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Abstract— A system capable of identifying a song based on a 

simple section of melody sung into a microphone by a user. This 
will be implemented with a combination of matching against 
preformatted MIDI files using melodic contour analysis where 
available, and using machine learning methods on a cross-
similarity matrix of a song’s chroma feature representation for 
songs without available MIDIs.  

 
 

Index Terms— Chroma feature, convolutional neural network 
(CNN), cross-similarity, dynamic time warping, machine learning, 
melodic contour, MUSART, query by humming, Roger 
Dannenberg, signals, sound, theme extraction 

 

I. INTRODUCTION 

HIS project will be making an application that will 
match a human’s sung or hummed input to the existing 

song that they were trying to identify. Often times a person will 
have a tune stuck in their head and will not have any way to 
identify it unless they can remember some lyrics to search, so 
the application we are trying to build will try to solve this.  

There are currently very few applications that will recognize 
a song through human singing or humming due to the 
complexity of the problem. The two most common apps to 
achieve something to this effect are Shazam and SoundHound. 
However, Shazam can only match to actual songs rather than 
human input, and SoundHound has poor performance and 
vague technical details. The approach we will be taking in our 
project borrows concepts from the query by humming project 
and chroma feature analysis with convolutional neural networks, 
which has been done for cover song identification. These two 
approaches will take parallel paths to match the input to an 
existing song. The system goals and metrics are to achieve 75% 
accuracy on matching singing or humming to a song and to 
match in under one minute. 

II. DESIGN REQUIREMENTS 
The project will be packaged as an app. This adds some 

constraints to what the user’s experience should be like. From 
start to end, opening the app should lead to a straightforward 
interface, from which the user sings into the microphone. 

Qualitatively, the user should not have to extensively worry 
about the sound quality or noisiness of their environment, but it 
should be reasonable. For example, if there are multiple other 
voices adding to the input captured by the microphone, the 
accuracy of the app is guaranteed to decrease. We will test our 
ability to filter out audio input noise by trying out multiple 
queries which are all consistent along the dimensions of singer, 
song, time frame, and instead vary the environment of recording. 

Next, as part of the experience, past a seamless vocal input, 
the user should not expect to wait more than 1 minute for the 
app’s response. From our technical point of view, we hope to 
constrain the system to taking only 1 minute for completion and 
decision. All algorithmic components to this pipeline include 
taking in and bucketing the input to sampled frames that are 
empirically optimized, in parallel taking in the input and 
running it against chroma feature extraction, running the 
melodic contour and DTW algorithm against all possible 
pairings of (sung_input, library_song_midi), in parallel creating 
a cross-similarity matrix for all possible pairings 
of  (sung_input_chroma, library_song_raw_chroma), sorting 
the outputs of each stream by closest match, averaging them and 
selecting a final song output list. 

Finally, the user should see an ordered list of the top 3 songs 
that their sung input potentially matches against. The last 
critical constraint we plan for is obtaining 75% accuracy, with 
a success defined as the truly intended song, let’s call this the 
target, appearing in the top 3 list. We plan to test this across 
multiple singers, songs, and song time frames, and begin with a 
small database of about 10 songs. Qualitatively, the user should 
see a simple to understand list, and on top of this, a data 
visualization image that indicates why the song matches that 
were given were made. The visual will explore indicating which 
parts of the user’s query lined up with the matched songs, and 
to what degree the music lined up. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

(a) 
 

 

 
(b) 

               

 
(c) 

 
Fig. 1. System picture. (a) overall system. (b) zoom-in of dynamic time 

warping/melodic contour analysis. (c) zoom-in of chroma feature analysis 
and CNNs 

The flow of data begins with a user singing into a microphone. 
That input will be put through a filter to reduce background 
noise, then put through two different branches that use different 
matching methods to maximize the probability of getting a 
match. 

 

The section in Fig. 1(b) shows the dynamic time warping and  
melodic contour analysis branch. The pitches and rhythm will 
be extracted from the filtered input and will be stored as a list. 
The existing songs will be pre-processed from MIDI files into 
the same representation, and then the two will be compared to 
find a match through modified dynamic time warping. 

The section in Fig. 1(c) shows the chroma feature analysis 
branch. The input will be converted in a chroma representation 
to compare against that of the existing song. A convolutional 
neural network will check for patterns in the cross-similarity 
matrices of the sung input and songs in the library. 

Once the song is identified or the system has maxed out on 
time and was unable to identify the song, the app will show a 
visualization of what was matched and how it was matched. An 
example of how this might be shown is displayed in Fig. 2. 

