
18-500 Final Project Report: 05/08/2019

1

Abstract—A system capable of identifying a song based on a

simple section of melody sung into a microphone by a user. This
will be implemented with a combination of matching against
preformatted MIDI files using melodic contour analysis where
available, and using machine learning methods on a cross-
similarity matrix of a song’s chroma feature representation for
songs without available MIDIs.

Index Terms— Chroma feature, convolutional neural network
(CNN), cross-similarity, dynamic time warping, machine learning,
melodic contour, MUSART, query by humming, Roger
Dannenberg, signals, sound, theme extraction

I. INTRODUCTION

HIS project makes an application that will match a
human’s sung or hummed input to the existing song that

they were trying to identify. Often times a person will have a
tune stuck in their head and will not have any way to identify it
unless they can remember some lyrics to search, so the
application we are trying to build will try to solve this.

There are currently very few applications that will recognize
a song through human singing or humming due to the
complexity of the problem. The two most common apps to
achieve something to this effect are Shazam and SoundHound.
However, Shazam can only match to actual songs rather than
human input, and SoundHound has poor performance and
vague technical details. The approach we will be taking in our
project borrows concepts from the query by humming project
and chroma feature analysis with convolutional neural networks,
which has been done for cover song identification. These two
approaches use both approaches sequentially to match the input
to an existing song. The system goals and metrics are to achieve
65% accuracy on matching singing or humming to a song and
to match in under 90 seconds.

II. DESIGN REQUIREMENTS
The project will be packaged as a web app. This adds some

constraints to what the user’s experience should be like. From
start to end, opening the app should lead to a straightforward
interface, from which the user sings into the microphone.
Qualitatively, the user shouldn’t have to extensively worry

about the sound quality or noisiness of their environment, but it
should be reasonable. For example, if there are multiple other
voices adding to the input captured by the microphone, the
accuracy of the app is guaranteed to decrease. We will test our
ability to filter out audio input noise by trying out multiple
queries which are all consistent along the dimensions of singer,
song, time frame, and instead vary the environment of recording.

Next, as part of the experience, past a seamless vocal input,
the user shouldn’t expect to wait more than 90 seconds for the
app’s response. So from our technical point of view, we hope
to constrain the system to taking only 90 seconds for
completion and decision. The components of the pipeline
include taking in the input and filtering it, then performing
chroma feature extraction, creating a cross-similarity matrix for
all possible pairings of (sung_input_chroma,
library_song_chroma), using the resulting matches to filter out
the library for workable songs, retaking the raw input and
bucketing the input to sampled frames that are empirically
optimized, running the melodic contour and DTW algorithm
against all pairings of (sung_input, filtered_library_song_midi),
suggested by the neural network, sorting the outputs of this
analysis and selecting a final top three song output list.
Finally, the user should see an ordered list of the top 3 songs
that their sung input potentially matches against. The last
critical constraint we plan for is obtaining 65% accuracy, with
a success defined as the truly intended song, let’s call this the
target, appearing in the top 3 list. We plan to test this across
multiple singers, songs, and song time frames, and begin with
a small database of about 50 songs. Qualitatively, the user
should see a simple to understand list, and on top of this, a
data visualization image that indicates why the song matches
that were given were made. The visual will indicate which
parts of the user’s query lined up with the matched songs, and
to what degree the music lined up.

Earworm

Authors: Anja Kalaba, Wenting Chang, Nolan Hiehle

Electrical and Computer Engineering, Carnegie Mellon University

T

18-500 Final Project Report: 05/08/2019

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1. System picture.

The flow of data begins with a user singing into a microphone.
That input will be put through a filter to reduce background
noise, and then a chroma feature plot will be generated. From
this, a cross-similarity matrix is generated against the chroma
feature of every song in the database. These are evaluated by
the CNN to produce a set of most likely matches. The most
likely matches, as determined by the CNN, are then sent to the
melodic contour analysis portion of the system for further
evaluation. Every song in the database has a pre-extracted
melody line, which is used to compare against the melodic
contour of the user input for the most likely matches. The final
match is the song melody has the best match to the input sample
after applying dynamic time warping.

