
18-500 Design Review Report: 05/07/2019

1

Abstract—A system capable of tracking and recording a

swimmer’s workout in real-time, using aerial video footage of a

pool. This system consists of a position detection as well as stroke

classification, allowing for distances, strokes, and splits to be

recorded. The backend of this system will consist of Python scripts

utilizing OpenCV and OpenPose and will be responsible for all the

video processing and tracking that that is needed. This backend

will send data to a web application, which will be stored to be

displayed and analyzed by the user.

Index Terms—Object Detection and Tracking, Supervised

Learning, Video Processing

I. INTRODUCTION

THE project that we chose to work on is a tool that would

allow swimming coaches to comprehensively track the progress

of swimmers over the course of a workout. One of the most

difficult things for coaches and/or individual swimmers is to

reliably record all the records of a given workout session.

Therefore, we believe that such a tool would be immensely

helpful for coaches, swimmers, and teams with a limited

coaching bandwidth.

 At this point in time, there are no commercial technologies

available that achieve what our project will. Professional

swimmers can afford to have personal coaches to watch and

record their workouts, but that isn’t available to the greater part

of the swimming population. There are also touch pad timing

systems that can very reliably record splits, but these do not

differentiate between different types of touches and are

therefore not useful for recording times in a workout setting.

 The goal for this project is two-fold. Firstly, we aim to get

swimmer detection and tracking with a reasonable degree of

precision. Specifically, we aim to have our tracking algorithm

to track lap times and rest times to within 0.5 seconds of the

ground truth. Secondly, we aim to have our stroke classification

algorithm to differentiate between the four basic strokes

(freestyle, backstroke, breaststroke, butterfly) with an accuracy

of 80%.

II. DESIGN REQUIREMENTS

The most crucial aspect of this project is that we are able to

accurately detect when a length swum. We feel that this can be

done with 100% accuracy since it has a very high margin for

error. The larger challenge will be to record accurate times for

each length, because this requires finding the exact instance

when a swimmer touches the wall. For a practice environment,

we feel that 0.5 second precision is sufficient for splits, which

is why we have made this a requirement. We validate our

system by recording an hour-long swim workout and

comparing our results to the ground truth times.

The second goal that was mentioned was to classify the

stroke that the swimmer is performing with an accuracy of at

least 60%. We believe that this will the hardest part of this

project since there are so many variables such as (joint angles

and individual swimmer style nuances).

Jack Dangremond, student: Electrical and Computer Engineering, Carnegie Mellon University

Adithya Raghuraman, student: Electrical and Computer Engineering, Carnegie Mellon University

Karnkumar Dalmia, student: Electrical and Computer Engineering, Carnegie Mellon University

PoolTrackerDDR

18-500 Design Review Report: 05/07/2019

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system consists of two, main components: backend

software which performs all of the video processing and

tracking, and a frontend web application which receives and

displays all of the collected data.

The backend of our system has two major parts, the aerial

video footage and the software which processes this. In an

actual product, we would want the footage to be live-streamed

for real-time processing. Due to the fact that we were unable to

find a pool that would allow us to install a camera, we will be

using pre-recorded videos that will still be processed in real-

time by the tracking software. This will replicate the

functionality of the product that could eventually be used by

consumers without the expense or logistical complications of

installing hardware permanently.

The tracking software has two main functions. The first is to

detect and track the position of a swimmer in the pool, and the

second is to identify which stroke they are swimming on a

length-by-length basis. The input will be the raw video footage,

as well as a description of features of the pool and lanes that

need to be tracked, which will be provided by the user.

Technical details for how we plan to implement the detection

and classification systems will be provided later in this report.

The results of these two sub-systems will be packaged up and

sent over to the web application upon the completion of each

length. These results will be stored in a MySQL database to be

reviewed and analyzed within the web application. More

specific details of the interface between the tracking software

and web application will be provided in Section V.

 While not the most technically challenging part of this

project, the web application will the part that makes the data

we’re collecting meaningful to coaches and swimmers. We will

be providing tools to visualize data both within a workout and

across workouts over a span of time. By storing everything in a

database, we can easily extract very specific data that a user

might be interested in (i.e. the average time that a swimmer is

able to hold on a 100 freestyle in practice) and display it in a

graphical way.

Fig. 1. Overview of PoolTrackerDDR system archicture.

18-500 Design Review Report: 05/07/2019

3

IV. SYSTEM DESCRIPTION

As described earlier, the overall system here consists of two

main parts: backend software which performs all of the video

processing and tracking, and a frontend web application which

receives and displays all of the collected data. In this section,

we will discuss each of these and the interfaces between them

in much greater detail.

(a)

(b)

Fig. 1. System overview. (a) backend software. (b) interface between

backend and web application.

 Let us first look at the workflow of our project. This

workflow, as described in Figure 2.a describes the way in which

the front end and the back end communicate with each other.

The frontend web application is the point of entry for a user.

The frontend then establishes a connection with the backend (a

camera + processing unit). This backend then captures a still

shot of the pool and sends it to the front end, where the user

then has the responsibility to demarcate the lane edges. We

thought that it would be best to have this as the responsibility

of the client since our product is now a lot more flexible as there

are no further restrictions on the real-world separation of lanes.