 

 
Fig. 2. Example of data visualization 
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IV. DESIGN TRADE STUDIES 
There are many parts to our design, including a parallel sub-

track to compute the decision in 2 ways. Design decisions like 
these were made on the basis of prioritizing robustness and 
putting most emphasis on the accuracy metric. In general, our 
trade offs were between accuracy and time of implementation 
or algorithmic time complexity, and helpfulness vs. time of 
implementation, and amount learned vs. time of 
implementation. Key categories that were logistically debated 
were the following: 

• deciding on the algorithm to use for musical 
processing and comparison 

• deciding how large to make the database  
• deciding which parts of the project to borrow and 

which parts to implement ourselves  
• deciding which test dimensions were the most 

important to analyze. 
The design decision progression is outlined for the above 

compartments of the overall system in the following sections, 
along the debated lines of importance as mentioned before the 
list of key categories. 
 

A. Algorithm and Database Size 
We consulted the Query By Humming paper which did a 

proper testbench to compare multiple algorithms. As shown by 
their results in Table 1, the most successful algorithm was the 
Melodic Contour matching one, which we have selected to use 
in our project. The test suite for these results was fairly 
randomized and uniform, so it more closely resembled our 
expected range of input and usage. We found in another paper 
for it to have a mixture of 100% accuracy, also measured with 
the “contained-in-top-3” success definition, and 80% accuracy, 
for varying test suites of rock songs and jazz songs, respectively 
[4]. Since both of these values are above our target value of 75% 
for accuracy, this algorithm seemed sufficient. 

TABLE I.  TABLE OF MRR VALUES FOR VARIOUS ALGORITHMS FROM 
MUSART TEST BENCH 

 
 

A heavy point of consideration was the tradeoff in 
algorithmic time complexity and accuracy. While the Melodic 
Contour algorithm is accurate to the degree we wish to see, it is 
also significantly slow, as it is a linear search through the 
database per length of the input string. To hone in on a region 
of higher performance, we consult Fig. 3, wherein we notice 
that there is a plateau in algorithmic performance as a function 
of songs in the database. We also logically noted that having a 
smaller database would decrease the general search time for a 
linear algorithm, helping us achieve our goal of under a minute 

potentially, so we were set on starting with a small database of 
roughly 10 songs. We also found in the paper an estimate of 
about 23ms on a  1.8GHz Pentium 4 Processor per song match 
for an algorithm that is a O(mn) where m and n are string input 
lengths, as melodic contour will be since it tries every window 
frame for overlap. Considering the added runtime for the DTW 
on top of this, since it will not be constant but also a linear 
search of these lengths, we get O(mn2) so 529ms. Thus, to obtain 
our under a minute goal, our database would need to meet an 
optimized version of (1), with T_max set to 1 minute measured 
in milliseconds. 

 T_max ³ 529*database_size (1) 

A third consideration was to include the CNN parallel 
component in the algorithm pipeline. Fortunately, training the 
network is the biggest bottleneck, and we can make choices in 
our network architecture to ensure that, once trained, the 
network can emit classifications in a reasonably short amount 
of time. Our database of waveform-format songs can be 
preprocessed into chromagrams, so that the only calculation 
necessary will be:  

1. Turning a sung query into a chromagram 
2. Creating a cross-similarity matrix 
3. Running the classifier (CNN). 

Since the maximum length of a song is about 3-4 minutes, 
and the maximum length of a sung query should be about 30 
seconds, our cross-similarity matrix has some reasonable 
bounds on its size: we can expect that somewhere under 10,000 
different distances need to be computed to create the matrix. 
However, as our database size increases, the model will need to 
be updated to account for new songs—there is no way to add a 
song to the classification output of the neural network without 
retraining the entire thing.   
  

 
Fig. 3. Plot of MRR, a measure of accuracy which when closer to 1 indicates 

greater accuracy, vs. database size. 

