
Mesa - A Smart Meeting Table

Team C2 Design Report
Authors: Raunak Sanjay Gupta, Arman Hezarkhani, Olivia Weiss

∗Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Mesa is a smart meeting table that aims to better
facilitate collaboration, communication and record keeping in
meetings. It allows users to write on an accompanying touch
screen, converting their handwriting into text and digitally em-
bedding it into documents and presentations hosted on the table
through Google Cloud APIs. State of the art neural networks
are used for the classification of letters. Users can interact with
the smart table using a touch screen and simple hand gestures,
making it very easy to use.

Index Terms—Cloud, Collaboration, Computer Vision, Gesture
Recognition, Object Character Recognition

I. INTRODUCTION

More often than not, meetings default to one or a few
members who present ideas to their teammates and coworkers.
While others are able to present their ideas and discuss
the problem at hand, it is challenging for them to directly
contribute to the development process. The goal of our project
is to address three common problems with working in a group:
collaboration, communication, and record-keeping.

Our approach to solving these problems is with Mesa:
the smart table. This table facilitates collaborative meetings
by having an interactive dashboard capable of displaying
documents such as slides and images. The table also has a
notes widget which records and displays notes that a user
takes. The user can use hand gestures to interact with these
documents, and to take a screenshot of the current table
display. Using these tools, meeting collaborators can display
and interact with each others work, making comments and
keeping track of their progress along the way.

Finally, there is a touchscreen component of the smart table,
which serves multiple purposes. The touchscreen acts as the
interface to the notes widget displayed on the smart table
dashboard. The user can write their notes on the touchscreen
and, using OCR, our table translates the handwriting into text
and sends this text to the notes widget. That way, users can
take notes as they usually would on a notepad. The touchscreen
also takes care of account information for the table, so the user
can input any relevant granular data for the table to use. All
of these tools allow members of a meeting to behave as they
would normally, but have a more meaningful and interactive
discussion with each other using our table dashboard.

II. DESIGN REQUIREMENTS

This section discusses the key design requirements of this
complex system. We present the main functionality we aimed
to implement, and then discuss metrics that we used to test and
validate our achievements with respect to the requirements. We
also detail the requirements from the hardware and software
we used.

A. Gesture Detection

• The average time taken to detect and correctly classify
a hand gesture is no more than 2 seconds. We call this
the gesture detection latency. This is to ensure that the
table responds quickly to user input, and no considerable
lag that can impact consumer experience is noticeable.
We manually tested and measured the gesture detection
latency over all the supported hand gestures, with the
average response time being significantly less than 2
seconds in all the 10 trials that we conducted.

• We require 85− 90% accuracy in classifying the various
hand gestures. Each hand gesture has its own required
accuracy target, due to the inherent difference in the
complexity of detection associated with each gesture.
These accuracy requirements were judged against a plain
white background. Please refer to the following table for
the accuracy we were able to achieve for the different
hand gestures.

Gesture Type Target Accuracy Achieved Accuracy
Clench 90% 92%

Two-finger tap 85% 87%

Table 1: Different gestures, their targeted and achieved accuracy

B. OCR Segmentation and Classification

• Because we are performing OCR on characters written on
a touchscreen, our letter segmentation is close to perfect.
This is especially true because our use case requires users
to print their sentences rather than writing in cursive.
This means that we create a bounding box for each letter
based on when the user places and picks their finger.
There exists a small amount of segmentation error, for
reasons such as overlapping letters, but otherwise our
segmentation is ideal. Therefore, we are able to segment
letters with 100% accuracy, disregarding user error.

• Our word segmentation is based primarily on spacing.
Letters that are grouped more closely together are part
of the same word and letters that are grouped farther
apart mark the end of one word and the beginning of
another. This is based on the size of the letters and the
expected average spacing. Although the touchscreen pro-
vides reliable information about this spacing, it is possible
a user’s handwriting could have words spaced too closely
together. Because of this, we account have two separate
requirements, dependent on the user’s handwriting:

1) Words are spaced farther apart than letters. In this
case, we have 100% accuracy. This case is ideal.

2) Words are spaced closer together than letters,
equally close, or have variable spacing. This does
not fit in the scope of our project.

