
18-500 Final Project Report: 03/04/2019

1

Abstract— A system capable of identifying a song based on a

simple section of melody sung into a microphone by a user. This
will be implemented with a combination of matching against
preformatted MIDI files using melodic contour analysis where
available, and using machine learning methods on a cross-
similarity matrix of a song’s chroma feature representation for
songs without available MIDIs.

Index Terms— Chroma feature, convolutional neural network
(CNN), cross-similarity, dynamic time warping, machine learning,
melodic contour, MUSART, query by humming, Roger
Dannenberg, signals, sound, theme extraction

I. INTRODUCTION

HIS project will be making an application that will
match a human’s sung or hummed input to the existing

song that they were trying to identify. Often times a person will
have a tune stuck in their head and will not have any way to
identify it unless they can remember some lyrics to search, so
the application we are trying to build will try to solve this.

There are currently very few applications that will recognize
a song through human singing or humming due to the
complexity of the problem. The two most common apps to
achieve something to this effect are Shazam and SoundHound.
However, Shazam can only match to actual songs rather than
human input, and SoundHound has poor performance and
vague technical details. The approach we will be taking in our
project borrows concepts from the query by humming project
and chroma feature analysis with convolutional neural networks,
which has been done for cover song identification. These two
approaches will take parallel paths to match the input to an
existing song. The system goals and metrics are to achieve 75%
accuracy on matching singing or humming to a song and to
match in under one minute.

II. DESIGN REQUIREMENTS
The project will be packaged as an app. This adds some

constraints to what the user’s experience should be like. From
start to end, opening the app should lead to a straightforward
interface, from which the user sings into the microphone.

Qualitatively, the user should not have to extensively worry
about the sound quality or noisiness of their environment, but it
should be reasonable. For example, if there are multiple other
voices adding to the input captured by the microphone, the
accuracy of the app is guaranteed to decrease. We will test our
ability to filter out audio input noise by trying out multiple
queries which are all consistent along the dimensions of singer,
song, time frame, and instead vary the environment of recording.

Next, as part of the experience, past a seamless vocal input,
the user should not expect to wait more than 1 minute for the
app’s response. From our technical point of view, we hope to
constrain the system to taking only 1 minute for completion and
decision. All algorithmic components to this pipeline include
taking in and bucketing the input to sampled frames that are
empirically optimized, in parallel taking in the input and
running it against chroma feature extraction, running the
melodic contour and DTW algorithm against all possible
pairings of (sung_input, library_song_midi), in parallel creating
a cross-similarity matrix for all possible pairings
of (sung_input_chroma, library_song_raw_chroma), sorting
the outputs of each stream by closest match, averaging them and
selecting a final song output list.

Finally, the user should see an ordered list of the top 3 songs
that their sung input potentially matches against. The last
critical constraint we plan for is obtaining 75% accuracy, with
a success defined as the truly intended song, let’s call this the
target, appearing in the top 3 list. We plan to test this across
multiple singers, songs, and song time frames, and begin with a
small database of about 10 songs. Qualitatively, the user should
see a simple to understand list, and on top of this, a data
visualization image that indicates why the song matches that
were given were made. The visual will explore indicating which
parts of the user’s query lined up with the matched songs, and
to what degree the music lined up.

Earworm

Authors: Anja Kalaba, Wenting Chang, Nolan Hiehle

Electrical and Computer Engineering, Carnegie Mellon University

T

18-500 Final Project Report: 03/04/2019

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

(a)

(b)

(c)

Fig. 1. System picture. (a) overall system. (b) zoom-in of dynamic time

warping/melodic contour analysis. (c) zoom-in of chroma feature analysis
and CNNs

The flow of data begins with a user singing into a microphone.
That input will be put through a filter to reduce background
noise, then put through two different branches that use different
matching methods to maximize the probability of getting a
match.

The section in Fig. 1(b) shows the dynamic time warping and
melodic contour analysis branch. The pitches and rhythm will
be extracted from the filtered input and will be stored as a list.
The existing songs will be pre-processed from MIDI files into
the same representation, and then the two will be compared to
find a match through modified dynamic time warping.

The section in Fig. 1(c) shows the chroma feature analysis
branch. The input will be converted in a chroma representation
to compare against that of the existing song. A convolutional
neural network will check for patterns in the cross-similarity
matrices of the sung input and songs in the library.

Once the song is identified or the system has maxed out on
time and was unable to identify the song, the app will show a
visualization of what was matched and how it was matched. An
example of how this might be shown is displayed in Fig. 2.

