
18-500 Final Project Report: 05/07/2019

1

Abstract— This paper outlines the preliminary design of our

capstone design project, InteracTable. InteracTable is a proof of
concept prototype of a portable system that can turn any surface
into an interactive touch screen. Current commercially available
capacitive touchscreen tables are very costly and are immobile [1].
Our design overcomes these limitations by using computer vision
algorithms to track the location of a user’s finger and piezo sensors
to detect the vibrations propagating through the medium from a
tap on the table.

Index Terms— Algorithms, Collaboration, Computer Vision,

Detection, Interactive, Piezo Sensors, Tracking, Touch Screen

I. INTRODUCTION
NTERACTABLE is a portable product that will
revolutionize the way people work. Any table surface can
become a user’s laptop screen while using the InteracTable.

The size of the work surface will be adjustable to different
tables, and best of all, it can accommodate multiple users for
the best collaborative experience. InteracTable’s design
consists of a projector connected to the user's laptop, whose
screen will be projected onto a flat table top. Computer vision
will be used to track a red dot sticker placed on a user's finger.
The projected screen will be captured by a webcam and these
images are then sent back to the laptop for processing. A piezo
sensor connected to an Arduino will detect a tap on the table.
For this proof of concept prototype, we will constrain the
system to work with only one finger. Our system must detect
the location of a red dot with 100% accuracy. Must map the
detected location of the red dot in the projected image to the
laptop screen dimensions within the radius of the red dot - 0.64
cm. Must identify a tap on the surface with 100% accuracy in
order to achieve a usable system that works in real time. Must
achieve a system response time of 1 second.

There are existing solutions to the problem of
collaboration including Google Drive and capacitive touch
screen tables. However, these solutions do not expand to all
applications that engineers tend to use in a collaborative setting.
Our product is meant for software that is not inherently
collaborative in nature such as most code editors, offline
Microsoft products and browsing the internet. Further, touch
screen tables also do not serve as a good alternative because
they cost thousands of dollars and they are not portable [1].
Thus, InteracTable is a competitive product because it is low-
cost, portable and user-friendly.

II. DESIGN REQUIREMENTS
We are aiming for an accuracy rate of 95% since this

is a value we have seen for many commercially available
capacitive touchscreens [2]. We will verify our design by the
following metrics:
1. The detected coordinate of the red dot should be within the
radius of the dot. We will test this by plotting the detected
coordinate on a set of test images and visually identifying if the
detected coordinate is within the radius of the red dot. This
metric determines the usability of the system.
2. On detecting a coordinate, we should be able to compare the
coordinate detected to the coordinates of the projected image so
that we can determine whether or not a button was selected. Our
GUI will display a calibration screen on system start to get the
coordinates of the boundaries of our projected screen. The
calibration mode asks the user to place the red dot in the top
left, center and bottom right corners of the projected screen.
These coordinates will be used to map a “tap” on the projected
screen to the laptop screen dimensions. The mapping is
necessary to determine if the “tap” occurred within the bounds
of a button so the appropriate response is triggered. To test this
metric, we will measure the distance between the red dot on a
user’s finger selecting a button and the corresponding mapped
point on the laptop GUI screen.
3. The piezo sensors should detect a tap with 100% accuracy -
no false positives or false negatives detected. A tap should also
be detected with reasonable pressure and effort. This qualitative
metric can be realized with user testing. We plan to ask several
users to test our system to determine our tap accuracy rate.
4. We would like the response time for our system to be within
1 second. We will test this time by using the Python time.time()
module to take the difference between the moment a tap is
detected and a GUI response is triggered. This response time is
very important since we want our system to be comparable to
working with other collaborative tools like Google Docs.