• Based on some common text classification papers, clas-
sification accuracy can on average range from around
87% - 97% [1][2][5]. Our classification model is not
as in depth as the models from these papers due to
time constraints. However, our classification challenge
was simplified by the automatically-centered bounding
box and the binary colored text on a white background.
Therefore, we required our classification to be the average
of these accuracies: 92%. Based on user testing, our final
classification accuracy was 95%.

Action Achieved Accuracy
Letter Segmentation 100%
Word Segmentation 100%

Classification 95%

Table 2: Different OCR components and their final accuracy

C. Overall product

• We aim to allow users to collaborate on and display their
work documents while they use the table. To this extent,
we allow users to interact with the documents that they
upload through the dashboard. This is exclusively reliant
upon Google Firestore and Google Cloud Storage, which
guarantee 99.99999% success.

• The goal of our project is to have a smart, interactive and
easy to use table. With that goal in mind we will design
and fabricate our table such that it facilitates collaboration
with up to 4 people at a time in an effective manner. To
test its ease of use and success at promoting collaboration,
we conducted a series of user studies, inviting different
people such as students to test it and rate it on the desired
features.

III. ARCHITECTURE

A. Interactive meeting table

This subsystem is composed of a few different pieces of
hardware. For the table, we use a TV screen, which is mounted
onto a table. This TV screen is used to display the web
dashboard in a Chromium browser. The table is controlled
using a Raspberry Pi 3 B+, which is running the web UI. The
Raspberry Pi 3 B+ is also connected to a camera mounted
on top of the table, through which it receives a continuous
video stream of the table surface. A lightweight Tornado based
web server, written in Python, receives these image frames,
and run the gesture detection classifier, communicating both
between the web dashboard and the Google Cloud to take the
appropriate action.

B. Touch screen tablet

The tablet is one of the main ways the user interacts with
the table. Specifically, the user can control what is displayed
on the table through the touch screen and also write notes onto

the touchscreen, which triggers the OCR procedure to segment
the letters and classify them accordingly.

C. Google Cloud

Google Cloud is the mechanism through which we will
perform all our heavy computation and store all user data.
Specifically, we will use Google Cloud Firestore for persistent
data storage and Google Cloud Storage for blob file storage.
We built a dashboard to interact with our cloud backend.

D. Web dashboard

This web dashboard is the main way that users interact with
the cloud back-end. They can view a gallery of screenshots and
upload and download files and presentations.

Fig. 1. Mesa - Overall System Architecture

IV. DESIGN TRADE STUDIES

A. OCR Study

There were a few different trade-offs to evaluate when
deciding to implement the OCR for this project. First, we
had to decide how to segment the handwritten letters. We
considered a few options for this:

1) The user would write directly on the table, and we would
filter out the background using a screen-shot of the table
display without the writing on it

2) The user would write on a ”notepad” displayed on the
table with a white background

3) We would build a pen that could track when it was
touching the table and its current coordinates using
hardware

We evaluated each of these options. The first option seemed
overly complicated and not likely to work. The image that
would be taken by our camera to filter out the background of
the writing would be different than the image being displayed
on our TV for a variety of reasons, including camera angle
and lighting. We didn’t want to dedicate our time to trying
to solve a segmentation problem this way when we should be
focused on classification. The third option had the potential to
work, but again was very time-intensive. Considering we had
multiple other demanding aspects of our project, we didn’t
want to add the hardware of a pen to the list.

This brought us to the second option: writing on a notepad
with a white background on the table. This idea still had its
issues: the notepad could be anywhere on the table, and the
user could write on it from any angle. However, once we
simplified the problem to this extent, we realized we could
simplify it further by having the user write on a touchscreen
instead. This would not limit our handwriting feature any more
than the second option would, but it would make segmentation
as simple as keeping track of pen touches and lifts. This is the
idea we settled on.

After deciding on the segmentation plan, we had to settle
on a classification plan. Originally, we were going to use a
deep convolutional neural network for text classification, as
is convention in the field. However, upon further research,
it turned out the convolution would not be necessary. The
purpose of convolution is to check all areas of a picture for an
item to classify [3]. Our segmentation is the ideal case, with
centered, binary text, so this would not be necessary. Instead,
a simple neural network would accomplish the same task and
require less computation power and setup.