A final note about the algorithm chosen is that the decision 
to keep the 2 pipelines in parallel, as opposed to sequential, 
might be modified later. We do not have personal values for 
what our implemented versions of the algorithms will look 
like with respect to accuracy and time complexity. So, in 
creating both pipelines, we might find a glaring performance 
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gap which might dictate that having a 2-stage search for 
database refinement would be better to meet our accuracy and 
complexity constraints. That is, putting the 2 pipelines in 
sequential order could look something like having a fast but 
less accurate decision be made to filter out obviously incorrect 
songs, which is then fed to a slower but more accurate part of 
the pipeline which can be sped up on the smaller database. 
B. Self-implemented vs. Borrowed Subsystems 
    Another consideration was deciding which parts would be 
borrowed and which parts would be implemented by us. We 
decided after looking at the extensive algorithm for MIDI 
processing in the Meek paper that the tradeoff for time of 
implementation was not worth doing that portion of the 
pipeline by ourselves [5]. Since we also were not able to 
interface with their code, we decided in the end to do melody 
extraction by hand, with the help of Professor Roger 
Dannenberg’s graduate student. 
    The Chroma feature extraction portion was also not seen to 
be worth self-implementing, since successful MATLAB 
toolboxes existed already [2]. 
    We do not have any equations to describe our decision-
making process for this category. It was instead a qualitative 
evaluation based on thinking about which portions of the 
pipeline were most vital to the integrity of the algorithms, 
which parts we were most interested in learning about, and 
which parts would take unnecessarily long amounts of time to 
complete. With this in mind, we pruned MIDI file pre-
processing and chroma feature extraction from our list of 
duties. 
 
C. Test Dimensions 

Here we discuss the test dimensions that were of most 
concern for our evaluating project success. The dimensions we 
could enumerate were 

• different singers 
• different songs 
• different time frame within a song 
• duration of query 
• noise-levels of environment of query 

and we plan to create a test suite to vary each in an isolated 
manner to see its performance. Since we have at least three test 
users, it should be easy to compare a sung sample from each of 
us and ensure that it can generate accurate results a reasonable 
amount of the time. Testing different songs will also be 
relatively straightforward once we have entered these songs 
into our database or trained our model on them. Once these 
tasks are complete, we will simply be able to confirm that sung 
samples of melodies from each of the songs in the database can 
return a match. We can also test queries for the “main melody” 
of a song as well as other, less important musical sections, test 
with shorter queries that contain only a fragment of a melody, 
and test with queries in different environments--ideally, this 
would work even in a noisy, outdoor, public space. 
    An automated regression testing suite can easily be 
constructed once we have recorded a handful of queries from 
each of us for several songs each. These canonical queries could 
span the range of these potential limiting factors and ensure that 
any changes to our algorithm do not affect our correctness 
guarantees. 

V. SYSTEM DESCRIPTION 

A. Branch 1: Dynamic Time Warping and Melodic Contour 
Analysis 

The first component of our pipeline will be discretizing the 
input and applying a melodic contour / dynamic time warping 
(DTW) algorithm to the input. The first objective is to create a 
sequence of notes/pitches from the input. The input is to be 
sampled, with some experimentally determined sampling rate 
but we will most likely begin with 100ms [4]. For each frame 
that the sample audio is broken down into, a representative 
mode frequency is to be assigned to that frame, and thus a sense 
of bucketing the input is applied; we can call this creating a 
melodic contour on the input. The representative frequency for 
each sample frame is to simply be assigned the pitch of the note 
that occupies the most space in the frame. From this we obtain 
our sequence of n pitches for the query. 

This same processing input, of creating a sequence we call 
the melodic contour, is to be applied to each song in the 
database as well. This procedure is to have been done ahead of 
time, so that with each song in the fixed database, a sequence 
of the melodic contour already exists as data to sift through. 

Next, upon the input, the same form of segmentation is to be 
done to multiple versions of the original input. These versions 
will all differ by a scaling factor done in a sense to recreate a 
slower or faster version of the song. This is to account for the 
possibility that the user did not sing the song at the same tempo 
as the original input target that is potentially located in the 
database. The scaling factors we consider are within the range 
of 0.5 to 2.0, with the actual total number of versions we would 
want to check for being experimentally determined in order to 
not delay the algorithm’s time complexity. In fact, this scaling 
will be done towards the second half of refining the 
implementation to increase the accuracy. 

 
Fig. 4. A visual of how the data across 2 time series are lined up differently 

between Euclidean distance and DTW comparison methods. 

 
Next, we describe the concept behind dynamic time warping. 

The use of this comparison technique is to find a more 
intelligent measure of distance between 2 time series data sets. 
Instead of a simple naive Euclidean distance approach, DTW 
uses a matrix with each song along each axis to instead find 
which parts of one series more closely resemble other parts of 
the other series. This can be visualized in Fig. 4, which clearly 
shows that DTW lines up parts of the data series which are more 
similar. Overall, using this approach is more helpful in finding 
melodic similarities considering that factors such as temporal 
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alignment or scaling (which preserves shape but not length, but 
with DTW would be noticed), which should not impact the 
accuracy, can now be naively dropped as influencing the search. 
Thus, overall the match is more based on melodic integrity. 

