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Abstract—A system capable of identifying a song based on a 

simple section of melody sung into a microphone by a user. This 
will be implemented with a combination of matching against 
preformatted MIDI files using melodic contour analysis where 
available, and using machine learning methods on a cross-
similarity matrix of a song’s chroma feature representation for 
songs without available MIDIs.  
 

Index Terms— Chroma feature, convolutional neural network 
(CNN), cross-similarity, dynamic time warping, machine learning, 
melodic contour, MUSART, query by humming, Roger 
Dannenberg, signals, sound, theme extraction 

 

I. INTRODUCTION 

HIS project makes an application that will match a 
human’s sung or hummed input to the existing song that 

they were trying to identify. Often times a person will have a 
tune stuck in their head and will not have any way to identify it 
unless they can remember some lyrics to search, so the 
application we are trying to build will try to solve this.  

There are currently very few applications that will recognize 
a song through human singing or humming due to the 
complexity of the problem. The two most common apps to 
achieve something to this effect are Shazam and SoundHound. 
However, Shazam can only match to actual songs rather than 
human input, and SoundHound has poor performance and 
vague technical details. The approach we will be taking in our 
project borrows concepts from the query by humming project 
and chroma feature analysis with convolutional neural networks, 
which has been done for cover song identification. These two 
approaches use both approaches sequentially to match the input 
to an existing song. The system goals and metrics are to achieve 
65% accuracy on matching singing or humming to a song and 
to match in under 90 seconds. 

II. DESIGN REQUIREMENTS 
The project will be packaged as a web app. This adds some 

constraints to what the user’s experience should be like. From 
start to end, opening the app should lead to a straightforward 
interface, from which the user sings into the microphone. 
Qualitatively, the user shouldn’t have to extensively worry 

about the sound quality or noisiness of their environment, but it 
should be reasonable. For example, if there are multiple other 
voices adding to the input captured by the microphone, the 
accuracy of the app is guaranteed to decrease. We will test our 
ability to filter out audio input noise by trying out multiple 
queries which are all consistent along the dimensions of singer, 
song, time frame, and instead vary the environment of recording. 

Next, as part of the experience, past a seamless vocal input, 
the user shouldn’t expect to wait more than 90 seconds for the 
app’s response. So from our technical point of view, we hope 
to constrain the system to taking only 90 seconds for 
completion and decision. The components of the pipeline 
include taking in the input and filtering it, then performing 
chroma feature extraction, creating a cross-similarity matrix for 
all possible pairings of  (sung_input_chroma, 
library_song_chroma), using the resulting matches to filter out 
the library for workable songs, retaking the raw input and 
bucketing the input to sampled frames that are empirically 
optimized, running the melodic contour and DTW algorithm 
against all pairings of (sung_input, filtered_library_song_midi), 
suggested by the neural network, sorting the outputs of this 
analysis and selecting a final top three song output list. 
Finally, the user should see an ordered list of the top 3 songs 
that their sung input potentially matches against. The last 
critical constraint we plan for is obtaining 65% accuracy, with 
a success defined as the truly intended song, let’s call this the 
target, appearing in the top 3 list. We plan to test this across 
multiple singers, songs, and song time frames, and begin with 
a small database of about 50 songs. Qualitatively, the user 
should see a simple to understand list, and on top of this, a 
data visualization image that indicates why the song matches 
that were given were made. The visual will indicate which 
parts of the user’s query lined up with the matched songs, and 
to what degree the music lined up. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

 
Fig. 1. System picture. 

The flow of data begins with a user singing into a microphone. 
That input will be put through a filter to reduce background 
noise, and then a chroma feature plot will be generated. From 
this, a cross-similarity matrix is generated against the chroma 
feature of every song in the database. These are evaluated by 
the CNN to produce a set of most likely matches. The most 
likely matches, as determined by the CNN, are then sent to the 
melodic contour analysis portion of the system for further 
evaluation. Every song in the database has a pre-extracted 
melody line, which is used to compare against the melodic 
contour of the user input for the most likely matches. The final 
match is the song melody has the best match to the input sample 
after applying dynamic time warping. 