Fig. 2. Example of data visualization

18-500 Final Project Report: 03/04/2019

3

IV. DESIGN TRADE STUDIES
There are many parts to our design, including a parallel sub-

track to compute the decision in 2 ways. Design decisions like
these were made on the basis of prioritizing robustness and
putting most emphasis on the accuracy metric. In general, our
trade offs were between accuracy and time of implementation
or algorithmic time complexity, and helpfulness vs. time of
implementation, and amount learned vs. time of
implementation. Key categories that were logistically debated
were the following:

• deciding on the algorithm to use for musical
processing and comparison

• deciding how large to make the database
• deciding which parts of the project to borrow and

which parts to implement ourselves
• deciding which test dimensions were the most

important to analyze.
The design decision progression is outlined for the above

compartments of the overall system in the following sections,
along the debated lines of importance as mentioned before the
list of key categories.

A. Algorithm and Database Size
We consulted the Query By Humming paper which did a

proper testbench to compare multiple algorithms. As shown by
their results in Table 1, the most successful algorithm was the
Melodic Contour matching one, which we have selected to use
in our project. The test suite for these results was fairly
randomized and uniform, so it more closely resembled our
expected range of input and usage. We found in another paper
for it to have a mixture of 100% accuracy, also measured with
the “contained-in-top-3” success definition, and 80% accuracy,
for varying test suites of rock songs and jazz songs, respectively
[4]. Since both of these values are above our target value of 75%
for accuracy, this algorithm seemed sufficient.

TABLE I. TABLE OF MRR VALUES FOR VARIOUS ALGORITHMS FROM
MUSART TEST BENCH

A heavy point of consideration was the tradeoff in
algorithmic time complexity and accuracy. While the Melodic
Contour algorithm is accurate to the degree we wish to see, it is
also significantly slow, as it is a linear search through the
database per length of the input string. To hone in on a region
of higher performance, we consult Fig. 3, wherein we notice
that there is a plateau in algorithmic performance as a function
of songs in the database. We also logically noted that having a
smaller database would decrease the general search time for a
linear algorithm, helping us achieve our goal of under a minute

potentially, so we were set on starting with a small database of
roughly 10 songs. We also found in the paper an estimate of
about 23ms on a 1.8GHz Pentium 4 Processor per song match
for an algorithm that is a O(mn) where m and n are string input
lengths, as melodic contour will be since it tries every window
frame for overlap. Considering the added runtime for the DTW
on top of this, since it will not be constant but also a linear
search of these lengths, we get O(mn2) so 529ms. Thus, to obtain
our under a minute goal, our database would need to meet an
optimized version of (1), with T_max set to 1 minute measured
in milliseconds.

 T_max ³ 529*database_size (1)

A third consideration was to include the CNN parallel
component in the algorithm pipeline. Fortunately, training the
network is the biggest bottleneck, and we can make choices in
our network architecture to ensure that, once trained, the
network can emit classifications in a reasonably short amount
of time. Our database of waveform-format songs can be
preprocessed into chromagrams, so that the only calculation
necessary will be:

1. Turning a sung query into a chromagram
2. Creating a cross-similarity matrix
3. Running the classifier (CNN).

Since the maximum length of a song is about 3-4 minutes,
and the maximum length of a sung query should be about 30
seconds, our cross-similarity matrix has some reasonable
bounds on its size: we can expect that somewhere under 10,000
different distances need to be computed to create the matrix.
However, as our database size increases, the model will need to
be updated to account for new songs—there is no way to add a
song to the classification output of the neural network without
retraining the entire thing.

Fig. 3. Plot of MRR, a measure of accuracy which when closer to 1 indicates

greater accuracy, vs. database size.

A final note about the algorithm chosen is that the decision
to keep the 2 pipelines in parallel, as opposed to sequential,
might be modified later. We do not have personal values for
what our implemented versions of the algorithms will look
like with respect to accuracy and time complexity. So, in
creating both pipelines, we might find a glaring performance

18-500 Final Project Report: 03/04/2019

4

gap which might dictate that having a 2-stage search for
database refinement would be better to meet our accuracy and
complexity constraints. That is, putting the 2 pipelines in
sequential order could look something like having a fast but
less accurate decision be made to filter out obviously incorrect
songs, which is then fed to a slower but more accurate part of
the pipeline which can be sped up on the smaller database.
B. Self-implemented vs. Borrowed Subsystems
 Another consideration was deciding which parts would be
borrowed and which parts would be implemented by us. We
decided after looking at the extensive algorithm for MIDI
processing in the Meek paper that the tradeoff for time of
implementation was not worth doing that portion of the
pipeline by ourselves [5]. Since we also were not able to
interface with their code, we decided in the end to do melody
extraction by hand, with the help of Professor Roger
Dannenberg’s graduate student.
 The Chroma feature extraction portion was also not seen to
be worth self-implementing, since successful MATLAB
toolboxes existed already [2].
 We do not have any equations to describe our decision-
making process for this category. It was instead a qualitative
evaluation based on thinking about which portions of the
pipeline were most vital to the integrity of the algorithms,
which parts we were most interested in learning about, and
which parts would take unnecessarily long amounts of time to
complete. With this in mind, we pruned MIDI file pre-
processing and chroma feature extraction from our list of
duties.

