
18-500 Design Review Report: 03/04/2019

1

Abstract— This paper outlines the preliminary design of
our capstone design project, InteracTable. InteracTable is
a proof of concept prototype of a portable system that can
turn any surface into an interactive touch screen. Current
commercially available capacitive touchscreen tables are
very costly and are immobile [1]. Our design overcomes
these limitations by using computer vision algorithms to
track the location of a user’s finger and piezo sensors to
detect the vibrations propagating through the medium
from a tap on the table.

Index Terms—Algorithms, Computer Vision,
Collaboration, Detection, Interactive, Piezo Sensor, Touch
Screen, Tracking

I. INTRODUCTION
InteracTable is a portable product that will revolutionize the

way people work. Any table surface can become a user’s laptop
screen while using the InteracTable. The size of the work
surface will be adjustable to different tables, and best of all, it
can accommodate multiple users for the best collaborative
experience. InteracTable’s design consists of a projector
connected to the user's laptop, whose screen will be projected
onto a flat table top. Computer vision will be used to track a red
dot sticker placed on a user's finger. The projected screen will
be captured by a webcam and these images are then sent back
to the laptop for processing. A piezo sensor connected to a
Raspberry Pi will detect a tap on the table. For this proof of
concept prototype, we will constrain the system to work with
only one finger.

There are existing solutions to the problem of collaboration
including Google Drive and capacitive touch screen tables.
Google Drive does not compare to our solution because it
requires multiple computers for collaboration. Our system only
requires one laptop source. Further, touch screen tables are not
the greatest alternative because they cost thousands of dollars
and they are not portable [1]. The InteracTable is a competitive
product because it is low-cost, portable and will provide a real
time response within 1 second.

II. DESIGN REQUIREMENTS
We are aiming for an accuracy rate of 95% since this is a

value we have seen for many commercially available capacitive
touchscreens [2]. We will verify our design by the following
metrics:

1. The detected coordinate of the red dot should be within
the radius of the dot. We will test this by identifying
the center of the red dot for a set of test images. The
distance in pixels from the center of the red dot to the
detected coordinate will be calculated. Ideally, this
calculated distance will be within ¾ the radius of the
dot. This is a very important metric since it determines
the usability of the system.

2. On detecting a coordinate, we should be able to
compare the coordinate detected to the coordinates of
the projected image so that we can determine whether
or not a button was selected. Our GUI will have a
boundary drawn around the screen so that we can use
ratios to determine this metric. This testing will be
done by feeding in pixel coordinates of an image of the
projected GUI. These coordinates will be designated
to be within the boundaries of a button or coordinates
of the background screen. Our test GUI is a fixed
screen so these test coordinates will not change. We
will take several test images of a finger selecting a
button and hovering over the background of the GUI
and process them to determine whether or not the
detected red dot is within the boundaries of a button
on the GUI screen. A screenshot of the test GUI is
provided above for reference.

3. We would like the response time for our system to be
within 1 second. We will test this time by using the
Python time.time() module to take the difference
between the moment a tap is detected and a GUI
response is triggered. This response time is very
important since we want our system to be comparable
to working with other collaborative tools like Google
Docs.

4. The piezo sensors should detect a tap with reasonable
pressure and effort. This qualitative metric can be
realized with user testing. We plan to ask several users
to test our system and give us feedback on how much
effort it takes them to select a button. This feedback
will help us tune the system so that it is reasonably
responsive.

Authors: Suann Chi, Isha Iyer, Tanushree Mediratta

 Electrical and Computer Engineering

Carnegie Mellon University

InteracTable

18-500 Design Review Report: 03/04/2019

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our system can be broken down into three main functional
modules:

1. Location Detection module
2. Tap Detection module
3. Display module

The webcam would be tracking the red dot on the user’s
finger. When the user taps on the flat surface onto which our
screen is projected, the vibrations generated by the tap will be
picked up by the piezo sensors. This analog signal will then be
processed by a Raspberry Pi. A basic script will be used to
establish a threshold value that would indicate whether a tap
occurred or not. Thus, producing a binary output, 1 being a
detected tap. The binary result will then be used as a prompt for
the camera to capture that frame during which this tap was
detected. This frame will then be analyzed using color detection
in the Lab color space, since it has the most promising results
so far. The specific location will be calculated by finding the
center of the red cluster that will be classified using an SVM for
dynamic thresholding. After this, the detected coordinates of
the red dot will be used to then calculate the corresponding
coordinates in the GUI to check which button was being tapped
by the user. Once this has been confirmed, a response will be
generated which will lead to appropriate changes in the GUI
being projected onto the surface.