Once this process is complete, the app shows a visualization 
of what was matched and how it was matched. The visualization 
consists of a plot of the melodic contours of the input and 
matched song, as seen in Fig. 2(a), and a histogram of 
differences, as seen in Fig. 2(b), for each of the matches. 

 
(a) 

 
(b) 

Fig. 2. Example of data visualization (a) Melodic contour plot of matched 
song vs. input. (b) Histogram of differences between melodies 
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IV. DESIGN TRADE STUDIES 
There are many parts to our design, including sequential sub-

tracks to compute the decision more quickly. Design decisions 
like these were made on the basis of prioritizing efficiency and 
putting most emphasis on the time metric. In general, our trade 
offs were between accuracy and time of implementation or 
algorithmic time complexity, and helpfulness vs. time of 
implementation, and amount learned vs. time of 
implementation. Key categories that were logistically debated 
were the following: 

• deciding on the algorithm to use for musical 
processing and comparison and potential 
modifications 

• deciding how large to make the database  
• deciding which parts of the project to borrow and 

which parts to implement ourselves  
• deciding which test dimensions were the most 

important to analyze. 
The design decision progression is outlined for the above 

compartments of the overall system in the following sections, 
along the debated lines of importance as mentioned before the 
list of key categories. 
 

A. Algorithm and Database Size 
We consulted the Query By Humming paper which did a 

proper testbench to compare multiple algorithms. As shown by 
their results in Table 1, the most successful algorithm was the 
Melodic Contour matching one, which we have selected to use 
in our project. The test suite for these results was fairly 
randomized and uniform, so it more closely resembled our 
expected range of input and usage. We found in another paper 
for it to have a mixture of 100% accuracy, also measured with 
the “contained-in-top-3” success definition, and 80% accuracy, 
for varying test suites of rock songs and jazz songs, respectively 
[4]. Since both of these values are above our target value of 75% 
for accuracy, this algorithm seemed sufficient. 
 

Table 1. Table of MRR values for various algorithms from MUSART test 
bench 

 
  

A heavy point of consideration was the tradeoff in 
algorithmic time complexity and accuracy. While the Melodic 
Contour algorithm is accurate to the degree we wish to see, it is 
also significantly slow, as it is a linear search through the 
database per length of the input string. To hone in on a region 
of higher performance, we consult Fig. 3, wherein we notice 
that there is a plateau in algorithmic performance as a function 
of songs in the database. We also logically noted that having a 
smaller database would decrease the general search time for a 

linear algorithm, helping us achieve our goal of under 1.5 
minutes potentially, so we were set on starting with a small 
database of roughly 50 songs and filter it to 25 by passing the 
query through the first algorithmic sub-track (the machine 
learning one). We also found in the paper an estimate of about 
23ms on a  1.8GHz Pentium 4 Processor per song match 
for an algorithm that is a O(mn) where m and n are string input 
lengths, as melodic contour will be since it tries every window 
frame for overlap. Considering the added runtime for the DTW 
on top of this, since it will not be constant but also a linear 
search of these lengths, we get O(mn2) so 529ms. Thus to obtain 
our under 90 seconds goal, our database would need to meet an 
optimized version of (1), with T_max set to 1.5 minutes 
measured in milliseconds. We found that the melodic contour 
algorithm actually took 1 second per song that it was compaing. 
  A third consideration was to include the CNN component in 
the algorithm pipeline first. Fortunately, training the network is 
the biggest bottleneck, which can be done ahead of time as a 
step for preprocessing, and we can make choices in our network 
architecture to ensure that, once trained, the network can emit 
classifications in a reasonably short amount of time. Our 
database of waveform-format songs can be preprocessed into 
chromagrams, so that the only calculation necessary will be:  

1. Turning a sung query into a chromagram 
2. Creating a cross-similarity matrix 
3. Running the classifier (CNN). 

  Since the maximum length of a song is about 3-4 minutes, and 
the maximum length of a sung query will be 40 seconds, our 
cross-similarity matrix has some reasonable bounds on its size: 
we can expect that somewhere under 10,000 different distances 
need to be computed to create the matrix. However, as our 
database size increases, the model will need to be updated to 
account for new songs--there’s no way to add a song to the 
classification output of the neural network without retraining 
the entire thing.    