B. Cloud System Study

When analyzing cloud platforms, we weighed our options
with a few variables in mind. First, we considered our needs.
We needed a REST API, a persistent database, file storage,
and an instance to run our ML Model. Additionally, we
considered how complex the authentication would be. Many
times, implementing complex cloud architecture is difficult
due the need to authenticate every request between instances.
Lastly, we considered cost of the cloud provider.

After analyzing the big-three cloud providers, Amazon Web
Services, Microsoft Azure, and Google Cloud, we landed on
Google Cloud Platform. Google Cloud Platform meets all of
our needs. Regarding authentication, it uses service accounts
that can be stored in environment variables, making it easy to
authenticate cross-platform. Lastly, they provide free and easy-
to-use cloud credits. Another very important added perk is that
we can use the same platform to house, run, and authenticate
our Google Suite integration.

C. Gesture Detection Study

To perform gesture detection we primarily experimented
with a few different computer vision based approaches before
deciding to settle on using a camera. We decided to stray away
from building our own classifier based on Machine Learning
techniques as we are only aiming on detecting a small number
of hand gestures that are fairly simple - which should be
achievable using a purely computer vision based approach.

The first approach we experimented with was using a Leap
Motion. The Leap Motion is a small device built primarily for
VR/AR applications that uses an infrared and depth sensor to
detect hands. This device allowed us to get hand joint data
and implement code to detect hand gesture swipes. However,
after experimentation and running a few tests, we came to the
conclusion that the Leap Motion would not be viable for our
use case as the sensor was only able to detect hands to a depth
of 0.3m and had a lateral vision of around 0.25m - which was
significantly less than the range we would have needed when
the Leap Motion was mounted on top of the table.

We then proceeded to experiment with the Kinect - a
device that has a camera and depth sensor, allowing for the
tracking of body joints. The Kinect has a much longer range.
(of up to around 3-4m) Although this solved the problems
we had with the Leap Motion’s range, it introduced other
significant challenges. After writing some preliminary test
code we learned that the Kinect can only track hand joints
accurately only if the entire body is being tracked. Since
tracking only the hands would lower accuracy significantly, we
decided to switch to a purely computer vision based approach
to detect the finger tips.

We finally decided to settle on using a Logitech HD Web
Camera. This allowed us to get video frames from the camera,
after which we find contours and find the convex hull of the
largest contour to isolate the shape of the hand. We combined
this with a K-means color segmentation approach with K = 2,
to have a more robust hand detection algorithm. Using K = 2
allowed us to best cluster all skin colored hand points into
one cluster, and the other points into another cluster, which
was ignored. We then identified a clench and tap based on
the number of convex hull points detected - a clench led to 0
convex hull points, where as a tap resulted in 2 convex hull
points corresponding to the two open finger tips.

D. Hardware and software choices

In this section we quickly describe the trade offs we made
in choosing specific hardware and software packages. Firstly,
we decided to use 2 Raspberry Pi 3 B+’s for powering our
entire system. The reasons we chose these were because we
wanted a Linux based system that had stronger WiFi support
(for quicker and more efficient communication between com-
ponents) and more heavy compute capability. Out of all the
options we considered the Raspberry Pi 3 B+ turned out to
meet all these requirements.

To implement the hand gesture detection we decided to
use a Logitech HD web camera to get realtime video frames,

which we then processed using a K-means color segementation
algorithm and a convex hull algorithm to detect the hands.

To interface with the Raspberry Pi Touch screen we decided
to implement a UI in Python using Pygame. By using a high
level language such as Python, we were able to focus our time
on the image segmentation and OCR, rather than writing low
level driver code to interface with the touchscreen.