InteracTable

Author: Suann Chi, Isha Iyer, Tanushree Mediratta : Electrical and Computer Engineering, Carnegie
Mellon University

I

18-500 Final Project Report: 05/07/2019

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our system can be broken down into three main functional

subsystems:
1. Location Detection subsystem
2. Tap Detection subsystem
3. GUI subsystem

A projector projects the GUI on to a poster board. A webcam

monitors the projected GUI. Five piezo sensors are attached to
the back of the poster board. When the user taps on the flat
surface onto which our screen is projected, the vibrations
generated by the tap will be picked up by the piezo sensors. This
analog signal will then be processed by an Arduino. A script
will be used to establish a threshold value for each sensor that
would indicate whether a tap occurred or not. This produces a
binary output to the serial port, with “1” being a detected tap.
The binary result will then prompt the camera to capture the
frame in which this tap was detected. This frame will then be
analysed using color detection in the Lab color space. The
specific location for tap will be calculated by finding the center
of the cluster of red pixels that will be classified using an SVM
for dynamic thresholding. After this, the detected coordinate of
the red dot will be used to then calculate the corresponding
coordinates in the GUI to check which button was being tapped
by the user. Once this has been confirmed, the appropriate GUI
response will be generated.

We have changed our system block diagram since the first
iteration of our design report. Our system does not include
MATLAB as we made the decision to write all of our software
implementations in Python, as recommended by our course
staff. This decision was made to prevent any lag that may occur
when transferring data between MATLAB and Python. We now
have a unidirectional transfer of data from the location detection
subsystem to the GUI subsystem, streamlining the data transfer
process. We have also changed our system to use an Arduino in
place of a Raspberry Pi. Since we had a working behavioral
model of the tap detection subsystem implemented with an
Arduino, we decided to continue to use this model in our final
design to save time.

Fig. 1. System setup in lab.

18-500 Final Project Report: 05/07/2019

3

IV. DESIGN TRADE STUDIES

A. Tap and Location Detection Systems
System design selection

We had initially identified two different approaches that
could potentially solve the problem of detecting where a tap
occurred:
a. Using cameras for detection and tracking algorithms: The

issue with this approach was that it required multiple
cameras at different angles for us to distinguish between
when the user’s finger hovered over a button versus when
the user actually tapped a button. We thought of
overcoming this problem using a kinect to generate depth
maps. However, Microsoft has stopped manufacturing
kinects and they would only have been compatible with
Windows machines, which was undesirable.

b. Using piezo sensors to detect vibrations: This approach
included finding the intersection points of several
hyperbolic functions computed using waves created due to
the vibrations generated by a user’s tap. However, this
method restricted us to a user interface that required widely
spaced buttons in order for the sensors to accurately detect
the location of the source of the vibration, i.e., the location
of the tap.

Thus, after carefully weighing the pros and cons of the
above-mentioned methods, we decided to create a system that
would make use of computer vision algorithms to locate the
user’s finger and a piezo sensor circuit to detect whether a tap
occurred or not. This way we could take advantage of both
approaches while avoiding their respective drawbacks.

Detection algorithm selection

Now that we had decided to use computer vision to solve the
problem of localizing the user’s finger, our next step was to
decide on an algorithm that would allow us to accurately track
the user’s finger, which serves as an input to our system. The
simplest solution we could think of was to place a bright red dot
on the user’s finger tip. Now the decision process was two-fold:
a. Tracking versus Detection:

We would either implement a tracking algorithm, Lucas
Kanade in our case, or a detection algorithm that would
find the red dot in a single frame in which the tap occurred
[8]. After careful consideration, we realized that it would
be computationally more efficient to localize the user’s
finger in one frame instead of trying to keep track of it over
several frames We found the complexity of the Lucas-
Kanade Algorithm to be O(n^3) and the detection
algorithms to be O(n^2)[7].

b. Color detection versus Circle detection:
Having concluded that we wanted to implement

detection instead of tracking, our next decision required us
to choose between color detection and circle detection.

Color detection seemed to be an obvious choice since
the “object” that we would be detecting would be a red dot
[10]. However, we did not know how the projected light
rays from the projector would affect the red color of the
dot. Hence, we experimented with three different color
spaces- RGB, HSV, Lab. RGB completely failed as

expected, whereas Lab performed the best. The
preliminary results are shown in figure 4.