 
Fig 3. Plot of MRR, a measure of accuracy which when closer to 1 indicates 
greater accuracy, vs. database size. 
 
 T_max >= 1000*database_size         (1) 
 
We chose to prioritize the time constraint over the accuracy 
one, and hence to change the original design in where the 2 
subtracks ran in parallel to instead run in sequence, since our 
test data found that the time dimension was more off from 
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predicted than the accuracy dimension. So, in creating both 
pipelines, we found that the CNN one was very fast while not 
very accurate and that the melodic contour one was extremely 
slow (on the order of 5 minutes) but more accurate. Because 
of this, we went with the two-stage refinement that could 
speed up the more accurate algorithm but also not fall victim 
to its influence of being incorrect. That is, putting the 2 
pipelines in sequential order has the fast but less accurate 
decision be made to filter out obviously incorrect songs, 
decrease the size of the database from 50 to 25, and this 
filtered database is then fed to a slower but more accurate part 
of the pipeline which can be sped up on the smaller database. 
    A final consideration was modifying the original DTW 
algorithm. While we initially wanted to set out to segment the 
song within a range of 0.5 to 2.0 (scale factor), that is 
bucketize the sample multiple times for a potentially better 
match along the time scale. If we had done this, however, we 
would have to do multiple queries against the same library, 
and then processing time would have linearly increased. So 
instead of going from the ideal minute and a half, we would at 
least go up to a few minutes. We decided this was not worth 
our desire to be fast, so we took this portion of the 
comparisons out. 
B. Implemented vs. Borrowed Subsystems 
    Another consideration was deciding which parts would be 
borrowed and which parts would be implemented by us. We 
decided after looking at the extensive algorithm for MIDI 
processing in the Meek paper that the tradeoff for time of 
implementation was not worth doing that portion of the 
pipeline by ourselves [5]. Since we also were not able to 
interface with their code, we decided in the end to do melody 
extraction by hand. While initially we wanted the help of 
Professor Roger Dannenberg’s graduate student, that did not 
end up being possible. Instead we came up with our own 
simple way that required limited resources, described in 
section V.5. Creating the whole library in this way took about 
4 hours, which was reasonable. 
    The Chroma feature extraction portion was also not seen to 
be worth self-implementing, since successful MATLAB 
toolboxes existed already [2]. 
    We don’t have any equations to describe our decision 
making process for this category. It was instead a qualitative 
evaluation based on thinking about which portions of the 
pipeline were most vital to the integrity of the algorithms, 
which parts we were most interested in learning about, and 
which parts would take unnecessarily long amounts of time to 
complete. So in summary, with this in mind, we pruned MIDI 
file pre-processing and chroma feature extraction from our list 
of duties. 
 
C. Test Dimensions 

Here we discuss the test dimensions that were of most 
concern for evaluating project success. The dimensions we 
could enumerate were 

• different singers 
• different songs 
• different time frame within a song 
• duration of query 
• noise-levels of environment of query 

and we created tests to vary each in an isolated manner to see 
its performance. Since we have at least three test users, it was 
easy to compare a sung sample from each of us and ensure that 
it can generate accurate results a reasonable amount of the time.  
        Since we have two algorithmic paths, we performed tests 
on both algorithms individually as well as integration tests on 
the completed app, which were used in our final evaluation. 
   Testing different songs was also relatively straightforward 
once we have entered these songs into our database or trained 
our model on them. Once these tasks were complete, we 
confirmed that sung samples of melodies from each of the songs 
in the database can return a match. We can also test queries for 
the “main melody” of a song as well as other, less important 
musical sections, test with shorter queries that contain only a 
fragment of a melody, and test with queries in different 
environments--ideally, this would work even in a noisy, 
outdoor, public space. 
    Once our system was up and running, an automated 
regression testing suite was constructed using a handful of 
queries from each of us for several songs each. These canonical 
queries spanned the range of these potential limiting factors and 
ensured that any changes to our algorithm didn’t affect our 
correctness guarantees (within reason). Fig. 4 depicts some 
outputs of matched contours during the testing process. 