Once the lane edges are established, the backend software

detects when a swim session is complete and sends data to the

front-end web app to be displayed to the client. The user can

then choose from a variety of visualization settings to get the

most out of the data that has been received.

A. Backend

The backend is the workhorse of our project. This backend is

responsible for doing the actual swimmer detection, tracking,

and stroke identification. As was mentioned in Section III, the

main input to the backend will be the raw aerial footage of the

pool. To limit the scope and make our system more robust, we

have also decided that the user will manually demarcate lanes

to be tracked within the web application. This will involve a

“handshake” between the backend and frontend that must occur

before any processing begins, as described below:

1. The backend and web application establish a

connection via an initial HTTP request from the

backend.

2. The backend captures a still shot of the pool and

sends it to the web application. We are requiring

that the camera remains perfectly stationary, so the

pool will be positioned exactly the same in all

following frames.

3. The user manually marks up the lanes that need to

be tracked, first by outlining the four edges of each

lane (as shown in Figure 3), then marking the line

that represents the “main” pool edge where

workouts will start from.

4. These boundaries, as well as the length of the pool

(25y, 25m, or 50m), will be sent to the backend.

5. The tracking software analyzes the aerial footage in

real-time and sends results to the web application

upon the completion of each length.

6. The web application receives this data and stores it

in a MySQL database to be visualized for user

analysis.

Fig. 2. Screenshot of aerial footage with lanes of interest marked up.

After the video footage and lane information are provided,

the backend can get to work tracking the workout. The two

sub-components of this tracking software are position

detection and stroke classification.

 The first of these systems aims to locate and track the

position of a swimmer in the pool. We have chosen to limit

PoolTrackerDDR to tracking just one swimmer in a lane at a

time. We felt that allowing multiple swimmers in a lane would

add too much complexity and noise to our input footage. Here

is a description of the algorithm that we use to do our tracking

and detection. Firstly, we subtract from our footage all of the

18-500 Design Review Report: 05/07/2019

4

background information. We do this by taking an empty (with

no swimmers) shot of the pool and use that as a mask. Once we

have a bounding box on the swimmer, we perform a color

thresholding to get rid of noise from the surrounding pool. We

generate a distribution of the pixel intensities within the

bounding box and in subsequent frames, move the bounding

box to the location where the pixel intensities match this initial

distribution.

 The second component that we have on our backend is the

stroke classification system (shown on next page). The first step

of this process is isolating the swimmer from the rest of the

pool. We do this by using the same tracker as described above

and taking only the part of the frame which is in the ROI. For

this segment of the image, we run a background subtractor to

obtain the shape of the swimmer’s body in the water. This is run

through a pre-trained feature extractor and then through our

classifier which outputs one of free, fly, back, or breast.

Because we weren’t able to detect limbs, we weren’t able to

encode a swimmer’s motion over a sequence of frames. This

means that our model was trained on individual frames and

classifies on a frame-by-frame basis. In order to best determine

which stroke is being performed, we take the mode of the

outputs over a sequence of

frames.

B. Frontend

The front end of this project serves two main purposes.

Firstly, the first end is what establishes a connection with a

backend processor and sends user demarcated information

regarding lane edges. Subsequently, the front end becomes a

tracker that stores the data that it receives from the back end and

visualizes it to the user.

The front end here is implemented as a web application

written in Django, a python framework. Django has various

features that fit out need greatly such as high data processing

rates and highly secure communication protocols. This Django

web app is hosted on an AWS EC2 instance. All of the data that

is received from the backend device will be stored in a MySQL

database for easy lookup.

 In terms of analyzing and visualizing the data that’s received,

our web application will provide two main functionalities. The

first of which is being able to look at a swimmer’s progress in

an individual workout, and the second is to look at a swimmer’s

progress over multiple workouts. Both of these views will

provide tools to create in-depth visualizations of many trends,

including trends in splits, distances, and strokes. With these

tools, a coach or a swimmer will be able to see clearly where

they are progressing or regressing and respond accordingly.

C. Validation

Because of the nature of our project, we are limited in the

amount of data we can collect and validate against. However,

we think we can enough manual testing to have a high degree

of confidence in the effectiveness of our project.

 To test PoolTrackerDDR, we will record a workout with just

one swimmer in a lane. We will record the ground truth of this

workout (distances, strokes, and splits), and compare this to the

result found using our tool. The following are the metrics

against which we will evaluate our final project:

• Get lap time and rest time within 0.5 second error

• Detect laps completed with 95% accuracy

• Classify the correct stroke for at least 60% of laps (this

number is fairly low because freestyle and backstroke

have extremely similar limbic characteristics and can

even be difficult for humans to classify).

18-500 Design Review Report: 05/07/2019

5

V. PROJECT MANAGEMENT

A. Schedule

Our tentative schedule for the implementation of this project

is attached in Figure 4. It should be noted that while there are

dependencies within each component, there are very few across

components. We have purposefully designed our system this

way to avoid scheduling backlogs due to one task being

delayed. The only time where this is not true is near the end of

the project, when we will be integrating all of the components.