We have changed our system block diagram slightly. Our
latest system diagram doesn’t include MATLAB anymore as
we made the decision to write all of our software
implementations in Python, as recommended by our course
staff. This decision was made on the basis that will prevent any
lag that might have occurred when transferring data between
MATLAB and Python. Thus, this streamlines our entire
pipeline. Fig. 1. Shows our original system block diagram
which was then changed to remove MATLAB completely, as
shown in Fig. 2., which shows the latest version of our system
design.

Fig. 1. Older version of our system design block diagram

Fig. 2. Latest version of our system design block diagram

18-500 Design Review Report: 03/04/2019

3

IV. DESIGN TRADE STUDIES

A. Tap and Location Detection Systems
i. System design selection

We had initially identified two different approaches that
could potentially solve the problem of detecting where a tap
occurred:

a. Using cameras for detection and tracking algorithms:
The issue with this approach was that it required
multiple cameras at different angles for us to
distinguish between when the user’s finger hovered
over a button versus when the user actually tapped a
button. We thought of overcoming this problem using
Kinect to generate depth maps, however, Microsoft
have stopped their production and it would only have
been compatible with windows machines, which was
undesirable.

b. Using piezo sensors to detect vibrations: This
approach included finding the intersection points of
several hyperbolic functions computed using waves
created due to the vibrations generated by a user’s tap.
However, this method restricted us to a user interface
that required widely spaced buttons in order for the
sensors to accurately detect the location of the source
of the vibration, i.e., the location of the tap.

Thus, after carefully weighing the pros and cons of the
above-mentioned methods, we decided to create a system that
would make use the computer vision algorithms to locate the
user’s finger and a piezo sensor circuit to detect whether a tap
occurred or not. This way we could take advantage of both
approaches while avoiding their respective drawbacks.

ii. Detection algorithm selection
Now that we had decided to use computer vision to solve the

problem of localizing the user’s finger, our next step was to
decide on an algorithm that would allow us to accurately track
the user’s finger, which serves as an input to our system. The
simplest solution we could think of was to place a bright red dot
on his/her fingertip. Now the decision process was two-fold:

a. Tracking versus Detection:
We would either implement a tracking algorithm, Lucas

Kanade in our case, or a detection algorithm that would find
the red dot in a single frame in which the tap occurred [8].
After careful consideration, we realized that it would be
computationally more efficient to localize the user’s finger
in one frame instead of trying to keep track of it over
several frames. We found the complexity of the Lucas-
Kanade Algorithm to be O(n^3) and the detection
algorithms to be O(n^2) [7].

b. Color detection versus Circle detection:
Having concluded that we wanted to implement detection

instead of tracking, our next decision required us to choose
between color detection and circle detection.

Color detection seemed to be an obvious choice since the
“object” that we would be detecting would be a red dot [10].
However, we did not know how the projected light rays from
the projector would affect the red color of the dot. Hence, we
experimented with three different color spaces- RGB, HSV,
Lab. RGB completely failed as expected, whereas Lab
performed the best. The preliminary results are shown in Fig.
3.

Since we were not sure how robust color detection
would be, we also implemented circle detection. This
algorithm was chosen because we knew that the contour of
the circular dot would remain unaffected for the most part.
The circle detection algorithm was a tweaked version of the
Determinant of Hessian blob detection algorithm [12],
[13]. The difference between our implemented algorithm
and the original one was the fact that the scale of the blur
was fixed since the radius of the circle was known. This
reduced the iterations which would have to be made for
scale selection. The preliminary results for circle detection
can be seen in Fig. 4.