Once this process is complete, the app shows a visualization
of what was matched and how it was matched. The visualization
consists of a plot of the melodic contours of the input and
matched song, as seen in Fig. 2(a), and a histogram of
differences, as seen in Fig. 2(b), for each of the matches.

(a)

(b)

Fig. 2. Example of data visualization (a) Melodic contour plot of matched
song vs. input. (b) Histogram of differences between melodies

18-500 Final Project Report: 05/08/2019

3

IV. DESIGN TRADE STUDIES
There are many parts to our design, including sequential sub-

tracks to compute the decision more quickly. Design decisions
like these were made on the basis of prioritizing efficiency and
putting most emphasis on the time metric. In general, our trade
offs were between accuracy and time of implementation or
algorithmic time complexity, and helpfulness vs. time of
implementation, and amount learned vs. time of
implementation. Key categories that were logistically debated
were the following:

• deciding on the algorithm to use for musical
processing and comparison and potential
modifications

• deciding how large to make the database
• deciding which parts of the project to borrow and

which parts to implement ourselves
• deciding which test dimensions were the most

important to analyze.
The design decision progression is outlined for the above

compartments of the overall system in the following sections,
along the debated lines of importance as mentioned before the
list of key categories.

A. Algorithm and Database Size
We consulted the Query By Humming paper which did a

proper testbench to compare multiple algorithms. As shown by
their results in Table 1, the most successful algorithm was the
Melodic Contour matching one, which we have selected to use
in our project. The test suite for these results was fairly
randomized and uniform, so it more closely resembled our
expected range of input and usage. We found in another paper
for it to have a mixture of 100% accuracy, also measured with
the “contained-in-top-3” success definition, and 80% accuracy,
for varying test suites of rock songs and jazz songs, respectively
[4]. Since both of these values are above our target value of 75%
for accuracy, this algorithm seemed sufficient.

Table 1. Table of MRR values for various algorithms from MUSART test
bench

A heavy point of consideration was the tradeoff in
algorithmic time complexity and accuracy. While the Melodic
Contour algorithm is accurate to the degree we wish to see, it is
also significantly slow, as it is a linear search through the
database per length of the input string. To hone in on a region
of higher performance, we consult Fig. 3, wherein we notice
that there is a plateau in algorithmic performance as a function
of songs in the database. We also logically noted that having a
smaller database would decrease the general search time for a

linear algorithm, helping us achieve our goal of under 1.5
minutes potentially, so we were set on starting with a small
database of roughly 50 songs and filter it to 25 by passing the
query through the first algorithmic sub-track (the machine
learning one). We also found in the paper an estimate of about
23ms on a 1.8GHz Pentium 4 Processor per song match
for an algorithm that is a O(mn) where m and n are string input
lengths, as melodic contour will be since it tries every window
frame for overlap. Considering the added runtime for the DTW
on top of this, since it will not be constant but also a linear
search of these lengths, we get O(mn2) so 529ms. Thus to obtain
our under 90 seconds goal, our database would need to meet an
optimized version of (1), with T_max set to 1.5 minutes
measured in milliseconds. We found that the melodic contour
algorithm actually took 1 second per song that it was compaing.
 A third consideration was to include the CNN component in
the algorithm pipeline first. Fortunately, training the network is
the biggest bottleneck, which can be done ahead of time as a
step for preprocessing, and we can make choices in our network
architecture to ensure that, once trained, the network can emit
classifications in a reasonably short amount of time. Our
database of waveform-format songs can be preprocessed into
chromagrams, so that the only calculation necessary will be:

1. Turning a sung query into a chromagram
2. Creating a cross-similarity matrix
3. Running the classifier (CNN).

 Since the maximum length of a song is about 3-4 minutes, and
the maximum length of a sung query will be 40 seconds, our
cross-similarity matrix has some reasonable bounds on its size:
we can expect that somewhere under 10,000 different distances
need to be computed to create the matrix. However, as our
database size increases, the model will need to be updated to
account for new songs--there’s no way to add a song to the
classification output of the neural network without retraining
the entire thing.

