InteracTable

Suann Chi

Isha lyer

Tanushree Mediratta

Project Description

An everyday table converted into a touch screen music system

ECE Areas Covered

Signals

- Analyzing signals from the piezo sensor or accelerometer
- Computer vision algorithms to detect finger placement

Software

- Designing an interactive GUI
- Matlab code for CV computations

Technical Requirements and Constraints

The projection must be bright enough to be visible on any white table top

The prototype must be affordable (less than \$600)

The system must be able to connect to a laptop via USB cable

The system will be constrained to track a single finger

The buttons will be large enough and spaced enough to achieve 100% accuracy in selection

The delay between the detection and response to a finger tap should be under 1 second

The red dot should be large enough to ensure consistent detection

The dimensions of the projected screen should be variable

Technical Challenges

Surfaces can be of varying dimensions

The red dot may be obstructed by the colors of the projected screen

A hand may distort the projected screen by interfering with light rays

Delays in processing data

Difficulty mounting the projector and camera on a custom stand

Setting up the circuit for the piezo sensor

Possible Solutions

Project a border at the edge of the screen as reference for calculations

Track the shape of the dot in conjunction with the color

Change the angle of the projection

Use the Matlab Parallel Computing Toolbox

Fix the positions of the projector and camera and use tripods

Use an existing accelerometer in a phone

Solution Approach: Overview

Solution Approach: Algorithms

Tracking

- Lucas Kanade algorithm
- Some of the assumptions might be violated in our case: brightness constancy
- Computationally intensive: considers every frame of the video

Detection

- Color Thresholding or blob detection
- Only consider frame in which tap detected by sensors
- Might be faster that tracking

Tasks and Division of Labor

Isha: Object detection algorithms Tanu: Start Lucas-Kanade - extract trackable features Suann: Create skeleton for GUI and audio manipulation Isha: MATLAB to python pipeline Tanu: Complete the GUI and audio manipulation Suann: Complete Lucas-Kanade Tracking Isha: Simulate tap and integrate with tracking/detection Tanu: Read sensor data to test for threshold value Suann: Create circuit for sensor + set up mechanical parts

Tasks to be accomplished together

- Integrate tap simulation and real sensor data
- Test in demo environment
- Write paper and get an A :)

	Jan	Feb					Mar				Apr				May	
Personal Deliverables	28	3	6	13	20	27	6	13	20	27	3	10	17	24	1	8
Slack																
Finish Object Detection																
Tracking Algorithm Lucas Kanade																
GUI + audio manipulation																
Compare Tracking vs Object Detection																
Integrate GUI with tracking/detection algorithm																
Simulate tap and integrate with tracking/detection																
Set up mechanical parts (stands, camera, projector)																
Create sensor circuit																
Read sensor data to decide threshold																
Make tracking work with projector and camera set up																
Integrate tap simulation and sensor data																
Test in demo environment																
Practice for presentation																
Write paper																

Q & A