C. Test Dimensions

Here we discuss the test dimensions that were of most
concern for our evaluating project success. The dimensions we
could enumerate were

• different singers
• different songs
• different time frame within a song
• duration of query
• noise-levels of environment of query

and we plan to create a test suite to vary each in an isolated
manner to see its performance. Since we have at least three test
users, it should be easy to compare a sung sample from each of
us and ensure that it can generate accurate results a reasonable
amount of the time. Testing different songs will also be
relatively straightforward once we have entered these songs
into our database or trained our model on them. Once these
tasks are complete, we will simply be able to confirm that sung
samples of melodies from each of the songs in the database can
return a match. We can also test queries for the “main melody”
of a song as well as other, less important musical sections, test
with shorter queries that contain only a fragment of a melody,
and test with queries in different environments--ideally, this
would work even in a noisy, outdoor, public space.
 An automated regression testing suite can easily be
constructed once we have recorded a handful of queries from
each of us for several songs each. These canonical queries could
span the range of these potential limiting factors and ensure that
any changes to our algorithm do not affect our correctness
guarantees.

V. SYSTEM DESCRIPTION

A. Branch 1: Dynamic Time Warping and Melodic Contour
Analysis

The first component of our pipeline will be discretizing the
input and applying a melodic contour / dynamic time warping
(DTW) algorithm to the input. The first objective is to create a
sequence of notes/pitches from the input. The input is to be
sampled, with some experimentally determined sampling rate
but we will most likely begin with 100ms [4]. For each frame
that the sample audio is broken down into, a representative
mode frequency is to be assigned to that frame, and thus a sense
of bucketing the input is applied; we can call this creating a
melodic contour on the input. The representative frequency for
each sample frame is to simply be assigned the pitch of the note
that occupies the most space in the frame. From this we obtain
our sequence of n pitches for the query.

This same processing input, of creating a sequence we call
the melodic contour, is to be applied to each song in the
database as well. This procedure is to have been done ahead of
time, so that with each song in the fixed database, a sequence
of the melodic contour already exists as data to sift through.

Next, upon the input, the same form of segmentation is to be
done to multiple versions of the original input. These versions
will all differ by a scaling factor done in a sense to recreate a
slower or faster version of the song. This is to account for the
possibility that the user did not sing the song at the same tempo
as the original input target that is potentially located in the
database. The scaling factors we consider are within the range
of 0.5 to 2.0, with the actual total number of versions we would
want to check for being experimentally determined in order to
not delay the algorithm’s time complexity. In fact, this scaling
will be done towards the second half of refining the
implementation to increase the accuracy.

Fig. 4. A visual of how the data across 2 time series are lined up differently

between Euclidean distance and DTW comparison methods.

Next, we describe the concept behind dynamic time warping.

The use of this comparison technique is to find a more
intelligent measure of distance between 2 time series data sets.
Instead of a simple naive Euclidean distance approach, DTW
uses a matrix with each song along each axis to instead find
which parts of one series more closely resemble other parts of
the other series. This can be visualized in Fig. 4, which clearly
shows that DTW lines up parts of the data series which are more
similar. Overall, using this approach is more helpful in finding
melodic similarities considering that factors such as temporal

18-500 Final Project Report: 03/04/2019

5

alignment or scaling (which preserves shape but not length, but
with DTW would be noticed), which should not impact the
accuracy, can now be naively dropped as influencing the search.
Thus, overall the match is more based on melodic integrity.

