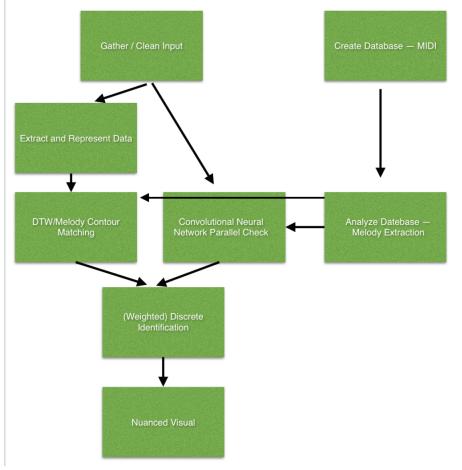

Earworm Design

Team C6: Wenting Chang Nolan Hiehle Anja Kalaba

Application Area

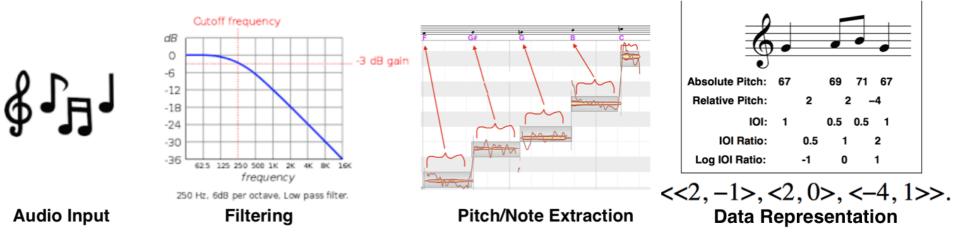
Vocal Input \rightarrow Song Identification

Sing into a microphone a chunk of a selected piece that is contained in a database and have it correctly identified.

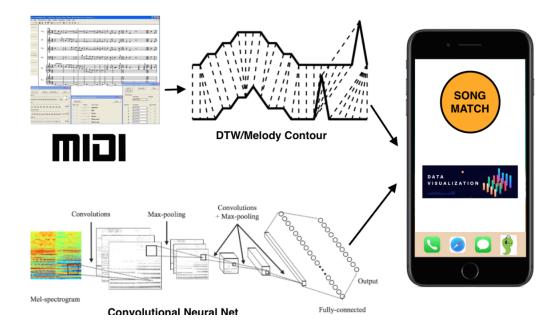

Solution Approach

• Multi-step algorithm inspired by

- A Comparative Evaluation of Search Techniques for Query-by-Humming Using the MUSART Testbed
- Roger B. Dannenberg, William P. Birmingham, Bryan Pardo, Ning Hu, Colin Meek, George Tzanetakis
- Implemented in C -- fast
- Add a data visualization component -- explanation for user
- Potential added robustness -- Convolutional Neural Network membership to cross verify
- Package this as an app



System Specification


System Specification

• Gather Input

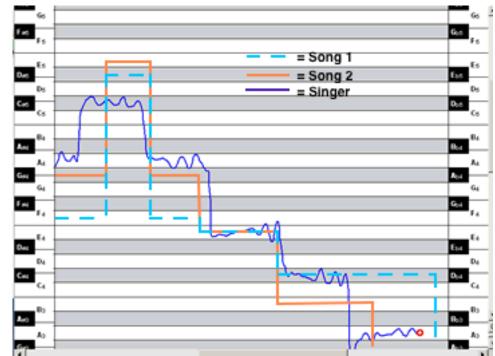
System Specification

 Gather backend and combine with input in analysis to give overall match and visualization

Implementation Plan

- Query By Humming Implementation
- Us:
 - \circ Audio \rightarrow pitch conversion / processing \rightarrow note determination
 - Data representation
 - Melodic Contour / DTW
 - Data Visualization
 - (potential) Convolutional Neural Network
- Borrowed:
 - $\circ \quad \text{Database creation} \rightarrow \text{MIDI Files}$
 - MIDI File processing \rightarrow Melody extraction *ThemeExtractor* (Meek & Birmingham, 2001)

Metrics and Validation


• Accuracy across dimensions: singer, song (song type), time frame, etc.

	Singer_1	Singer_2	Singer_3	Singer_k
Song_1	*	*	×	×
Song_2	\rightarrow	×	*	×
Song_3	\rightarrow	×	×	×
Song_n		\rightarrow		

• Average time for processing and identification

Metrics and Validation


- Test Outputs:
 - Discrete Yes/No on identification
 - Nuance in Data Visualization
- Risk Correction ≈ Analysis Explanation
 - Data Visualization:

Project Management

All

- Read papers and figure out technique for analysis
- Design data format
- Testing
- Anja (Signals)
 - Audio processing
 - Polyphonic pitch tracking
- Wenting (App + ML)
 - Make app
- Work on algorithm with Nolan Nolan (ML + Matching Algorithm)
 - Train library and matching algorithm

Project Management

	2/9	2/16	2/23	3/2	3/9	3/16	3/23	3/30	4/6	4/13	4/20	4/27	
Research song processing													
Contact professors													Anja
Design data format													Nolan
Process existing songs													Wenting
Research ML libraries													All
Create input filtration method													
Develop ML algorithms													
Test input filtration													
Spring Break													
Process human input													
Train neural nets for library													
Design UI for app													
Test multiple segments of same song													
Test multiple singers													
Carnival													
Test multiple environments													
Make application													
Make final presentation													
Write final paper													

Conclusion

- Why?
- Marketable?
- Synthesis of research fields for entertainment?