Fig 3. Plot of MRR, a measure of accuracy which when closer to 1 indicates
greater accuracy, vs. database size.

 T_max >= 1000*database_size (1)

We chose to prioritize the time constraint over the accuracy
one, and hence to change the original design in where the 2
subtracks ran in parallel to instead run in sequence, since our
test data found that the time dimension was more off from

18-500 Final Project Report: 05/08/2019

4

predicted than the accuracy dimension. So, in creating both
pipelines, we found that the CNN one was very fast while not
very accurate and that the melodic contour one was extremely
slow (on the order of 5 minutes) but more accurate. Because
of this, we went with the two-stage refinement that could
speed up the more accurate algorithm but also not fall victim
to its influence of being incorrect. That is, putting the 2
pipelines in sequential order has the fast but less accurate
decision be made to filter out obviously incorrect songs,
decrease the size of the database from 50 to 25, and this
filtered database is then fed to a slower but more accurate part
of the pipeline which can be sped up on the smaller database.
 A final consideration was modifying the original DTW
algorithm. While we initially wanted to set out to segment the
song within a range of 0.5 to 2.0 (scale factor), that is
bucketize the sample multiple times for a potentially better
match along the time scale. If we had done this, however, we
would have to do multiple queries against the same library,
and then processing time would have linearly increased. So
instead of going from the ideal minute and a half, we would at
least go up to a few minutes. We decided this was not worth
our desire to be fast, so we took this portion of the
comparisons out.
B. Implemented vs. Borrowed Subsystems
 Another consideration was deciding which parts would be
borrowed and which parts would be implemented by us. We
decided after looking at the extensive algorithm for MIDI
processing in the Meek paper that the tradeoff for time of
implementation was not worth doing that portion of the
pipeline by ourselves [5]. Since we also were not able to
interface with their code, we decided in the end to do melody
extraction by hand. While initially we wanted the help of
Professor Roger Dannenberg’s graduate student, that did not
end up being possible. Instead we came up with our own
simple way that required limited resources, described in
section V.5. Creating the whole library in this way took about
4 hours, which was reasonable.
 The Chroma feature extraction portion was also not seen to
be worth self-implementing, since successful MATLAB
toolboxes existed already [2].
 We don’t have any equations to describe our decision
making process for this category. It was instead a qualitative
evaluation based on thinking about which portions of the
pipeline were most vital to the integrity of the algorithms,
which parts we were most interested in learning about, and
which parts would take unnecessarily long amounts of time to
complete. So in summary, with this in mind, we pruned MIDI
file pre-processing and chroma feature extraction from our list
of duties.

C. Test Dimensions

Here we discuss the test dimensions that were of most
concern for evaluating project success. The dimensions we
could enumerate were

• different singers
• different songs
• different time frame within a song
• duration of query
• noise-levels of environment of query

and we created tests to vary each in an isolated manner to see
its performance. Since we have at least three test users, it was
easy to compare a sung sample from each of us and ensure that
it can generate accurate results a reasonable amount of the time.
 Since we have two algorithmic paths, we performed tests
on both algorithms individually as well as integration tests on
the completed app, which were used in our final evaluation.
 Testing different songs was also relatively straightforward
once we have entered these songs into our database or trained
our model on them. Once these tasks were complete, we
confirmed that sung samples of melodies from each of the songs
in the database can return a match. We can also test queries for
the “main melody” of a song as well as other, less important
musical sections, test with shorter queries that contain only a
fragment of a melody, and test with queries in different
environments--ideally, this would work even in a noisy,
outdoor, public space.
 Once our system was up and running, an automated
regression testing suite was constructed using a handful of
queries from each of us for several songs each. These canonical
queries spanned the range of these potential limiting factors and
ensured that any changes to our algorithm didn’t affect our
correctness guarantees (within reason). Fig. 4 depicts some
outputs of matched contours during the testing process.