Since we were not sure how robust color detection
would be, we also implemented circle detection. This
algorithm was chosen because we knew that the contour
of the circular dot would remain unaffected for the most
part. The circle detection algorithm was a tweaked version
of the Determinant of Hessian blob detection algorithm.
The difference between our implemented algorithm and
the original one was the fact that the scale of the blur was
fixed since the radius of the circle was known. This
reduced the number of iterations that would have been
required for scale selection. The preliminary results for
circle detection can be seen in figure 5.

 Based on our initial results, we have decided to stick with
Lab color detection as it seems to be the most promising out of
the three methods [11]. To improve the robustness of our
results, we will be implementing dynamic thresholding using
an SVM that would help classify red pixels versus non-red
pixels. This would replace our current hard thresholding which
has a high chance of failing if there is a change in the testing
environment.

Programming language selection
Our initial game plan was to implement all our computer vision
algorithms in MATLAB and other data handling in Python.
However, we decided to act on the feedback given to us by our
staff and implement all of our code in Python. This would
reduce any latency that could have arised when interfacing
between MATLAB and Python and better help us achieve our
goal of a 1 second response time.

B. Display System
GUI color scheme selection

After taking a few test images in a setup that closely
mimicked our demo environment, we noticed that projecting a
darker color for a button was occluding the red dot which
reduced the accuracy of both our color and circle detection
algorithms. The fact that we would only try to detect the
location of the red dot when the user tapped on a button lead to
our decision of inverting the GUI color scheme. This means that
we would now have white hues for the buttons and darker hues
for the background. However, after collecting test user
feedback, we realized that this user interface was bland and
lacking user engagement. Thus, we created a second iteration
of the GUI which is more visually appealing and improves our
user experience. This new interface now walks the user through
different scenarios in a comic strip style. While one story
depicts why we need InteracTable, the other describes what our
system looks like and how it works.

18-500 Final Project Report: 05/07/2019

4

Fig. 4. Preliminary results for color detection.

Fig. 5. Preliminary results for circle detection.

C. Metrics and Validation
Metric 1: This determines if the location detection subsystem
detects the centroid of the red pixels in a test image within the
radius of the red dot sticker in the image. In order to test this
metric, fifty pictures were taken of the user’s finger with a red
dot, and run through the location detection subsystem to find
the centroid of the cluster of detected red pixels. Every time, the
program successfully detected the correct coordinate within the
boundaries of the red dot sticker within the image. Fifty data
points were deemed sufficient to test this metric since every
image was correct, so it was deemed redundant to take more
data points.

18-500 Final Project Report: 05/07/2019

5

Metric 2: This metric aimed to minimize the distance between
the center of the red dot and the mapped coordinate plotted by
the system. Ideally, this distance should be within the radius of
the red dot, which is 0.64cm. To test Metric 2, the poster board
was tapped twenty times in different locations, and the distance
was measured in centimeters using a ruler. Twenty data points
are sufficient to test this metric given that there are only so
many places a user can tap on the poster board. In Fig. 6, every
data point below the red line is within dot radius. Based on the
data collected, our system passes this metric fifty percent of the
time. While this is not ideal, the furthest points were at most 1.5
cm, which translates to a few pixels on a laptop surface. The
projector, camera, and poster board angles all contribute to this
skewed mapping. To accommodate this margin of error, there
is a buffer of a few pixels around each button so correct GUI
responses will still be triggered even if the mapped coordinate
is not exact.

Fig. 6. Measurements for Metric 2.

Metric 3: The tap detection subsystem accuracy rate is limited
by the sensitivity of the piezo sensors. The piezo sensors
accurately detect the vibrations from a tap when the tap occurs
close to the sensor. When we tested the tap detection subsystem
with a single piezo sensor at the center of the poster board, the
resulting accuracy rate was 30% with thirty test points and three
test users, significantly below the target value of 100%. To
improve this accuracy rate, we placed four more sensors along
the perimeter of the poster board in the configuration shown in
Fig. 7. This configuration of five piezo sensors results in an
accuracy of 100% determined by testing 50 taps over the entire
surface area of the poster board.

Fig. 7. Configuration of piezo sensor circuit on the back of the poster board.