 
Fig 4. 4 comparisons of sung query (blue) to database entry (orange). For each 
of the four subplots, the top line is the original contours, the bottom plot is the 
aligned versions from DTW. 
       
       We found that the system was relatively robust to different 
singers--there were no statistically significant differences in 
accuracy across different individuals singing songs. However, 
the environment a singer is in was important. Our tests on demo 
day in a crowded gym were far less reliable than the preliminary 
tests we ran.  
        Our eventual product did not incorporate robust tests for 
either query duration (we tested queries of 30-40 seconds) or 
the section of a song being sung (although not every sample we 
tested was from the same section of the song we were matching 
to, matching different sections was never the focus of its own 
test suite). Once the system was integrated, we realized that we 
had plenty of work to do just to improve our accuracy numbers, 
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although we believe that these metrics would be important for 
a fully-featured product, they were a lower-priority for our team. 
 

V. SYSTEM DESCRIPTION 

A. Subsystem 1: Chroma Feature Analysis 
       Chroma Feature analysis will be the first component of 
our song recognition pipeline. For this, we will convert both 
songs and sung samples into a popular audio processing data 
format known as a Chroma Feature (or chromagram). This is 
more or less a variant of a normal spectrogram: data is 
converted from the time domain into the frequency domain, 
and then is bucketed amongst the 12 notes of the Western 
chromatic scale.  
Chroma Feature also combines all octaves into a single, 12-
element vector, where each element corresponds to the total 
intensity of a note across all octaves. This is perfect for our 
purposes, since we want to allow for singers with different 
ranges.  
    There are several interesting post-processing techniques that 
can be applied to a chromagram [2], such as normalization 
along a single 12-dimensional chroma vector, normalization 
across different chroma vectors, changing note intensity to be 
represented with a logarithmic versus a linear scale (closer to 
how sound intensity is perceived by the human ear), and 
performing windowing functions across neighboring chroma 
samples to smooth notes out (this has the effect of removing 
much of the timbre/instrument information). These, plus the 
problem of how many samples to create in the first place, 
leave a lot of tuning even in the chroma feature step of this 
matching algorithm.  For our system, we selected CENS 
(chroma energy normalized statistics), which takes averages 
over relatively large time windows. This is meant to introduce 
invariance to local tempo variations, such as those caused by 
different articulation or singing at slightly different speeds.  
    These Chromagrams will then be subjected to cross-
similarity analysis. The cross-similarity matrix will essentially 
show the distance between EVERY point on the sung sample 
and EVERY point on the reference song. If the song is a 
match, it should be more likely to produce interesting patterns, 
like diagonal lines of similarity over time, and blocks where 
many adjacent samples are all similar to one another. A 
convolutional neural network (CNN) is trained to recognize 
these patterns in the cross similarity matrices and then to 
determine the extent of a match between the input song and all 
the songs in the library. In this step, half the library is 
eliminated as potential matches, and the remaining half is 
passed to the second subsystem as its starting library for 
melodic contour matching. 
B. Subsystem 2: Dynamic Time Warping and Melodic 