Fig 4. 4 comparisons of sung query (blue) to database entry (orange). For each
of the four subplots, the top line is the original contours, the bottom plot is the
aligned versions from DTW.

 We found that the system was relatively robust to different
singers--there were no statistically significant differences in
accuracy across different individuals singing songs. However,
the environment a singer is in was important. Our tests on demo
day in a crowded gym were far less reliable than the preliminary
tests we ran.
 Our eventual product did not incorporate robust tests for
either query duration (we tested queries of 30-40 seconds) or
the section of a song being sung (although not every sample we
tested was from the same section of the song we were matching
to, matching different sections was never the focus of its own
test suite). Once the system was integrated, we realized that we
had plenty of work to do just to improve our accuracy numbers,

18-500 Final Project Report: 05/08/2019

5

although we believe that these metrics would be important for
a fully-featured product, they were a lower-priority for our team.

V. SYSTEM DESCRIPTION

A. Subsystem 1: Chroma Feature Analysis
 Chroma Feature analysis will be the first component of
our song recognition pipeline. For this, we will convert both
songs and sung samples into a popular audio processing data
format known as a Chroma Feature (or chromagram). This is
more or less a variant of a normal spectrogram: data is
converted from the time domain into the frequency domain,
and then is bucketed amongst the 12 notes of the Western
chromatic scale.
Chroma Feature also combines all octaves into a single, 12-
element vector, where each element corresponds to the total
intensity of a note across all octaves. This is perfect for our
purposes, since we want to allow for singers with different
ranges.
 There are several interesting post-processing techniques that
can be applied to a chromagram [2], such as normalization
along a single 12-dimensional chroma vector, normalization
across different chroma vectors, changing note intensity to be
represented with a logarithmic versus a linear scale (closer to
how sound intensity is perceived by the human ear), and
performing windowing functions across neighboring chroma
samples to smooth notes out (this has the effect of removing
much of the timbre/instrument information). These, plus the
problem of how many samples to create in the first place,
leave a lot of tuning even in the chroma feature step of this
matching algorithm. For our system, we selected CENS
(chroma energy normalized statistics), which takes averages
over relatively large time windows. This is meant to introduce
invariance to local tempo variations, such as those caused by
different articulation or singing at slightly different speeds.
 These Chromagrams will then be subjected to cross-
similarity analysis. The cross-similarity matrix will essentially
show the distance between EVERY point on the sung sample
and EVERY point on the reference song. If the song is a
match, it should be more likely to produce interesting patterns,
like diagonal lines of similarity over time, and blocks where
many adjacent samples are all similar to one another. A
convolutional neural network (CNN) is trained to recognize
these patterns in the cross similarity matrices and then to
determine the extent of a match between the input song and all
the songs in the library. In this step, half the library is
eliminated as potential matches, and the remaining half is
passed to the second subsystem as its starting library for
melodic contour matching.
B. Subsystem 2: Dynamic Time Warping and Melodic

Contour Analysis
The second component of our pipeline will be discretizing

the input and applying a melodic contour / dynamic time
warping (DTW) algorithm to the input. The first objective is to
create a sequence of notes/pitches from the input. The input is
to be sampled at 44100Hz, as this is a good standard. With an
experimentally determined optimal window frame of 80ms, we
use the Power Spectral Density function to find the intensities

for each possible frequency. We analyze peaks within these
PSD plots and find the maximum to determine the most likely
pitch (frequency) for that window. Since this granularity is
quite high, afterwards, the input is bucketized. We create a
larger window that is on the order of one one thousandth the
length of the query and one ten thousandth the length of the
library entry, and for each frame that the sample audio is broken
down into, a representative mode frequency is to be assigned to
that frame, and thus a sense of bucketing the input is applied;
we can call this creating a melodic contour on the input. The
representative frequency for each sample frame is to simply be
assigned the pitch of the note that occupies the most space in
the frame. From this we obtain our sequence of n pitches for the
query.