Metric 4: The desired system response time was 1 second,
mapped as the red line in Fig. 8. As shown in Fig. 8, we were
unable to achieve this time. The achieved system response time
is 1.696 seconds on average. The response times were
computed using the Python time.time() module, finding the
difference between the time a tap was detected to the time the
appropriate GUI response is triggered. The limiting latency is
due to delays in sending data from the Arduino to the Python
GUI script and the time taken to predict each pixel using the
trained color detection SVM.

Fig. 8. Measurements for Metric 4.

18-500 Final Project Report: 05/07/2019

6

V. SYSTEM DESCRIPTION

A. Tap Detection Subsystem
The tap detection system consists of the piezo sensor circuit,

which detects the resulting vibrations through the poster board
from a tap on the board and an Arduino Uno, which notifies the
GUI subsystem when a tap is detected. When the system boots
up, the average voltage value of each sensor at rest is used to
determine an appropriate threshold voltage. Any voltage
beyond this threshold is designated to be a “tap”. When a “tap”
is detected, the Arduino writes a “1” to the serial port.
Otherwise, it writes a “0”.
B. Location Detection Subsystem

The location detection system consists of the webcam and the
laptop. When the laptop receives tap confirmation, the webcam
takes a picture of the user’s finger against the projected GUI,
using the OpenCV library for Python. Once the picture is saved,
it is analyzed by the trained SVM to detect the centroid of the
red pixels in the image. The SVM was trained using the scikit-
learn package, using data collected with basic color
thresholding in the LAB colorspace. The LAB colorspace
conversion was done using the scikit-image package. The
coordinates of the detected centroid is passed to the GUI
subsystem.

C. GUI Subsystem
The display system consists of the laptop and the projector.

The projector displays the laptop screen via an HDMI cable. Its
focus can be adjusted depending on the distance between itself
and the poster board for greater clarity. Additionally, there is a
keystone to adjust for vertical tilt of the projected screen. The
GUI itself is written using the PyQt library. When the location
detection subsystem passes over the detected coordinates of the
user’s finger, the GUI subsystem determines whether or not the
finger is over a button. To identify which button was selected,
the GUI uses the dimensions of the projected screen that are
gathered with the initial system calibration on start up. These
dimensions are used to calculate the proportional coordinate on
the laptop screen. If the coordinate is identified as within the set
bounds of a button, the projected display is updated
appropriately.

VI. PROJECT MANAGEMENT

A. Schedule
Please find the schedule in Fig. 9. on page 9.

B. Team Member Responsibilities

TABLE I. TEAM MEMBER RESPONSIBILITIES

Name
Tasks

Primary Completed Tasks Secondary
Tasks

Isha

Color Detection Algorithms in Matlab.
Compare Color Spaces RGB, HSV, LAB
and choose best for our system.

Set up preliminary GUI for Matlab to
Python pipeline (this pipeline is no
longer a part of our design)

Building the
final piezo
sensor circuit

Color Detection implemented in Python
and train SVM for automating color
thresholding in Python

Real time detection with camera and
projector setup

Tanushree

Circle Detection algorithm in Matlab.

Initial GUI using PyQt with required
functionality.

Final GUI implementation using PyQt.

Building the
final piezo
sensor circuit

Suann

Initial Piezo Sensor Circuit and testing
for threshold

Arduino sending data to laptop

Final GUI design

Lucas-Kanade

Help Isha with
testing the
detection
algorithms
work with our
camera and
projector
setup.

All

Set up mechanical parts

Test for Metric 1: detected coordinate is
within red dot

Test for Metric 2: detected pixel
coordinate is within the GUI button

Testing Metric 3: low latency

Integrate tap detection and location
detection

Write final paper

Write the final
GUI

Reading
sensor data
from the piezo
sensor circuit
to decide
threshold for
tap detection

Testing the
final system

C. Budget
Please find the Table II, the table of parts, on page 10.

D. Risk Management
The following are some technical challenges and design risks

we identified at the beginning of the semester.
We recognize that surfaces can be of varying dimensions. To

accommodate these varied dimensions of our projected GUI,
we will add a calibration screen to determine the coordinates of
the corners of the projected gui.
We were aware that we may face an issue in finding the perfect
illumination under which the projected screen is clearly visible
and the red dot on the finger is not obstructed by the colors of
the projected screen. When buying the projector, we made sure
to look for reviews of the projector being used in daylight so
that we could make sure the image is clearly visible under room
lights.