Within our framework, the DTW algorithm, which is 
computed using a distance matrix and from this distance matrix 
finding the optimal/cheapest path to the final point, will be 
applied between the pitch vectors from the input and each song 
in the database. Moreover, it will be applied to each pair of input 
and database song for each n offsets of the data points, in a 
windowing effort. Then, with all these comparisons, an overall 
distance score will be computed, and the scores will be sorted 
in by smallest distance for all the possible combinations of 
matches between audio input and database song for all possible 
offsets. The top 3 smallest distances for distinct songs will 
represent the closest matches of the query to an element in the 
database. 
B. Branch 2: Chroma Feature Analysis 
    Chroma Feature analysis will be the second component of 
our song recognition pipeline. For this, we will convert both 
songs and sung samples into a popular audio processing data 
format known as a Chroma Feature (or chromagram). This is 
more or less a variant of a normal spectrogram: data is 
converted from the time domain into the frequency domain, 
and then is bucketed amongst the 12 notes of the Western 
chromatic scale. Since note is usually more informative than 
octave, different octaves are combined together so that the 
output is a single, 12-element vector, where each element 
corresponds to the total intensity of a note, independent of 
octave.  
    There are several interesting post-processing techniques that 
can be applied to a chromagram [2], such as normalization 
along a single 12-dimensional chroma vector, normalization 
across different chroma vectors, changing note intensity to be 
represented with a logarithmic versus a linear scale (closer to 
how sound intensity is perceived by the human ear), and 
performing windowing functions across neighboring chroma 
samples to smooth notes out (this has the effect of removing 
much of the timbre/instrument information). These, plus the 
problem of how many samples to create in the first place, 
leave a lot of tuning even in the chroma feature step of this 
matching algorithm.  
    These Chromagrams will then be subjected to cross-
similarity analysis. There are many potential ways to measure 
which song’s chromagram corresponds to a user-created sung 
chromagram--we could attempt to compute a distance 
function, or use some pattern matching techniques. Several 
researchers have had success creating cross-similarity matrices 
and training a Convolutional Neural Network to identify 
patterns within these matrices [6]. The cross-similarity matrix 
will essentially show the distance between EVERY point on 
the sung sample and EVERY point on the reference song. If 
the song is a match, it should be more likely to produce 
interesting patterns, such as diagonal lines of similarity over 
time, and blocks where many adjacent samples are all similar 
to one another. Training a CNN is the current state-of-the-art 
for analysis on problems similar to these, but since we are 
relatively inexperienced with machine learning and since, to 
our knowledge, nobody has ever attempted to use a CNN for 

this problem before, we are not guaranteed success. While a 
CNN has the highest potential to produce the best possible 
results, there may exist other chromagram matching strategies 
that we could use, such as those in [3]. We may also encounter 
problems training a neural net since we are not actually 
planning on working with a huge data set for this project--our 
end goal is to have a merely demo-size library of songs that 
can be matched against, and training a CNN might require 
much more than this. 
C. Post-processing: Data Visualization 

There will be a data visualization portion to see what the 
matching algorithm did regardless of whether or not it is able to 
generate a match. This will also serve as a form of visual 
debugging for the system. An example of what might be 
displayed can be seen in Fig. 2 in Section III. This example plots 
the determined melody of the input on top of the melody of the 
songs in the library, which shows the user how their input 
compared to existing potential matched. To visualize the other 
branch of matching, the app will display the cross-similarity 
matrix generated between the closest match(es) to the input 
song. Then, we would like to display the work of the CNN or 
another pattern-matching scheme we develop to match songs 
from the chroma feature analysis. 
 

VI.  PROJECT MANAGEMENT 

A. Schedule 
The schedule can be viewed in Fig. 5 at the end of the 

document. This project began with researching similar existing 
projects and contacting professors for their advice and 
suggestions for our process. Using this information and 
guidance, we decided on the approach to take and began 
implementation. 

The dynamic time warping and melodic contour analysis 
portion will begin with the pre-processing of MIDI files and 
filtering background noise from human input, and then proceed 
to matching the input against the existing songs. The chroma 
feature analysis will begin with converting songs into the 
chroma format and examining the similarity matrices, and then 
training convolutional neural nets to recognize the similarities. 
Testing for both branches of the matching process will be done 
separately for each portion to see their individual performance 
and then integrated together for the complete system. 