As a note, we are still in the process of testing with a
larger set of test images. Our preliminary results include
only four test images.

Based on our initial results, we have decided to stick
with Lab color detection as it seems to be the most
promising out of the three methods [11]. To improve the
robustness of our results, we will be implementing
dynamic thresholding using an SVM that would help
classify red pixels versus non-red pixels. This would
replace our current hard thresholding which has a high
chance of failing if there is a change in the testing
environment.

Fig. 3. Preliminary test results for HSV and Lab color spaces for
color detection

18-500 Design Review Report: 03/04/2019

4

iii. Programming language selection
Our initial game plan was to implement all our computer

vision algorithms in MATLAB and other data handling in
Python. However, we decided to act on the feedback given to
us by our staff and implement all of our code in Python. This
would reduce any latency that could have surfaced when
interfacing between MATLAB and Python and help us better
achieve our goal of a 1 second response time.

B. Display System

GUI color scheme selection

After taking a few test images in a setup that closely
mimicked our demo environment, we noticed that projecting a
darker color for a button was occluding the red dot which
reduced the accuracy of both our color and circle detection
algorithms. The fact that we would only try to detect the
location of the red dot when the user tapped on a button lead to
our decision of inverting the GUI color scheme. This means that
we would now have white hues for the buttons and darker hues
for the background.

V. SYSTEM DESCRIPTION

A. Tap Detection System
 The tap detection system consists of the piezo sensor circuit,
which will be reading user tap data and the Raspberry Pi, which
will be notifying the display system when there is a user tap.

The piezo sensor circuit will need to include an ADC to deal
with the analog outputs that will come from the sensor. This
microcontroller is necessary because the Pi’s pins cannot
handle high voltage spikes that may occasionally come in from
the piezo. This circuit will feed its information to the Pi’s pins.
The ADC microcontroller will interface with the Pi using SPI
protocol [9]. SPI is adequate because this is the only device that
will be connected to the Pi.

The Raspberry Pi will be installed with Python 3.7 in order
to interface with the laptop’s Python script. In order to receive
signals from the piezo sensor circuit the Pi will continuously
poll its pins. This Python script will be written using the library
pigpio. To send data to the laptop, another script will be written
in Python using the sockets library.

B. Location Detection System
 The location detection system consists of the webcam and the
laptop.

When the laptop has received tap confirmation, it triggers the
webcam to take a picture of the current tabletop. This command
will be sent using the OpenCV library for Python. After this
Python script saves the webcam picture, it is up to a color
detection program, also written in Python, to analyze the image.
This script will detect whether or not the user’s finger is over a
button. If the answer is yes, GUI-space coordinates for the
user’s finger will be calculated, also using Python.

C. Display System

The display system consists of the laptop and the projector.
They are connected via an HDMI to HDMI cable.
 If there are GUI-space coordinates available, Python will
update the GUI’s state appropriately. The GUI itself will also
be written in Python using the PyQt library.
 The projector will display the laptop screen via the
information it receives through the HDMI cable. Its focus can
be adjusted depending on the distance between itself and the
poster board for greater clarity. Additionally, it has a keystone
to adjust for vertical tilt of the projected screen.

Fig. 4. Preliminary test results for circle detection

18-500 Design Review Report: 03/04/2019

5

VI. PROJECT MANAGEMENT

A. Schedule
A detailed schedule is shown in Fig. 5. on page 7. We

have highlighted the four main milestones we want to
achieve throughout the semester. We have already achieved
milestone 1 of finalizing our design: we have chosen
choosing color detection along with SVM as our detection
algorithm and Python as our language to implement all
software.

We have color coded the tasks indicating who is in
charge of what. Yellow tasks are Isha’s, pink are Suann’s
and green are Tanushree’s tasks. Blue tasks are to be done
by everyone. Further, boxes which are outline with a
different color indicate secondary tasks for the respective
individuals.

B. Team Member Responsibilities

C. Budget
Table. 2. lists all the purchases we have made so far can be
found on page 8. So far, we have spent $294.52, which
means that we have $305.48 left.