Contour Analysis 
The second component of our pipeline will be discretizing 

the input and applying a melodic contour / dynamic time 
warping (DTW) algorithm to the input. The first objective is to 
create a sequence of notes/pitches from the input. The input is 
to be sampled at 44100Hz, as this is a good standard. With an 
experimentally determined optimal window frame of 80ms, we 
use the Power Spectral Density function to find the intensities 

for each possible frequency. We analyze peaks within these 
PSD plots and find the maximum to determine the most likely 
pitch (frequency) for that window. Since this granularity is 
quite high, afterwards, the input is bucketized. We create a 
larger window that is on the order of one one thousandth the 
length of the query and one ten thousandth the length of the 
library entry, and for each frame that the sample audio is broken 
down into, a representative mode frequency is to be assigned to 
that frame, and thus a sense of bucketing the input is applied; 
we can call this creating a melodic contour on the input. The 
representative frequency for each sample frame is to simply be 
assigned the pitch of the note that occupies the most space in 
the frame. From this we obtain our sequence of n pitches for the 
query. 

This same processing input, of creating a sequence we call 
the melodic contour, is to be applied to each song in the 
database as well. This procedure is to have been done ahead of 
time, so that with each song in the fixed database, a sequence 
of the melodic contour already exists as data to sift through. In 
detail, here is how we create and preprocess our library. It was 
done in two ways. The first was looking up existing MIDI files 
that could be opened with MuseScore, and the second was 
simply finding existing arrangements of the songs on a 
MuseScore database, from which we could download the 
MuseScore representation of the sheet music. One part of this 
that took a while was making sure the melody was correct and 
representative of what the song sounded like in common use, 
and this was simply done by ear. The biggest bottleneck for this 
process was isolating the melody then. Potential problems 
included the melody being polyphonic, and thus deleting extra 
parts, the melody coming in with extra instruments of the song, 
and thus muting the extra parts, the melody being split among 
multiple staffs and having to isolate regions of just the melody, 
and the melody being slightly inaccurate and correcting it by 
hand in the MuseScore program. After an accurate version of 
the melody was extracted in MuseScore, the instrumentation in 
the program was changed to ‘Grand Piano,’ the synthesizer 
setting were set to the dryest possible ones (turning up HF 
damping all the way, decreasing reverb to zero), and the tempo 
of playback was boosted by about 10% of the original song 
speed (even more if the original score was off tempo). And then 
from MuseScore, the song was exported as a WAV file, and the 
pitch extraction algorithm was run on this to obtain the data 
representation of the melodic contour. 

 
Fig 5. A visual of how the data across 2 time series are lined up differently 
between Euclidean distance and DTW comparison methods. 
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Next, we describe the concept behind dynamic time warping. 
The use of this comparison technique is to find a more 
intelligent measure of distance between 2 time series data sets. 
Instead of a simple naive Euclidean distance approach, DTW 
uses a matrix with each song along each axis to instead find 
which parts of one series more closely resemble other parts of 
the other series. This can be visualized in Fig. 5, 
which clearly shows that DTW lines up parts of the data series 
which are more similar. Thus overall, using this approach is 
more helpful in finding melodic similarities considering that 
factors such as temporal alignment or scaling (which preserves 
shape but not length, but with DTW would be noticed), which 
shouldn’t impact the accuracy, can now be naively dropped as 
influencing the search. Thus overall the match is more based on 
melodic integrity. 

So, within our framework, the DTW algorithm, which is 
computed using a distance matrix and from this distance matrix 
finding the optimal/cheapest path to the final point, will be 
applied between the pitch vectors from the input and each song 
in the database. Moreover, it will be applied to each pair of input 
and database song for each n offsets of the data points, in a 
windowing effort. Then, with all these comparisons, an overall 
distance score will be computed, and the scores will be sorted 
in by smallest distance for all the possible combinations of 
matches between audio input and database song for all possible 
offsets. The top 3 smallest distances for distinct songs will 
represent  the closest matches of the query to an element in the 
database. 
C. Post-processing: Data Visualization 

There will be a data visualization portion to see what the 
matching algorithm did regardless of whether or not it is able to 
generate a match. This will also serve as a form of visual 
debugging for the system so that we can see whether the system 
is generating garbage matches or whether the melodic contours 
do in fact seem similar. The two visualizations that are 
produced for each of the top three matches are (1) a plot of the 
input melodic contour and the match’s melodic contour and (2) 
a histogram showing the distribution of differences between the 
contours of the input and match at each point in time. The 
contour plot is a very intuitive way of seeing where the singer 
was correct or incorrect as well as where they can potentially 
improve to sing the song correctly, assuming the song is 
matched. If the song is not a match, it is interesting to see what 
parts of the song resulted in the algorithm determining that it 
was a close match. 