We were concerned about facing an issue with the camera
tracking the color red since we did not know how the projector
light may change the color of the red dot we are tracking. A
hand may also distort the projected screen by interfering with
the light rays. This is the reason why we decided to track the
shape of the dot in conjunction with the color. After setting up
our preliminary test environment, we quickly realized that there
was negligible distortion from the hand and little to no color
change in the red dot from the projected light.
We expected that there may be delays in processing data in real
time. We were able to manage this by using a trained SVM for
color detection. We also minimized delays in sending data over

18-500 Final Project Report: 05/07/2019

7

a serial port by designing out the connection from Matlab to
Python. There is only a one-way data transfer from the Arduino
to the Python gui detection subsystem.
Before purchasing the Raspberry Pi, we were under the
assumption that we could use it to read analog data just like an
Arduino. That is not the case. To save time, we switched to
using an Arduino to read sensor data. In the case that we were
unable to use the piezo sensors, we had a fallback plan of using
an accelerometer built in to a cheap Android phone. This would
have given us similar results in detecting the vibrations from a
tap on our demo surface.

After our design presentation, we were advised to change our
design to omit the use of Matlab alongside Python since there
could be delays in sending data from Python to Matlab and vice
versa. We decided to write our detection algorithms in Python
to omit any possible delays.

In order to prevent spending too much time implementing
algorithms so that we can move on to other parts of the project,
we set a hard deadline of March 1st to make our conclusions on
which algorithm would be best to use. This deadline was to
prevent the risk of falling behind schedule so that we can make
sure we have a working demo by the end of the semester.

VII. RELATED WORK
A touchscreen table is the most comparable product to our

design. However, touchscreen table are very expensive - they
can cost thousands of dollars - and they are not portable [3]. Our
design can be implemented at any table. If we had the budget to
buy a very small projector and camera, our prototype would be
easier to transport to different surfaces.

We researched other similar projects done by professors at
CMU. One team of researchers made spray paint, named
Electrick, that can turn any surface into a touchscreen [4]. Our
design is not as permanent as paint.

Professor Chris Harrison built a device that “acoustically
couples mobile devices to surfaces” using several piezo sensors
[5]. The results from this research project spurred us to decide
to use piezo sensors for our own implementation.

For the project OmniTouch, Professor Chris Harrison also
created a handheld device that projects a screen on a person’s
arm and detects a tap on the buttons on the arm [6]. This
localizes a tap on the table using depth maps to determine the
location of a finger and if a finger taps the arm.

VIII. SUMMARY
Was your system able to meet the design specifications ?

Describe very briefly the limits on your system’s performance,
and any obvious things you can do to improve the system
performance if you had more time.

A. Future work
Our system was able to meet design specifications 1, 2 and

3. We were not able to achieve Metric 4, a 1 second response
time, exactly. However, our average response time of 1.696
seconds does not result in noticeable system lag in real time.
Thus, we found that this achieved response time was
acceptable. If we had more time, we would collect a smaller
data set of training data so that the time to make a prediction
on a single pixel is reduced. Additionally, we would try to

parallelize the predictions to cut down on time further. We
would also port the piezo sensor circuit to a Raspberry Pi to
omit the data transfer over a serial port.

B. Lessons Learned
The most important lessons we learned were to scope out

potential project ideas well, schedule enough time to conduct
research and set hard deadlines. In addition to this, we had to
build in enough slack time. We found it is not prudent to use
PyQt with Mac for this application area. The Mac OS adds a lot
of processing delay and is slow to update the displayed PyQt
GUI. Most importantly, we learned that we had to leave enough
time at the end to fix unexpected issues.