D. Risk Management
The following are some technical challenges and design risks

we identified at the beginning of the semester.

Design Risks

We recognize that surfaces can be of varying dimensions.
To accommodate these varied dimensions of our projected
GUI, we will add a border at the edge of the screen that can
help us calculate the coordinates of a finger tap by using the
distance from the tap to the border. The border would also
confine the workspace to a restricted area, thus helping us
control our environment.

We were aware that we may face an issue in finding the
perfect illumination under which the projected screen is
clearly visible and the red dot on the finger is not obstructed
by the colors of the projected screen. When buying the
projector, we made sure to look for reviews of the projector
being used in daylight so that we could make sure the image
is clearly visible under room lights.

We were concerned about facing an issue with the camera
tracking the color red since we did not know how the
projector light may change the color of the red dot we are
tracking. A hand may also distort the projected screen by
interfering with the light rays. This is the reason why we
decided to track the shape of the dot in conjunction with the
color. After setting up our preliminary test environment, we
quickly realized that there was negligible distortion from the
hand and little to no color change in the red dot from the
projected light.

We expect there may be delays in processing data in real
time. We will try to resolve this delay by using
multithreading and small kernels.

It may be a challenge to set up the right circuit for our
piezo sensors. Before purchasing the Raspberry Pi, we were
under the assumption that we could use it to read analog data
just like an Arduino. It seems that that is not the case. If we
run in to too many difficulties reading the analog piezo
sensor input, we will switch to using an Arduino to read
sensor data. In the case that we are unable to use the piezo
sensors, we will fall back to using an accelerometer built in
to a cheap Android phone. This will give us similar results in
detecting the vibrations from a tap on our demo surface.

Risk Reduction Measures

After our design presentation, we were advised to change
our design to omit the use of MATLAB alongside Python
since there could be delays in sending data from Python to
MATLAB and vice versa. We decided to write our detection
algorithms in Python to omit any possible delays.

In order to prevent spending too much time implementing
algorithms so that we can move on to other parts of the
project, we set a hard deadline of March 1st to make our
conclusions on which algorithm would be best to use. This
deadline was to prevent the risk of falling behind schedule so
that we can make sure we have a working demo by the end
of the semester.

VII. RELATED WORK
A touchscreen table is the most comparable product to our

design. However, touchscreen table are very expensive - they

Table 1. Individual task assignments

18-500 Design Review Report: 03/04/2019

6

can cost thousands of dollars - and they are not portable [3]. Our
design can be implemented at any table. If we had the budget to
buy a very small projector and camera, our prototype would be
easier to transport to different surfaces.

We researched other similar projects done by professors at
CMU. One team of researchers made spray paint, named
Electrick, that can turn any surface into a touchscreen [4]. Our
design is not as permanent as paint.

Professor Chris Harrison built a device that “acoustically
couples mobile devices to surfaces” using several piezo sensors
[5]. The results from this research project spurred us to decide
to use piezo sensors for our own implementation.

For the project OmniTouch, Professor Chris Harrison also
created a handheld device that projects a screen on a person’s
arm and detects a tap on the buttons on the arm [6]. This
localizes a tap on the table using depth maps to determine the
location of a finger and if a finger taps the arm.

