May also scale down the image before using it
o Convert image to grayscale (1 byte/pixel vs 4 bytes/pixel for color)

Key Technical Challenges

e Training multi-stage classifier for Viola-Jones algorithm (facial detection
algorithm)
o Find optimal number of stages and types of facial feature classifiers
o Need high training and validation accuracy for detecting faces
e Increasing parallelism for eigenface algorithm (facial recognition algorithm)
o Need to compare face data against all existing face data
o The more simultaneous comparisons the better
o The more parallel matrix multiplication the better
e Learning Vivado
o Be able to use module wizards for UART and block RAM
o Also may need to learn how to use Vivado HLS to synthesize C code onto FPGA

Key Technical Challenges

e Keeping track of existing face data in cloud/local storage
o Need to send this over on startup of device

e Finding a suitable method for data transfer from the app to the FPGA
o Current idea: Transfer data through UART

e Trial and error with image preprocessing

o What type of preprocessing (B&W, scaledown, etc)
o Keep image file size low

Components

FPGA + Board Laptop with Camera UART Cable

Design

Device boots up
App sends existing face data bank to FPGA via UART transaction
FPGA stores data in block RAMs

Scenario A: person tries to add face to data bank
o Person stands in front of laptop camera and takes a picture
o App preprocesses the image (scale down, apply grayscale) and sends it to FPGA
o FPGA sends face picture through facial detection logic
o FPGA sends back signal that indicates whether face was detected

Design

e Scenario B: person tries to check their identity

o Person stands in front of laptop camera
App samples image from laptop camera every 5 seconds
App preprocesses the image (scale down, apply grayscale) and sends it to FPGA
FPGA sends face picture through facial detection logic
If a face is detected, FPGA sends face data through recognition logic
Recognition finds face that matches the most and gives similarity measurement
FPGA sends back signal that indicates whether similarity measurement was high
enough

o O O O O O

Testing

Vivado’s reported FPGA resource usage must be less than 100%

We want the accuracy of the facial recognition system to be at least 80%

Be able to add a face during demo, then recognize the person

Record the time to run the complete pipeline of the system, and compare the
running time on FPGA vs on software

o Measure the system runtime on FPGA, and specifically measure 1/O transfer time

o Measure the system runtime on selected CPU model

o Measure the speedup between the two models, and check if it scales as our face
bank gets bigger

Tasks/Division of Labor

e Sheng-Hao - Hardware / FPGA

o Re-acquaint with Vivado and shows Hans how to use it

o Learn algorithms with/from Hans

o Work with Hans to code up algorithms in RTL and optimize them
e Hans - ML / Algorithms

o Learn Viola-Jones algorithm

o Learn Eigenface algorithm

o Work with Sheng-Hao to code up algorithms in RTL and optimize them
e Andy - Software / App

o Design the app interface

o Figure out when to preprocess image (B&W, scale down, etc.)

o Create a local or cloud database to keep track of face data

Schedule

S: Learn algorithms, Approximate FPGA memory needed IE———
H: Learn algorithms, Approximate FPGA memory needed IE———
 E—

[—1

2/3 2/10 2/17 2/24 3/3 3/10 3/17 3/24 3/31 a/7 4/14 4/21 4/28

A: Sketch out app skeleton, list out features
S: Select FPGA, Learn Vivado

H: Train facial detection classifier in Python e
A: Learn image preprocessing algorithms o m—
S: Help Hans, Figure out sending data over UART N

H: Validate classifier, Tune stages and features

A: Design storage for face data bank

S: Create test projects using UART and BRAM

H: Write C code to use facial detection classifier

A: Implement the app UI

S: Help Hans

H: Convert detection code to RTL, Write testbenches to test RTL

A: Implement downscaling algorithms in Python
Spring break E—

S: Test face detection on FPGA 3

H: Implement facial recognition algorithm in C [—

A: Finalize storage solution for face data bank [

S: Help Hans]
H: Convert recognition code to RTL, Write testbenches to test RTL | —
A: Finish app —

S: Finish app integration with FPGA)
H: Test face recognition on FPGA o
A: Help Sheng-Hao [c—]

S: Finish debugging FPGA problems [ee——]

H: Help Sheng-Hao [—

A: Adjust app based on changes encountered C—

Final integration and testing E—
Update documents, Prepare for demo/final presentation |