REFERENCES
[1] “3M C4667PW 46" Projected Capacitive 60 Points Multi-
Touch Display,” neweggbusiness.com. Available:
https://www.neweggbusiness.com/Product/Product.aspx?Item
=9B-0WX-000M-
00034&ignorebbr=1&source=region&nm_mc=KNC-
GoogleBiz-PC&cm_mmc=KNC-GoogleBiz-PC-_-pla-_-
Interactive+Digital+Signage-_-9B-0WX-000M-
00034&gclid=EAIaIQobChMI_eDzvfDo4AIVjRyGCh2O0gv
PEAkYAiABEgJOZ_D_BwE&gclsrc=aw.ds. [Accessed Mar.
4 2019]
[2] S. Hoober, “Common Misconceptions About Touch,”
uxmatters.com, Mar. 18, 2013. [Online].
Available:https://www.uxmatters.com/mt/archives/2013/03/co
mmon-misconceptions-about-touch.php. [Accessed Mar. 4
2019].
[3] “touchscreen table,” google.com. Available:
https://www.google.com/search?q=touchscreen+table&client=
ubuntu&hs=gcy&channel=fs&source=lnms&tbm=shop&sa=
X&ved=0ahUKEwj2863BxeLgAhXkqFkKHeIQCcYQ_AUI
DigB&biw=773&bih=795. [Accessed Mar. 4 2019].
[4] A. Liszewski, “Scientists Figure Out How to Turn Anything
Into a Touchscreen Using Conductive Spray Paint” Gizmodo,
May 8, 2017. [Online], Available:
https://gizmodo.com/scientists-figure-out-how-to-turn-
anything-into-a-touch-1795016303. [Accessed Mar. 4, 2019].
[5] Xiao, R., Lew, G., Marsanico, J., Hariharan, D., Hudson, S.,
and Harrison, C. 2014. Toffee: Enabling Ad Hoc, Around-
Device Interaction with Acoustic Time-of-Arrival Correlation.
In Proceedings of the 16th International Conference on Human-
Computer Interaction with Mobile Devices and Services
(Toronto, Canada, September 23 - 26, 2014). MobileHCI ’14.
ACM, New York, NY. 67-76. [Online], Available:
http://chrisharrison.net/projects/toffee/ToffeeCMU.pdf.
[Accessed Mar. 4, 2019].
[6] Harrison, C., Benko, H., and Wilson, A. D. 2011.
OmniTouch: Wearable Multitouch Interaction Everywhere. In
Proceedings of the 24th Annual ACM Symposium on User
interface Software and Technology (Santa Barbara, California,
October 16 - 19, 2011). UIST '11. ACM, New York, NY. 441-
450. [Online], Available:
http://chrisharrison.net/projects/omnitouch/omnitouch.pdf.
[Accessed Mar. 4, 2019].
[7] “What is the computational complexity of Lucas-Kanade
algorithm?” stackoverflow.com, Mar. 14, 2014. [Online].