V. SYSTEM DESCRIPTION

A. Touchscreen Implementation

The user can write notes on a Raspberry Pi 7 inch touch-
screen display. These handwritten notes are shown in Pygame,
which runs on the Raspbery Pi touchscreen. The user can
use a button displayed on the touchscreen to indicate that
the note is finished and ready to be processed. On the press
of this button, the touchscreen Raspberry Pi sends an image
of the Pygame screen, along with additional information, to
our Cloud Functions endpoint and is redirected to our Cloud
ML Engine Instance. This instance runs a neural network
in Tensorflow to perform OCR on the handwritten text. The
results of this OCR is saved in the Firestore DB, which is
accessed later by the smart table to display the note on the
dashboard.

There are two main components to the OCR itself: seg-
mentation and classification. The segmentation aspect of this
challenge is relatively simple. Since the user is writing on a
touchscreen, segmentation information is saved and updates in
real time. The user beginning to touch the screen indicates the
beginning of a new letter. Up until the user stops touching the
screen, the touchscreen Raspberry Pi keeps track of the min-
imum and maximum X and Y coordinates seen so far. Once
the user stops touching the screen, this information becomes
the bounding box of that letter. Once a new line is drawn, if
the line is close enough to the previous bounding box, that
bounding box is expanded to include that line – this accounts
for letters with multiple strokes. On the press of the button,
the bounding boxes are used to take screenshots of the letters.
Next, a combination of Gaussian blurs and image processing
are used to format the screenshots to match the formatting
of the EMNIST dataset. The results of this preprocessing are
sent to Cloud Compute Engine for classification. The letter
order is maintained using the X coordinates of the bounding
boxes. Word separation is also maintained by assuming spaces
significantly larger between words than between letters.

Text classification was the challenging aspect of the hand-
writing OCR. However, since the letters are be so perfectly
segmented, the classification is done without the use of a
convolutional neural network. Convolution is mainly used to
classify an item that could be anywhere within an image.
However, in this case, the letter is always at the center of
its bounding box, so a regular neural network can accomplish
the same task. Our neural network has three layers: an input
layer, a hidden layer, and an output layer. The input layer has
28 x 28 = 784 neurons. The hidden layer is approximately
half the size of the input and output layers: 400 neurons.
After experimentation, the activation function is ReLU, which

significantly improved performance from Sigmoid. Finally,
there is a Softmax output layer that has 62 neurons (10 digits
+ 26 lowercase letters + 26 uppercase letters).

Fig. 2. Mesa - Touchscreen Data Flow

Fig. 2 shows in detail the setup for the touchscreen to
interface with the rest of the system. There are two flows
of information for the touchscreen: the OCR flow and the
granular user input flow.

The OCR system begins with a user writing on the touch-
screen with their fingers. When they press the + button, the
Python Driver software creates an HTTP request containing a
screenshot of the UI containing the handwriting, along with a
JSON object containing XY pairs to segment the characters.
This HTTP Request is made to the Cloud Functions REST
API (see arrow 1). The Cloud Functions API then redirects
this Request Body to the Cloud ML Engine Instance (see
arrow 2) which runs the OCR and sends a response to the

Cloud Functions API (see arrow 3). This response is finally
stored in the Firestore Database using the Firestore Client
Library, which is a simple wrapper over the HTTP protocol
(see arrow 4). To display the results of this process, the table
polls every 10 seconds (see arrow 5) to refresh the display
with any updated Notes objects. The granular user input flow
is also fairly similar. When a user inputs information, this
information is bundled into an HTTP Request (see arrow 1),
and stored in the Firestore Database (see arrow 4). The table is
polling for updates to this information every 10 seconds (see
arrow 5) and displays the updated data as it is changed.

B. Interactive Table Implementation

This subsystem consists of the table display itself, along
with the Logitech HD web camera that are both connected to a
Raspberry Pi 3 B+. This subsystem is in charge of performing
the hand gesture recognition and interfacing directly with the
screen mounted on top of the table.