This same processing input, of creating a sequence we call
the melodic contour, is to be applied to each song in the
database as well. This procedure is to have been done ahead of
time, so that with each song in the fixed database, a sequence
of the melodic contour already exists as data to sift through. In
detail, here is how we create and preprocess our library. It was
done in two ways. The first was looking up existing MIDI files
that could be opened with MuseScore, and the second was
simply finding existing arrangements of the songs on a
MuseScore database, from which we could download the
MuseScore representation of the sheet music. One part of this
that took a while was making sure the melody was correct and
representative of what the song sounded like in common use,
and this was simply done by ear. The biggest bottleneck for this
process was isolating the melody then. Potential problems
included the melody being polyphonic, and thus deleting extra
parts, the melody coming in with extra instruments of the song,
and thus muting the extra parts, the melody being split among
multiple staffs and having to isolate regions of just the melody,
and the melody being slightly inaccurate and correcting it by
hand in the MuseScore program. After an accurate version of
the melody was extracted in MuseScore, the instrumentation in
the program was changed to ‘Grand Piano,’ the synthesizer
setting were set to the dryest possible ones (turning up HF
damping all the way, decreasing reverb to zero), and the tempo
of playback was boosted by about 10% of the original song
speed (even more if the original score was off tempo). And then
from MuseScore, the song was exported as a WAV file, and the
pitch extraction algorithm was run on this to obtain the data
representation of the melodic contour.

Fig 5. A visual of how the data across 2 time series are lined up differently
between Euclidean distance and DTW comparison methods.

18-500 Final Project Report: 05/08/2019

6

Next, we describe the concept behind dynamic time warping.
The use of this comparison technique is to find a more
intelligent measure of distance between 2 time series data sets.
Instead of a simple naive Euclidean distance approach, DTW
uses a matrix with each song along each axis to instead find
which parts of one series more closely resemble other parts of
the other series. This can be visualized in Fig. 5,
which clearly shows that DTW lines up parts of the data series
which are more similar. Thus overall, using this approach is
more helpful in finding melodic similarities considering that
factors such as temporal alignment or scaling (which preserves
shape but not length, but with DTW would be noticed), which
shouldn’t impact the accuracy, can now be naively dropped as
influencing the search. Thus overall the match is more based on
melodic integrity.

So, within our framework, the DTW algorithm, which is
computed using a distance matrix and from this distance matrix
finding the optimal/cheapest path to the final point, will be
applied between the pitch vectors from the input and each song
in the database. Moreover, it will be applied to each pair of input
and database song for each n offsets of the data points, in a
windowing effort. Then, with all these comparisons, an overall
distance score will be computed, and the scores will be sorted
in by smallest distance for all the possible combinations of
matches between audio input and database song for all possible
offsets. The top 3 smallest distances for distinct songs will
represent the closest matches of the query to an element in the
database.
C. Post-processing: Data Visualization

There will be a data visualization portion to see what the
matching algorithm did regardless of whether or not it is able to
generate a match. This will also serve as a form of visual
debugging for the system so that we can see whether the system
is generating garbage matches or whether the melodic contours
do in fact seem similar. The two visualizations that are
produced for each of the top three matches are (1) a plot of the
input melodic contour and the match’s melodic contour and (2)
a histogram showing the distribution of differences between the
contours of the input and match at each point in time. The
contour plot is a very intuitive way of seeing where the singer
was correct or incorrect as well as where they can potentially
improve to sing the song correctly, assuming the song is
matched. If the song is not a match, it is interesting to see what
parts of the song resulted in the algorithm determining that it
was a close match.