However, we have already mitigated scheduling risks arising

from this by implementing the interfaces between components

first.

B. Team Member Responsibilities

Given that there are three main components to our project,

(web app frontend, the detection + tracking component of our

backend and the stroke classification component of our

backend) we deemed it most appropriate for each of the three

members of our team to lead the development of one of the

components.

As stated earlier, Jack and Adithya are responsible for the

actual web-application as they both have extensive knowledge

in that domain space. Adithya is also going to be working with

developing the detection and tracking algorithm along with

some assistance from Jack. Karn will be working on

implementing the spatial parallelism of swimmer detection as

he has had the most experience with GPU programming, though

the GPU component of the project is still tentative. All three

team members will work on coding the actual stroke

classification and split calculations, as that constitutes the

bulk of the technical portion of the assignment.

C. Budget

We have less use of the budget allocated to us since we have

already collected high quality videos, and all our necessary

software, OpenCV and OpenPose, are completely free. That

said, should we go through with the GPU parallelism, we plan

to rent a 4-core compute instance from AWS for $0.900/hr in

order to spatially decompose the video. Additionally, there may

be a little overhead cost in deploying the actual web app. We

guess that these costs will be well under the actual $600

allocated to us.

D. Bill of Materials

Material Cost

iPhone 8 Plus Already owned

2017 MacBook Pro Already owned

Python 3 N/A

OpenCV N/A

TensorFlow N/A

OpenPose N/A

Django 2 N/A

MySQL N/A

AWS EC2 instance Free instance

E. Risk Management

One of the biggest risks of our project is not finishing tasks

in a timely manner. This tends to be quite problematic when

tasks are not parallelizable (one task must complete prior to

commencement of the next), as an entire schedule bottleneck

occurs. We plan to mitigate the risks in the following ways.

18-500 Design Review Report: 05/07/2019

6

First, we hope to have backup plans should one particular task

not follow through in a timely manner. Moreover, it is also

possible to do weekly progress checks, and see if we are on

schedule. Should there be a lack of progress on particular week,

we can reschedule subsequent tasks well ahead of time, and

effectively avoid huge traffic jams with scheduling. The

TeamGantt software is a very helpful calendar tool to visualize

tasks in an iterative way and can help us better parallelize tasks

that are not dependent while working to mitigate bottlenecks for

the sequence of tasks that are. One of the largest risks that we

have in terms of scheduling is integrating the different

components together. We have mitigated this risk by

implementing the interfaces first such that the frontend and

backend can be developed in parallel. While they will rely on

each other in the end, we can build and test each component

independently.

VI. SUMMARY

The following are our metrics, and a brief description of our

outcome:

• Get lap time and rest time within 0.5 second error

o We were able to achieve this metric.

• Detect laps completed with 95% accuracy

o We were able to achieve this metric.

• Classify the correct stroke for at least 60% of laps (this

number is fairly low because freestyle and backstroke

have extremely similar limbic characteristics and can

even be difficult for humans to classify).

o We were not able to achieve this metric but

did get results suggesting that stroke

classification could be improved with more

data and more advanced methods.

Even though our project didn’t meet all of the initial metrics,

we still feel that this project was a success in most ways. One

of the biggest factors that prevented us from reaching the stroke

classification metric was the lack of data that we had. This was

due to the fact that we weren’t allowed to mount a camera above

the CMU pool, and other pools nearby in Pittsburgh never

responded to us reaching out. If we had more aerial swim

footage, we would have been able to train and classify based on

sequences, which would likely boost our classification

accuracy.

A. Lessons Learned

One of the biggest lessons that we’ve learned this semester

is that we should have spent more time on our highest risk

items first. In our application, stroke classification was the

component that was giving us the most difficulty. We were

initially planning to encode limbic movement for training and

classification but weren’t able to make this work due to the

noise of the pool water. Eventually we were forced to abandon

this idea and had less than two weeks to figure out a new

mechanism for stroke classification. To any future groups

working on any type of video classification, we would highly

recommend implementing a couple methods in parallel to see

which works the best.

VII. REFERENCES

Cao et al. OpenPose: realtime multi-person 2d pose estimation

using Part Affinity Fields, 2018

Lukezic, Alan et al. Discriminative Correlation Filter Tracker

with Channel and Spatial Reliability, 2016

18-500 Design Review Report: 05/07/2019

7

Fig. 2. Schedule of tasks for team C5.

	I. Introduction
	II. Design Requirements
	III. Architecture and/or Principle of Operation
	IV. System Description
	A. Backend
	After the video footage and lane information are provided, the backend can get to work tracking the workout. The two sub-components of this tracking software are position detection and stroke classification.
	B. Frontend
	C. Validation

	V. Project Management
	A. Schedule
	Our tentative schedule for the implementation of this project is attached in Figure 4. It should be noted that while there are dependencies within each component, there are very few across components. We have purposefully designed our system this way ...
	B. Team Member Responsibilities
	C. Budget
	D. Bill of Materials
	E. Risk Management

	VI. Summary
	A. Lessons Learned

	VII. References