D. Front-End Web Application 

    The web application uses React for the front end and a 
Python Flask server for the back end. The system diagram and 
data flow can be found in Fig. 6. A user is able to start and 
stop recording themself singing, and when they press stop, the 
audio is sent to the Flask server via an HTTP POST request. 
The audio is saved into a .wav file which is then used for 
chroma feature analysis and DTW/melodic contour analysis. 
The results of the melodic contour analysis, which is the last 
step in the matching process, are written into a text file. These 
results are then read back out of the file and parsed to get the 
melodic contours, both of the input and matched songs, and 

song metadata. The contours and metadata are then passed on 
to generate the contour plots and histograms. 
    After the plots are generated, the results are sent back to the 
front end as JSON data. The front end then sends GET 
requests to the Flask server to retrieve the contour plots and 
histograms for each of the top three matches. Once this is 
complete, the web application then displays the results ranked 
1-3, and the user can click to expand or collapse the plots for 
each matched song. Finally, they can submit a new query and 
begin this all over again. An illustration of the UI along with 
the data visualizations can be seen in Fig. 7 and Fig. 8, 
respectively. 
 

 
Fig. 7 User Interface of web application 

VI.  PROJECT MANAGEMENT 

A. Schedule 
The schedule can be viewed in Fig. 3 at the end of the 

document. This project began with researching similar existing 
projects and contacting professors for their advice and 
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suggestions for our process. Using this information and 
advisance, we decided on the approach to take and began 
implementation. 

The dynamic time warping and melodic contour analysis 
portion began with the pre-processing of MIDI files and 
filtering background noise from human input, and then 
proceeded to matching the input against the existing songs. The 
chroma feature analysis began with converting songs into the 
chroma format and examining the similarity matrices, and then 
training convolutional neural nets to recognize the similarities. 
Before training, however, all three of us had to sing the 50 
samples from the database in order to have images to train on. 
Testing for both branches of the matching process was done 
separately for each portion to see their individual performance 
and then integrated together for the complete system, which 
was were we changed the pipeline to run the subtracks in 
sequence rather than parallel. 

The data visualization and application portion begin with 
research and testing of existing data visualization methods to 
see what could be used and what concepts could be borrowed 
to create our own visualization technique. The design and 
creation of the app took place later in the process. After testing 
in use, interface refinement took place for the app too. 
B. Team Member Responsibilities 

Anja was responsible for the dynamic time warping and 
melodic contour analysis portion of the system. Additionally, 
she will be working on creating the database of songs that the 
system will match to. 

Nolan worked on the chroma feature analysis and training the 
CNNs. This will involve generating the cross-similarity 
matrices for chroma features. 

Wenting worked on the data visualization aspect of the 
project and the design and creation of the web application. 
C. Budget 

We did not use our budget. 
D. Risk Management 

The major risk of this project is its performance. Since there 
are no hardware dependencies, the points of failure are all in the 
algorithm not working or being very slow. We were aware of 
the risks from the beginning after looking at the performance of 
existing projects. For example, the original plan was to do 
polyphonic pitch tracking and break down sound files by 
ourselves, but that was found to be too difficult, so we switched 
to the back-up plan of just using existing MIDI files for analysis. 

Our original design included using two parallel paths, the 
CNN and the melodic contour matching, which are detailed in 
Section V.A and V.B, in order to produce a match score 
weighted between the results of the two paths. Our thought had 
been that doing the matching twice would hopefully produce a 
better result, and we had yet to see how accurate each of those 
branches would be. However, we realized that the melodic 
contour analysis would be very slow, and it would be infeasible 
to perform it with all the songs in the library and still meet our 
time requirement. Making that branch considerably faster 
would require considerable effort and time that we believed was 
better spent in other aspects. We also found that the CNN was 
not as accurate in our problem space as it had been for cover 

song identification, but it was still very quick. With these two 
pieces of information, we decided to alter our design to make 
them sequential steps, trading off potentially better accuracy for 
speed. 