D. Front-End Web Application

 The web application uses React for the front end and a
Python Flask server for the back end. The system diagram and
data flow can be found in Fig. 6. A user is able to start and
stop recording themself singing, and when they press stop, the
audio is sent to the Flask server via an HTTP POST request.
The audio is saved into a .wav file which is then used for
chroma feature analysis and DTW/melodic contour analysis.
The results of the melodic contour analysis, which is the last
step in the matching process, are written into a text file. These
results are then read back out of the file and parsed to get the
melodic contours, both of the input and matched songs, and

song metadata. The contours and metadata are then passed on
to generate the contour plots and histograms.
 After the plots are generated, the results are sent back to the
front end as JSON data. The front end then sends GET
requests to the Flask server to retrieve the contour plots and
histograms for each of the top three matches. Once this is
complete, the web application then displays the results ranked
1-3, and the user can click to expand or collapse the plots for
each matched song. Finally, they can submit a new query and
begin this all over again. An illustration of the UI along with
the data visualizations can be seen in Fig. 7 and Fig. 8,
respectively.

Fig. 7 User Interface of web application

VI. PROJECT MANAGEMENT

A. Schedule
The schedule can be viewed in Fig. 3 at the end of the

document. This project began with researching similar existing
projects and contacting professors for their advice and

18-500 Final Project Report: 05/08/2019

7

suggestions for our process. Using this information and
advisance, we decided on the approach to take and began
implementation.

The dynamic time warping and melodic contour analysis
portion began with the pre-processing of MIDI files and
filtering background noise from human input, and then
proceeded to matching the input against the existing songs. The
chroma feature analysis began with converting songs into the
chroma format and examining the similarity matrices, and then
training convolutional neural nets to recognize the similarities.
Before training, however, all three of us had to sing the 50
samples from the database in order to have images to train on.
Testing for both branches of the matching process was done
separately for each portion to see their individual performance
and then integrated together for the complete system, which
was were we changed the pipeline to run the subtracks in
sequence rather than parallel.

The data visualization and application portion begin with
research and testing of existing data visualization methods to
see what could be used and what concepts could be borrowed
to create our own visualization technique. The design and
creation of the app took place later in the process. After testing
in use, interface refinement took place for the app too.
B. Team Member Responsibilities

Anja was responsible for the dynamic time warping and
melodic contour analysis portion of the system. Additionally,
she will be working on creating the database of songs that the
system will match to.

Nolan worked on the chroma feature analysis and training the
CNNs. This will involve generating the cross-similarity
matrices for chroma features.

Wenting worked on the data visualization aspect of the
project and the design and creation of the web application.
C. Budget

We did not use our budget.
D. Risk Management

The major risk of this project is its performance. Since there
are no hardware dependencies, the points of failure are all in the
algorithm not working or being very slow. We were aware of
the risks from the beginning after looking at the performance of
existing projects. For example, the original plan was to do
polyphonic pitch tracking and break down sound files by
ourselves, but that was found to be too difficult, so we switched
to the back-up plan of just using existing MIDI files for analysis.

Our original design included using two parallel paths, the
CNN and the melodic contour matching, which are detailed in
Section V.A and V.B, in order to produce a match score
weighted between the results of the two paths. Our thought had
been that doing the matching twice would hopefully produce a
better result, and we had yet to see how accurate each of those
branches would be. However, we realized that the melodic
contour analysis would be very slow, and it would be infeasible
to perform it with all the songs in the library and still meet our
time requirement. Making that branch considerably faster
would require considerable effort and time that we believed was
better spent in other aspects. We also found that the CNN was
not as accurate in our problem space as it had been for cover

song identification, but it was still very quick. With these two
pieces of information, we decided to alter our design to make
them sequential steps, trading off potentially better accuracy for
speed.

Another risk that we encountered was having enough time to
complete all of our tasks and to a high enough standard. The
research portion of our project took more time than expected,
but from our research, we found that some of the things we had
allotted time for would not take as long as originally predicted.
Therefore, we were able to alter our schedule to still complete
the project on time and create a viable product.

VII. RELATED WORK
Since the problem we are setting out to solve has no well-

accepted solution, we are drawing most of our inspiration from
related work in the computer music community. Our query by
humming path featuring dynamic time warping and melodic
contour analysis draws from a query by humming paper by
Roger Dannenberg, a CMU professor [1], [4]. The area of
extracting melody from music is a topic of much current
research. Most melody recognition on waveforms is not
advanced enough to handle a popular song, but there are several
methods for extracting a melody from a MIDI file. One of these
was used by Prof. Dannenberg in his query by humming paper
[5]. While this program is no longer under development, we are
hoping to find a program with similar features that is currently
available. There are many such programs being developed by
computer music research groups around the world. Most extract
melodies by identifying repeated sections of music to return a
list of potential important themes.