The data visualization and application portion will begin with 
research and testing of existing data visualization methods to 
see what can be used and what concepts can be borrowed to 
create our own visualization technique. The design and creation 
of the app will take place later in the process. 
B. Team Member Responsibilities 

Anja is responsible for the majority of the dynamic time 
warping and melodic contour analysis portion of the system. 
Additionally, she will be working on creating the database of 
songs that the system will match to. 

Nolan will be working on the chroma feature analysis and 
training the CNNs or other form of pattern-matching. This will 
involve generating the cross-similarity matrices for chroma 
features. 
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Wenting will be working on the data visualization aspect of 
the project and the design and creation of the application. She 
will also be working on filtering the human input to minimize 
background noise. 
C. Budget 
QCII One set of Bose headphones for audio verification testing 
- $350 
D. Risk Management 

The major risk of this project is its performance. Since there 
are no hardware dependencies, the points of failure are all in the 
algorithm not working or being very slow. We were aware of 
the risks from the beginning after looking at the performance of 
existing projects. For example, the original plan was to do 
polyphonic pitch tracking and break down sound files by 
ourselves, but that was found to be too difficult, so we switched 
to the back-up plan of just using existing MIDI files for analysis. 

The existing projects that we looked at, which are detailed in 
Section VII, had varying levels of performance. The query by 
humming project only achieved around 30% accuracy, while 
the chroma feature analysis with CNNs performed well but in 
cover song identification, correctly identifying 8.04 out of 10 
songs on average [6]. We do not know yet how it will perform 
for our task, though we will bias as necessary using our test 
findings. Doing the matching twice through different methods 
requires more computation power but will hopefully result in 
more accurate results. It may also take longer than our target of 
one minute, but we will try to reduce the time by refining results 
and biasing the model. 

VII. RELATED WORK 
Since the problem we are setting out to solve has no well-

accepted solution, we are drawing most of our inspiration from 
related work in the computer music community. Our query by 
humming path featuring dynamic time warping and melodic 
contour analysis draws from a query by humming paper by 
Roger Dannenberg, a CMU professor [1], [4]. The area of 
extracting melody from music is a topic of much current 
research. Most melody recognition on waveforms is not 
advanced enough to handle a popular song, but there are several 
methods for extracting a melody from a MIDI file. One of these 
was used by Prof. Dannenberg in his query by humming paper 
[5]. While this program is no longer under development, we are 
hoping to find a program with similar features that is currently 
available. There are many such programs being developed by 
computer music research groups around the world. Most extract 
melodies by identifying repeated sections of music to return a 
list of potential important themes. 

Chroma feature analysis is a thoroughly-researched topic, 
and many variations of it and post-processing techniques have 
been proposed for different applications by different research 
groups [2]. Also, chromagrams have been used to monster mash 
songs together in many different contexts: work has been done 
on matching a chromagram of a song fragment to the 
corresponding location in the song [3]. This team also 
considered matching songs to their covers, but they worked 
within a pretty specific library of different recordings of 
classical pieces--each “cover song” had the same orchestration 
and music, but different performers and conductors. Because of 

this, we should expect a match on our system (which will be 
guaranteed to have different music and performers, and will 
most likely also have some slight tempo variations) to look very 
different than a match on their system. Work has also been done 
using cross-similarity matrices and neural networks to identify 
cover songs [6]. This work also differs from ours because the 
matching is on two complete songs, with (presumably) 
complete instrumentation and also with all melodies and 
sections of the song intact, while our plan is to match a full 
studio-recorded song with a solo vocal artist who will only sing 
one important melody, or perhaps only a fragment of one 
 

VIII. SUMMARY 
We hope that our system will be able to meet the design 

specifications and will make modifications along the way as 
necessary. While we have solidified the approach we will be 
taking, we acknowledge that it will require some tweaking to 
figure out the fastest and most effective way to achieve our 
goals for matching. Our performance could be improved with 
more computing power and more detailed refinement of the 
neural net, which will be trained on a limited amount of data. 

We anticipate that there will be many lessons learned along 
the way as we experiment with different methods of matching 
and get varying test results for the things that we try. So far we 
have found that polyphonic pitch tracking is a very difficult 
problem that has not yet been solved in a robust manner. We 
encourage people to make further attempts in the future, though 
for the scope of our project it turned out to be too difficult. 
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Fig. 5. Gantt chart of the schedule and division of tasks 

 