Another risk that we encountered was having enough time to 
complete all of our tasks and to a high enough standard. The 
research portion of our project took more time than expected, 
but from our research, we found that some of the things we had 
allotted time for would not take as long as originally predicted. 
Therefore, we were able to alter our schedule to still complete 
the project on time and create a viable product. 

VII. RELATED WORK 
Since the problem we are setting out to solve has no well-

accepted solution, we are drawing most of our inspiration from 
related work in the computer music community. Our query by 
humming path featuring dynamic time warping and melodic 
contour analysis draws from a query by humming paper by 
Roger Dannenberg, a CMU professor [1], [4]. The area of 
extracting melody from music is a topic of much current 
research. Most melody recognition on waveforms is not 
advanced enough to handle a popular song, but there are several 
methods for extracting a melody from a MIDI file. One of these 
was used by Prof. Dannenberg in his query by humming paper 
[5]. While this program is no longer under development, we are 
hoping to find a program with similar features that is currently 
available. There are many such programs being developed by 
computer music research groups around the world. Most extract 
melodies by identifying repeated sections of music to return a 
list of potential important themes. 

Chroma feature analysis is a thoroughly-researched topic, 
and many variations of it and post-processing techniques have 
been proposed for different applications by different research 
groups [2]. Also, chromagrams have been used to monster mash 
songs together in many different contexts: work has been done 
on matching a chromagram of a song fragment to the 
corresponding location in the song [3]. This team also 
considered matching songs to their covers, but they worked 
within a pretty specific library of different recordings of 
classical pieces--each “cover song” had the same orchestration 
and music, but different performers and conductors. Because of 
this, we should expect a match on our system (which will be 
guaranteed to have different music and performers, and will 
most likely also have some slight tempo variations) to look very 
different than a match on their system. Work has also been done 
using cross-similarity matrices and neural networks to identify 
cover songs [6]. This work also differs from ours because the 
matching is on two complete songs, with (presumably) 
complete instrumentation and also with all melodies and 
sections of the song intact, while our plan is to match a full 
studio-recorded song with a solo vocal artist who will only sing 
one important melody, or perhaps only a fragment of one.  

The only commercial system we are aware of that performs 
a task similar to ours is called SoundHound. This is a mobile 
song-recognition app that offers features similar to Shazam 
(identifying a studio recording), as well as being able to 
recognize user-sung melodies as our project does. There is no 
data available (to our knowledge) on how SoundHound is 
engineered and what techniques they use to generate matches. 
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While SoundHound’s library of melodies is much more 
extensive than ours, some experimentation with the app 
suggests that they use different techniques for matching sung 
samples vs matching full recordings. Very popular, well-known 
songs could mostly be matched via singing into SoundHound, 
but some slightly more obscure songs could only be recognized 
via playing the studio recording. Anecdotally, SoundHound 
also often confuses cover songs or different versions of a song 
with the song they are replicating, which suggests that even 
their algorithms for recording to recording identification 
incorporate some melody and theme analysis (or, at least, more 
than Shazam’s do).  

VIII. FUTURE WORK 
There is lots of room for our improvement in our current 

system. The CNN portion of the algorithm was based on the 
cover song identification work in [6], and our CNN system 
mirrored theirs very closely. In addition to the obvious 
improvements of having a more robust and diverse set of 
training data (our training set consisted of only our 3 team 
members singing the songs in the database), there was probably 
some room for improvement in the system setup itself. The 
neural network was trained to classify match vs. no match, but 
the actual metric that mattered was that the correct song have 
the highest probability of a match. This led to clunky iteration 
patterns of training the network and then having to run a 
completely different set of tests to determine if it was working 
well. Future work should look into changing the loss function 
of the CNN so that we can train it to more closely match the 
metrics we care about--perhaps instead taking in a single cross-
similarity matrix and spitting out a binary classification of 
match/no match, it could accept a set of matrices for every song 
in the database and emit a probability value for %match of each 
song.  