Within our framework, the DTW algorithm, which is
computed using a distance matrix and from this distance matrix
finding the optimal/cheapest path to the final point, will be
applied between the pitch vectors from the input and each song
in the database. Moreover, it will be applied to each pair of input
and database song for each n offsets of the data points, in a
windowing effort. Then, with all these comparisons, an overall
distance score will be computed, and the scores will be sorted
in by smallest distance for all the possible combinations of
matches between audio input and database song for all possible
offsets. The top 3 smallest distances for distinct songs will
represent the closest matches of the query to an element in the
database.
B. Branch 2: Chroma Feature Analysis
 Chroma Feature analysis will be the second component of
our song recognition pipeline. For this, we will convert both
songs and sung samples into a popular audio processing data
format known as a Chroma Feature (or chromagram). This is
more or less a variant of a normal spectrogram: data is
converted from the time domain into the frequency domain,
and then is bucketed amongst the 12 notes of the Western
chromatic scale. Since note is usually more informative than
octave, different octaves are combined together so that the
output is a single, 12-element vector, where each element
corresponds to the total intensity of a note, independent of
octave.
 There are several interesting post-processing techniques that
can be applied to a chromagram [2], such as normalization
along a single 12-dimensional chroma vector, normalization
across different chroma vectors, changing note intensity to be
represented with a logarithmic versus a linear scale (closer to
how sound intensity is perceived by the human ear), and
performing windowing functions across neighboring chroma
samples to smooth notes out (this has the effect of removing
much of the timbre/instrument information). These, plus the
problem of how many samples to create in the first place,
leave a lot of tuning even in the chroma feature step of this
matching algorithm.
 These Chromagrams will then be subjected to cross-
similarity analysis. There are many potential ways to measure
which song’s chromagram corresponds to a user-created sung
chromagram--we could attempt to compute a distance
function, or use some pattern matching techniques. Several
researchers have had success creating cross-similarity matrices
and training a Convolutional Neural Network to identify
patterns within these matrices [6]. The cross-similarity matrix
will essentially show the distance between EVERY point on
the sung sample and EVERY point on the reference song. If
the song is a match, it should be more likely to produce
interesting patterns, such as diagonal lines of similarity over
time, and blocks where many adjacent samples are all similar
to one another. Training a CNN is the current state-of-the-art
for analysis on problems similar to these, but since we are
relatively inexperienced with machine learning and since, to
our knowledge, nobody has ever attempted to use a CNN for

this problem before, we are not guaranteed success. While a
CNN has the highest potential to produce the best possible
results, there may exist other chromagram matching strategies
that we could use, such as those in [3]. We may also encounter
problems training a neural net since we are not actually
planning on working with a huge data set for this project--our
end goal is to have a merely demo-size library of songs that
can be matched against, and training a CNN might require
much more than this.
C. Post-processing: Data Visualization

There will be a data visualization portion to see what the
matching algorithm did regardless of whether or not it is able to
generate a match. This will also serve as a form of visual
debugging for the system. An example of what might be
displayed can be seen in Fig. 2 in Section III. This example plots
the determined melody of the input on top of the melody of the
songs in the library, which shows the user how their input
compared to existing potential matched. To visualize the other
branch of matching, the app will display the cross-similarity
matrix generated between the closest match(es) to the input
song. Then, we would like to display the work of the CNN or
another pattern-matching scheme we develop to match songs
from the chroma feature analysis.

VI. PROJECT MANAGEMENT

A. Schedule
The schedule can be viewed in Fig. 5 at the end of the

document. This project began with researching similar existing
projects and contacting professors for their advice and
suggestions for our process. Using this information and
guidance, we decided on the approach to take and began
implementation.

The dynamic time warping and melodic contour analysis
portion will begin with the pre-processing of MIDI files and
filtering background noise from human input, and then proceed
to matching the input against the existing songs. The chroma
feature analysis will begin with converting songs into the
chroma format and examining the similarity matrices, and then
training convolutional neural nets to recognize the similarities.
Testing for both branches of the matching process will be done
separately for each portion to see their individual performance
and then integrated together for the complete system.

The data visualization and application portion will begin with
research and testing of existing data visualization methods to
see what can be used and what concepts can be borrowed to
create our own visualization technique. The design and creation
of the app will take place later in the process.
B. Team Member Responsibilities

Anja is responsible for the majority of the dynamic time
warping and melodic contour analysis portion of the system.
Additionally, she will be working on creating the database of
songs that the system will match to.

Nolan will be working on the chroma feature analysis and
training the CNNs or other form of pattern-matching. This will
involve generating the cross-similarity matrices for chroma
features.

18-500 Final Project Report: 03/04/2019

6

Wenting will be working on the data visualization aspect of
the project and the design and creation of the application. She
will also be working on filtering the human input to minimize
background noise.
C. Budget
QCII One set of Bose headphones for audio verification testing
- $350
D. Risk Management

The major risk of this project is its performance. Since there
are no hardware dependencies, the points of failure are all in the
algorithm not working or being very slow. We were aware of
the risks from the beginning after looking at the performance of
existing projects. For example, the original plan was to do
polyphonic pitch tracking and break down sound files by
ourselves, but that was found to be too difficult, so we switched
to the back-up plan of just using existing MIDI files for analysis.