REFERENCES
[1] “3M C4667PW 46" Projected Capacitive 60 Points Multi-
Touch Display,” neweggbusiness.com. Available:
https://www.neweggbusiness.com/Product/Product.aspx?Item
=9B-0WX-000M-
00034&ignorebbr=1&source=region&nm_mc=KNC-
GoogleBiz-PC&cm_mmc=KNC-GoogleBiz-PC-_-pla-_-
Interactive+Digital+Signage-_-9B-0WX-000M-
00034&gclid=EAIaIQobChMI_eDzvfDo4AIVjRyGCh2O0gv
PEAkYAiABEgJOZ_D_BwE&gclsrc=aw.ds. [Accessed Mar.
4 2019]
[2] S. Hoober, “Common Misconceptions About Touch,”
uxmatters.com, Mar. 18, 2013. [Online].
Available:https://www.uxmatters.com/mt/archives/2013/03/co
mmon-misconceptions-about-touch.php. [Accessed Mar. 4
2019].
[3] “touchscreen table,” google.com. Available:
https://www.google.com/search?q=touchscreen+table&client=
ubuntu&hs=gcy&channel=fs&source=lnms&tbm=shop&sa=
X&ved=0ahUKEwj2863BxeLgAhXkqFkKHeIQCcYQ_AUI
DigB&biw=773&bih=795. [Accessed Mar. 4 2019].
[4] A. Liszewski, “Scientists Figure Out How to Turn Anything
Into a Touchscreen Using Conductive Spray Paint” Gizmodo,
May 8, 2017. [Online], Available:
https://gizmodo.com/scientists-figure-out-how-to-turn-
anything-into-a-touch-1795016303. [Accessed Mar. 4, 2019].
[5] Xiao, R., Lew, G., Marsanico, J., Hariharan, D., Hudson, S.,
and Harrison, C. 2014. Toffee: Enabling Ad Hoc, Around-
Device Interaction with Acoustic Time-of-Arrival Correlation.
In Proceedings of the 16th International Conference on Human-
Computer Interaction with Mobile Devices and Services
(Toronto, Canada, September 23 - 26, 2014). MobileHCI ’14.
ACM, New York, NY. 67-76. [Online], Available:
http://chrisharrison.net/projects/toffee/ToffeeCMU.pdf.
[Accessed Mar. 4, 2019].
[6] Harrison, C., Benko, H., and Wilson, A. D. 2011.
OmniTouch: Wearable Multitouch Interaction Everywhere. In
Proceedings of the 24th Annual ACM Symposium on User
interface Software and Technology (Santa Barbara, California,
October 16 - 19, 2011). UIST '11. ACM, New York, NY. 441-
450. [Online], Available:

http://chrisharrison.net/projects/omnitouch/omnitouch.pdf.
[Accessed Mar. 4, 2019].
[7] “What is the computational complexity of Lucas-Kanade
algorithm?” stackoverflow.com, Mar. 14, 2014. [Online].
Available: https://stackoverflow.com/questions/21111318/wh
at-is-the-computational-complexity-of-lucas-kanade-
algorithm. [Accessed Mar. 3, 2019].
[8] Levin, G. "Computer Vision for Artists and Designers:
Pedagogic Tools and Techniques for Novice Programmers".
Journal of Artificial Intelligence and Society, Vol. 20.4.
Springer Verlag, 2006. [Online]. Available:
http://www.flong.com/texts/essays/essay_cvad/. [Accessed
Mar. 3, 2019].
[9] M. Grusin, “Serial Peripheral Interface (SPI),”
learn.sparkfun.com. Available:
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-
spi/all. [Accessed Mar. 4, 2019].
[10] U. Sinha, “Color Spaces,” [Online]. Available:
http://www.aishack.in/tutorials/color-spaces-2/ [Accessed Mar.
4, 2019].
[11] MathWorks, “Understanding Color Spaces and Color
Space Conversion,” mathworks.com. Available:
https://www.mathworks.com/help/images/understanding-
color-spaces-and-color-space-conversion.html. [Accessed
Mar. 4, 2019].
[12] Wikipedia, “Blob detection,” wikipedia.org. [Online].
Available:
https://en.wikipedia.org/wiki/Blob_detection#The_determinan
t_of_the_Hessian. [Accessed Mar. 4, 2019].
[13] Jan Sellner, “Introduction to the Hessian feature detector
for finding blobs in an image,” August, 2017. [Online].
Available:
https://milania.de/blog/Introduction_to_the_Hessian_feature_d
etector_for_finding_blobs_in_an_image. [Accessed Mar. 4,
2019].

18-500 Design Review Report: 03/04/2019

7

Fig. 5. Detailed schedule with milestones and task dependencies.

Fig. 5. Schedule along with milestones and task dependencies

18-500 Design Review Report: 03/04/2019

8

Table 2. List of parts