Another area for improvement is our sequential algorithm: 
first CNN analysis followed by DTW analysis. This was a good 
decision for our project considering our constraints--
specifically, neither of our two algorithms was quite robust 
enough to support the entire project on its own. Tying them 
together helped us to get a demo-able product, but is not really 
the best way to do things. Notably, this serialization of our 
algorithms means that instead of shoring up one anothers’ 
weaknesses, the two approaches are now both affected by each 
others’ shortcomings: for example, a song with poor training 
data in the neural network will rarely if ever be submitted to the 
DTW section, and a song with poor DTW performance will not 
be returned as a result even if the neural network can recognize 
it. A better solution should run the two algorithms in parallel 
and incorporate some sort of voting layer to combine the results 
and produce a final match.  

As for the dynamic time warping, we see some potential for 
improvement in this area. For example, DTW does a great job 
at aligning the contours to the best of their capability. But the 
scoring upon this can be interpreted in many ways. For example, 
if the alignment snaps the two contours together, and the 
difference was they had purely identical shapes that were 
shifted apart vertically, this would ideally show a zero distance. 
As compared to a song that is definitely wrong, but the sum of 
its aligned differences might be smaller than the previously 

described one. So there are clear outliers where the distance is 
not a good evaluation tool. On alternative method we 
considered approaching was taking the two aligned samples and 
finding the cross correlation function. If the two samples were 
the same, this would be the same as finding the autocorrelation 
function. One key characteristic about the autocorrelation 
function is its symmetry. So finding an evaluation technique 
based on the symmetry value for the cross correlation of the 
dynamically warped and aligned samples might be one area of 
scoring to look into in the future. 

A final potential for improvement is to decrease the search 
space. Currently, the algorithm compares the sample with very 
small offsets against the longer database entry, in an attempt to 
find all possible windows of match. A more intelligent 
approach might prune out possible matches found previously, 
or optimize the hop size so that the minimum amount of 
comparisons between the query and database entry can be made. 

IX. SUMMARY 
Our system was able to meet our design specifications, 

although there is much that could be improved to do much 
better than the original specifications. The CNN step was fast 
but not accurate, while the time bottleneck was in the melodic 
contour matching. It was possible for the CNN to eliminate the 
correct answer from the library before the melodic contour 
matching step, which meant that it was impossible to be correct 
after that point. We acknowledged the tradeoff of this aspect of 
our design, and improvements to the CNN could help improve 
the app’s performance. 

Throughout this process, we have learned a number of 
valuable lessons. We received helpful advice from multiple 
sources: the people who wrote the cover song identification 
with CNNs paper [6] and CMU faculty and graduate students 
(Richard Stern, Raymond Xia, Tyler Vuong), which goes to 
show that people can be quite helpful in assisting others’ 
research endeavors, so one should not be afraid to reach out to 
all the resources for help. We also learned to be flexible in our 
design and timeline. Our design changed multiple times 
throughout this process, and the final design was able to meet 
our desired metrics better than the original design ever could. 
We evaluated the tradeoffs in time and accuracy to reach our 
final design and became better engineers along the way. The 
original timeline did not allow us enough time for the amount 
of research that we ended up doing, though this also allowed us 
to better understand what we were doing. We also did not leave 
enough time for slack; some of the tasks we allotted time for in 
our schedule did not take as much time as anticipated, so we 
could have had more time at the end for testing, debugging, and 
further intellectual discussion. 
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Fig. 3. Gantt chart of the schedule and division of tasks 
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Fig. 6 System diagram and data flow of web application

 

 

Fig.  8 Data Visualization: Melodic Contour of Match vs. Input (left), histogram of differences (right)

  