The existing projects that we looked at, which are detailed in
Section VII, had varying levels of performance. The query by
humming project only achieved around 30% accuracy, while
the chroma feature analysis with CNNs performed well but in
cover song identification, correctly identifying 8.04 out of 10
songs on average [6]. We do not know yet how it will perform
for our task, though we will bias as necessary using our test
findings. Doing the matching twice through different methods
requires more computation power but will hopefully result in
more accurate results. It may also take longer than our target of
one minute, but we will try to reduce the time by refining results
and biasing the model.

VII. RELATED WORK
Since the problem we are setting out to solve has no well-

accepted solution, we are drawing most of our inspiration from
related work in the computer music community. Our query by
humming path featuring dynamic time warping and melodic
contour analysis draws from a query by humming paper by
Roger Dannenberg, a CMU professor [1], [4]. The area of
extracting melody from music is a topic of much current
research. Most melody recognition on waveforms is not
advanced enough to handle a popular song, but there are several
methods for extracting a melody from a MIDI file. One of these
was used by Prof. Dannenberg in his query by humming paper
[5]. While this program is no longer under development, we are
hoping to find a program with similar features that is currently
available. There are many such programs being developed by
computer music research groups around the world. Most extract
melodies by identifying repeated sections of music to return a
list of potential important themes.

Chroma feature analysis is a thoroughly-researched topic,
and many variations of it and post-processing techniques have
been proposed for different applications by different research
groups [2]. Also, chromagrams have been used to monster mash
songs together in many different contexts: work has been done
on matching a chromagram of a song fragment to the
corresponding location in the song [3]. This team also
considered matching songs to their covers, but they worked
within a pretty specific library of different recordings of
classical pieces--each “cover song” had the same orchestration
and music, but different performers and conductors. Because of

this, we should expect a match on our system (which will be
guaranteed to have different music and performers, and will
most likely also have some slight tempo variations) to look very
different than a match on their system. Work has also been done
using cross-similarity matrices and neural networks to identify
cover songs [6]. This work also differs from ours because the
matching is on two complete songs, with (presumably)
complete instrumentation and also with all melodies and
sections of the song intact, while our plan is to match a full
studio-recorded song with a solo vocal artist who will only sing
one important melody, or perhaps only a fragment of one

VIII. SUMMARY
We hope that our system will be able to meet the design

specifications and will make modifications along the way as
necessary. While we have solidified the approach we will be
taking, we acknowledge that it will require some tweaking to
figure out the fastest and most effective way to achieve our
goals for matching. Our performance could be improved with
more computing power and more detailed refinement of the
neural net, which will be trained on a limited amount of data.

We anticipate that there will be many lessons learned along
the way as we experiment with different methods of matching
and get varying test results for the things that we try. So far we
have found that polyphonic pitch tracking is a very difficult
problem that has not yet been solved in a robust manner. We
encourage people to make further attempts in the future, though
for the scope of our project it turned out to be too difficult.

REFERENCES
[1] R. Dannenberg et. al, “A Comparative Evaluation of Search

Techniques for Query-by-Humming Using the MUSART Testbed”
http://www.cs.cmu.edu/~rbd/papers/musart-testbed-JASIST-
2007.pdf

[2] M. Müller and S. Ewert, “Chroma Toolbox: MATLAB
Implementations for Extracting Variants of Chroma-Based Audio
Features”
https://www.audiolabs-erlangen.de/content/05-fau/professor/00-
mueller/03-
publications/2011_MuellerEwert_ChromaToolbox_ISMIR.pdf

[3] M. Müller, F. Kurth, and M. Clausen, “Audio Matching Via
Chroma-Based Statistical Features” http://resources.mpi-
inf.mpg.de/MIR/chromatoolbox/2005_MuellerKurthClausen_Audi
oMatching_ISMIR.pdf

[4] D. Mazzoni and R. Dannberg, “Melody Matching Directly From
Audio” https://www.cs.cmu.edu/~rbd/papers/melodymatching-
ismir01.pdf

[5] C. Meek and W. Birmingham, “Thematic Extractor”
http://ismir2001.ismir.net/pdf/meek.pdf

[6] S. Chang, J. Lee, S. Choe, and K. Lee, “Audio Cover Song
Identification using Convolutional Neural Network”
https://arxiv.org/pdf/1712.00166.pdf

18-500 Final Project Report: 03/04/2019

7

Fig. 5. Gantt chart of the schedule and division of tasks