https://www.neweggbusiness.com/Product/Product.aspx?Item=9B-0WX-000M-00034&ignorebbr=1&source=region&nm_mc=KNC-GoogleBiz-PC&cm_mmc=KNC-GoogleBiz-PC-_-pla-_-Interactive+Digital+Signage-_-9B-0WX-000M-00034&gclid=EAIaIQobChMI_eDzvfDo4AIVjRyGCh2O0gvPEAkYAiABEgJOZ_D_BwE&gclsrc=aw.ds
https://www.neweggbusiness.com/Product/Product.aspx?Item=9B-0WX-000M-00034&ignorebbr=1&source=region&nm_mc=KNC-GoogleBiz-PC&cm_mmc=KNC-GoogleBiz-PC-_-pla-_-Interactive+Digital+Signage-_-9B-0WX-000M-00034&gclid=EAIaIQobChMI_eDzvfDo4AIVjRyGCh2O0gvPEAkYAiABEgJOZ_D_BwE&gclsrc=aw.ds
https://www.neweggbusiness.com/Product/Product.aspx?Item=9B-0WX-000M-00034&ignorebbr=1&source=region&nm_mc=KNC-GoogleBiz-PC&cm_mmc=KNC-GoogleBiz-PC-_-pla-_-Interactive+Digital+Signage-_-9B-0WX-000M-00034&gclid=EAIaIQobChMI_eDzvfDo4AIVjRyGCh2O0gvPEAkYAiABEgJOZ_D_BwE&gclsrc=aw.ds
https://www.neweggbusiness.com/Product/Product.aspx?Item=9B-0WX-000M-00034&ignorebbr=1&source=region&nm_mc=KNC-GoogleBiz-PC&cm_mmc=KNC-GoogleBiz-PC-_-pla-_-Interactive+Digital+Signage-_-9B-0WX-000M-00034&gclid=EAIaIQobChMI_eDzvfDo4AIVjRyGCh2O0gvPEAkYAiABEgJOZ_D_BwE&gclsrc=aw.ds
https://www.neweggbusiness.com/Product/Product.aspx?Item=9B-0WX-000M-00034&ignorebbr=1&source=region&nm_mc=KNC-GoogleBiz-PC&cm_mmc=KNC-GoogleBiz-PC-_-pla-_-Interactive+Digital+Signage-_-9B-0WX-000M-00034&gclid=EAIaIQobChMI_eDzvfDo4AIVjRyGCh2O0gvPEAkYAiABEgJOZ_D_BwE&gclsrc=aw.ds
https://www.neweggbusiness.com/Product/Product.aspx?Item=9B-0WX-000M-00034&ignorebbr=1&source=region&nm_mc=KNC-GoogleBiz-PC&cm_mmc=KNC-GoogleBiz-PC-_-pla-_-Interactive+Digital+Signage-_-9B-0WX-000M-00034&gclid=EAIaIQobChMI_eDzvfDo4AIVjRyGCh2O0gvPEAkYAiABEgJOZ_D_BwE&gclsrc=aw.ds
https://www.neweggbusiness.com/Product/Product.aspx?Item=9B-0WX-000M-00034&ignorebbr=1&source=region&nm_mc=KNC-GoogleBiz-PC&cm_mmc=KNC-GoogleBiz-PC-_-pla-_-Interactive+Digital+Signage-_-9B-0WX-000M-00034&gclid=EAIaIQobChMI_eDzvfDo4AIVjRyGCh2O0gvPEAkYAiABEgJOZ_D_BwE&gclsrc=aw.ds
https://www.uxmatters.com/mt/archives/2013/03/common-misconceptions-about-touch.php
https://www.uxmatters.com/mt/archives/2013/03/common-misconceptions-about-touch.php
https://www.google.com/search?q=touchscreen+table&client=ubuntu&hs=gcy&channel=fs&source=lnms&tbm=shop&sa=X&ved=0ahUKEwj2863BxeLgAhXkqFkKHeIQCcYQ_AUIDigB&biw=773&bih=795
https://www.google.com/search?q=touchscreen+table&client=ubuntu&hs=gcy&channel=fs&source=lnms&tbm=shop&sa=X&ved=0ahUKEwj2863BxeLgAhXkqFkKHeIQCcYQ_AUIDigB&biw=773&bih=795
https://www.google.com/search?q=touchscreen+table&client=ubuntu&hs=gcy&channel=fs&source=lnms&tbm=shop&sa=X&ved=0ahUKEwj2863BxeLgAhXkqFkKHeIQCcYQ_AUIDigB&biw=773&bih=795
https://www.google.com/search?q=touchscreen+table&client=ubuntu&hs=gcy&channel=fs&source=lnms&tbm=shop&sa=X&ved=0ahUKEwj2863BxeLgAhXkqFkKHeIQCcYQ_AUIDigB&biw=773&bih=795
https://gizmodo.com/scientists-figure-out-how-to-turn-anything-into-a-touch-1795016303
https://gizmodo.com/scientists-figure-out-how-to-turn-anything-into-a-touch-1795016303
http://chrisharrison.net/projects/toffee/ToffeeCMU.pdf
http://chrisharrison.net/projects/omnitouch/omnitouch.pdf