Chroma feature analysis is a thoroughly-researched topic,
and many variations of it and post-processing techniques have
been proposed for different applications by different research
groups [2]. Also, chromagrams have been used to monster mash
songs together in many different contexts: work has been done
on matching a chromagram of a song fragment to the
corresponding location in the song [3]. This team also
considered matching songs to their covers, but they worked
within a pretty specific library of different recordings of
classical pieces--each “cover song” had the same orchestration
and music, but different performers and conductors. Because of
this, we should expect a match on our system (which will be
guaranteed to have different music and performers, and will
most likely also have some slight tempo variations) to look very
different than a match on their system. Work has also been done
using cross-similarity matrices and neural networks to identify
cover songs [6]. This work also differs from ours because the
matching is on two complete songs, with (presumably)
complete instrumentation and also with all melodies and
sections of the song intact, while our plan is to match a full
studio-recorded song with a solo vocal artist who will only sing
one important melody, or perhaps only a fragment of one.

The only commercial system we are aware of that performs
a task similar to ours is called SoundHound. This is a mobile
song-recognition app that offers features similar to Shazam
(identifying a studio recording), as well as being able to
recognize user-sung melodies as our project does. There is no
data available (to our knowledge) on how SoundHound is
engineered and what techniques they use to generate matches.

18-500 Final Project Report: 05/08/2019

8

While SoundHound’s library of melodies is much more
extensive than ours, some experimentation with the app
suggests that they use different techniques for matching sung
samples vs matching full recordings. Very popular, well-known
songs could mostly be matched via singing into SoundHound,
but some slightly more obscure songs could only be recognized
via playing the studio recording. Anecdotally, SoundHound
also often confuses cover songs or different versions of a song
with the song they are replicating, which suggests that even
their algorithms for recording to recording identification
incorporate some melody and theme analysis (or, at least, more
than Shazam’s do).

VIII. FUTURE WORK
There is lots of room for our improvement in our current

system. The CNN portion of the algorithm was based on the
cover song identification work in [6], and our CNN system
mirrored theirs very closely. In addition to the obvious
improvements of having a more robust and diverse set of
training data (our training set consisted of only our 3 team
members singing the songs in the database), there was probably
some room for improvement in the system setup itself. The
neural network was trained to classify match vs. no match, but
the actual metric that mattered was that the correct song have
the highest probability of a match. This led to clunky iteration
patterns of training the network and then having to run a
completely different set of tests to determine if it was working
well. Future work should look into changing the loss function
of the CNN so that we can train it to more closely match the
metrics we care about--perhaps instead taking in a single cross-
similarity matrix and spitting out a binary classification of
match/no match, it could accept a set of matrices for every song
in the database and emit a probability value for %match of each
song.

Another area for improvement is our sequential algorithm:
first CNN analysis followed by DTW analysis. This was a good
decision for our project considering our constraints--
specifically, neither of our two algorithms was quite robust
enough to support the entire project on its own. Tying them
together helped us to get a demo-able product, but is not really
the best way to do things. Notably, this serialization of our
algorithms means that instead of shoring up one anothers’
weaknesses, the two approaches are now both affected by each
others’ shortcomings: for example, a song with poor training
data in the neural network will rarely if ever be submitted to the
DTW section, and a song with poor DTW performance will not
be returned as a result even if the neural network can recognize
it. A better solution should run the two algorithms in parallel
and incorporate some sort of voting layer to combine the results
and produce a final match.