18-500 Final Project Report: 05/07/2019

8

Available: https://stackoverflow.com/questions/21111318/wh
at-is-the-computational-complexity-of-lucas-kanade-
algorithm. [Accessed Mar. 3, 2019].
[8] Levin, G. "Computer Vision for Artists and Designers:
Pedagogic Tools and Techniques for Novice Programmers".
Journal of Artificial Intelligence and Society, Vol. 20.4.
Springer Verlag, 2006. [Online]. Available:
http://www.flong.com/texts/essays/essay_cvad/. [Accessed
Mar. 3, 2019].
[9] M. Grusin, “Serial Peripheral Interface (SPI),”
learn.sparkfun.com. Available:
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-
spi/all. [Accessed Mar. 4, 2019].
[10] U. Sinha, “Color Spaces,” [Online]. Available:
http://www.aishack.in/tutorials/color-spaces-2/ [Accessed Mar.
4, 2019].
[11] MathWorks, “Understanding Color Spaces and Color
Space Conversion,” mathworks.com. Available:
https://www.mathworks.com/help/images/understanding-
color-spaces-and-color-space-conversion.html. [Accessed
Mar. 4, 2019].

https://stackoverflow.com/questions/21111318/what-is-the-computational-complexity-of-lucas-kanade-algorithm
https://stackoverflow.com/questions/21111318/what-is-the-computational-complexity-of-lucas-kanade-algorithm
https://stackoverflow.com/questions/21111318/what-is-the-computational-complexity-of-lucas-kanade-algorithm
http://www.flong.com/texts/essays/essay_cvad/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all
http://www.aishack.in/tutorials/color-spaces-2/
https://www.mathworks.com/help/images/understanding-color-spaces-and-color-space-conversion.html
https://www.mathworks.com/help/images/understanding-color-spaces-and-color-space-conversion.html

18-500 Final Project Report: 05/07/2019

9

Fig. 9: Semester schedule with dependencies. Yellow indicates Isha’s tasks, pink indicates Suann’s tasks, green indicates Tanushree’s tasks and blue indicates tasks
done by all team members. The boxes with colored borders indicate primary and secondary task assignments.

18-500 Final Project Report: 05/07/2019

10

TABLE II. TABLE OF PARTS AND BUDGET

Item Budget
Cost Quantity Source

Webcam $67.93 1 Amazon
Projector (Black) $79.99 1 Amazon
Camera Tripod (1

pack)
$6.99 1 Amazon

Projector Tripod
(50 inch tripod

only)

$29.98 2 Amazon

Red Dot Sticker $7.99 1 Amazon
USB Hub (4-port) $9.49 1 Amazon
USB Hub (Anker) $9.99 1 Amazon

Raspberry Pi $34.49 1 Amazon
Raspberry Pi

Charging Cord
$8.47 1 Amazon

Sparkfun Piezo
Sensors

$25.21 10 Sparkfun

Macbook HDMI
adapter

$19.99 1 Amazon

Macbook USB
adapter

$8.99 1 Amazon

16 GB Micro SD
Card

$12.80 2 Amazon

Poster clamps $98.93 1 Amazon
Arduino Uno 0 1
Matlab 2018b 0 CMU

Software
License

Python3 0 https://www.
python.org

Scikit-image for
Python

colorspace
conversions

0 http://scikit-
image.org

Scikit-learn for
Python SVM

0 https://scikit-
learn.org

PyQt5 for GUI
and PyQt5-sip

needed for PyQt

0 https://www.r
iverbankcom
puting.com/s
oftware/pyqt/
download5

OpenCV for
accessing
webcam

0 https://openc
v-python-

tutroals.readt
hedocs.io/en/
latest/py_tuto
rials/py_tutor

ials.html
Personal Laptops 0

pigpio library 0 http://abyz.m
e.uk/rpi/pigpi
o/python.htm

l
sockets library 0 https://docs.p

ython.org/3/li
brary/socket.

html
a.

Items that are italicized were bought but not used.

18-500 Final Project Report: 05/07/2019

11

Fig. 2. Initial block diagram.

Fig. 3. Final system block diagram.

	I. Introduction
	II. Design Requirements
	III. Architecture and/or Principle of Operation
	IV. Design Trade Studies
	C. Metrics and Validation

	V. System Description
	A. Tap Detection Subsystem
	B. Location Detection Subsystem
	C. GUI Subsystem

	VI. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Budget
	D. Risk Management

	VII. Related Work
	VIII. Summary
	A. Future work
	B. Lessons Learned

	References