As for the dynamic time warping, we see some potential for
improvement in this area. For example, DTW does a great job
at aligning the contours to the best of their capability. But the
scoring upon this can be interpreted in many ways. For example,
if the alignment snaps the two contours together, and the
difference was they had purely identical shapes that were
shifted apart vertically, this would ideally show a zero distance.
As compared to a song that is definitely wrong, but the sum of
its aligned differences might be smaller than the previously

described one. So there are clear outliers where the distance is
not a good evaluation tool. On alternative method we
considered approaching was taking the two aligned samples and
finding the cross correlation function. If the two samples were
the same, this would be the same as finding the autocorrelation
function. One key characteristic about the autocorrelation
function is its symmetry. So finding an evaluation technique
based on the symmetry value for the cross correlation of the
dynamically warped and aligned samples might be one area of
scoring to look into in the future.

A final potential for improvement is to decrease the search
space. Currently, the algorithm compares the sample with very
small offsets against the longer database entry, in an attempt to
find all possible windows of match. A more intelligent
approach might prune out possible matches found previously,
or optimize the hop size so that the minimum amount of
comparisons between the query and database entry can be made.

IX. SUMMARY
Our system was able to meet our design specifications,

although there is much that could be improved to do much
better than the original specifications. The CNN step was fast
but not accurate, while the time bottleneck was in the melodic
contour matching. It was possible for the CNN to eliminate the
correct answer from the library before the melodic contour
matching step, which meant that it was impossible to be correct
after that point. We acknowledged the tradeoff of this aspect of
our design, and improvements to the CNN could help improve
the app’s performance.

Throughout this process, we have learned a number of
valuable lessons. We received helpful advice from multiple
sources: the people who wrote the cover song identification
with CNNs paper [6] and CMU faculty and graduate students
(Richard Stern, Raymond Xia, Tyler Vuong), which goes to
show that people can be quite helpful in assisting others’
research endeavors, so one should not be afraid to reach out to
all the resources for help. We also learned to be flexible in our
design and timeline. Our design changed multiple times
throughout this process, and the final design was able to meet
our desired metrics better than the original design ever could.
We evaluated the tradeoffs in time and accuracy to reach our
final design and became better engineers along the way. The
original timeline did not allow us enough time for the amount
of research that we ended up doing, though this also allowed us
to better understand what we were doing. We also did not leave
enough time for slack; some of the tasks we allotted time for in
our schedule did not take as much time as anticipated, so we
could have had more time at the end for testing, debugging, and
further intellectual discussion.

REFERENCES
[1] R. Dannenberg et. al, “A Comparative Evaluation of Search

Techniques for Query-by-Humming Using the MUSART Testbed”
http://www.cs.cmu.edu/~rbd/papers/musart-testbed-JASIST-
2007.pdf

[2] M. Müller and S. Ewert, “Chroma Toolbox: MATLAB
Implementations for Extracting Variants of Chroma-Based Audio
Features”
https://www.audiolabs-erlangen.de/content/05-fau/professor/00-
mueller/03-
publications/2011_MuellerEwert_ChromaToolbox_ISMIR.pdf

18-500 Final Project Report: 05/08/2019

9

[3] M. Müller, F. Kurth, and M. Clausen, “Audio Matching Via
Chroma-Based Statistical Features” http://resources.mpi-
inf.mpg.de/MIR/chromatoolbox/2005_MuellerKurthClausen_Audi
oMatching_ISMIR.pdf

[4] D. Mazzoni and R. Dannberg, “Melody Matching Directly From
Audio” https://www.cs.cmu.edu/~rbd/papers/melodymatching-
ismir01.pdf

[5] C. Meek and W. Birmingham, “Thematic Extractor”
http://ismir2001.ismir.net/pdf/meek.pdf

[6] S. Chang, J. Lee, S. Choe, and K. Lee, “Audio Cover Song
Identification using Convolutional Neural Network”
https://arxiv.org/pdf/1712.00166.pdf

18-500 Final Project Report: 05/08/2019

10

Fig. 3. Gantt chart of the schedule and division of tasks

18-500 Final Project Report: 05/08/2019

11

Fig. 6 System diagram and data flow of web application

Fig. 8 Data Visualization: Melodic Contour of Match vs. Input (left), histogram of differences (right)