To perform the gesture detection, we decided to use a purely
computer vision based approach. We have a gesture detection
script, which is run as part of the a local Tornado based Python
web server. This gesture script is implemented in Python and
uses OpenCV for primitive image manipulation. The algorithm
to detect gestures begins by first extracting the current frame
and blurring it using a Gaussian Kernel. We then apply a K-
means based color clustering algorithm, with K = 2 to isolate
the hand in the frame. (one cluster is approximated as the skin
color of the hand, and the background is classified as part of
the other cluster) The segmented image is then thresholded
using a binary mask to extract the shape of the hand. The
next step involves finding the largest contour (the hand), and
finding the convex hull of the contour to detect the finger tips,
and the convex defects to find the points between fingers -
allowing us to construct a visual map of the hand. This step
forms the basis for detecting the various hand gestures we
implemented. Here we describe the general approach we will
follow to a couple of gestures:

A clench is easily detected by noticing a significant change
in the spacing between the convex hull vertices and the convex
defects, along with a sharp decrease in the height of the convex
hull vertices (which corresponds to finger tips). Secondly, a 2
finger tap is detected by checking the number of convex hull
vertices that are present.

This approach to hand gesture detection worked very well
on plain solid backgrounds, as background subtraction in
this case was straightforward. However, once we moved to
testing on more complex and noisy backgrounds such as the
documents presented on the table, background subtraction
became significantly more complicated, leading to erroneous
results with the hand gesture detection. This turned out to
be a significant challenge that proved to be very hard to fix.
Many of the approaches to background subtraction relied on
a constant/non changing background, which did not fit our
use case. Therefore, to improve the accuracy and robustness
of our hand detection algorithm, we decided to incorporate a
small rectangular red foam that the user holds as they interact

with the table. By adapting the K means color segmentation
algorithm to first detect this red foam (that is in significant
contrast to the hands) and then the user’s hands we were able
to significantly improve the accuracy of our hand detection
algorithm. This just required minor changes to our algorithm,
as we first filtered out pixels that were not classified as ”red”
to isolate the red foam, before proceeding to detect the hands
in the neighboring pixels.

Fig. 3. Mesa - Gesture Detection Data Flow

Figure 3 shows the data flow and how the components
within this subsystem interact. When the Raspberry Pi is
booted up, we first use a start-up bash script to start running
both the Tornado webserver and the Chromium web browser.
(refer to arrows 1 and 2 in Fig 3) Upon startup the Chromium
web browser establishes a web socket connection with the
web server to communicate. (refer to arrow 3) In the Tornado
web server we use a separate thread to run the hand gesture

detection code. This thread interfaces with the Logitech HD
web camera, (refer to arrow 4) reading in the video stream
frame by frame and run the hand gesture detection code which
was detailed before. Whenever a gesture is detected, the web
server calls the appropriate Google Cloud API endpoint func-
tion to indicate that a certain gesture was detected to trigger
the appropriate action. This change is also communicated to
the Chromium browser running in the display to reflect the
change on the table screen itself. The Chromium web browser
is displayed on the screen through a direct wired HDMI
connection with the Raspberry Pi. (refer to arrow 5)

C. Cloud System Implementation

Initially, we wanted to have one single Rest API running
on Cloud Functions, with the intention that it control every
other cloud component. However, we realized that this wasn’t
necessary, and that it would add a whole new aspect to the
project with no new technical benefit. Instead, we decided that
we’d use the API libraries to communicate with the Firestore
and Storage tools.

D. Web Dashboard Implementation

The meeting table is run using a Raspberry Pi 3 B+
running a Raspbian OS. The table consists of a HDMI enabled
television screen – laying horizontally – as the main display
and is powered by a wall outlet. Upon start-up, this Raspberry
Pi instantiates a chromium web-browser and a local Python
web-server. The chromium web-browser runs in Kiosk Mode,
allowing it to be rendered in a full screen mode. Upon start up,
it immediately requests static files from our CDN, allowing it
to render our table User Interface. The local web-server is built
using the Python Flask web framework. The server polls data
from our webcam, and runs the gesture-recognition script to
draw conclusions about the user’s interactions with the table.
When the server decides what gestures have been performed,
it pushes the changes that need to be made to the UI using a
websocket connection to our Chromium web browser.

The Chromium web-browser is also in HTTP communi-
cation with our backend in Google Cloud. It polls every 10
seconds to query the database for any new Notes that could
have been made on our tablet.

VI. PROJECT MANAGEMENT

A. Schedule

Our schedule ended up changing from our initial prediction
in a few ways. First, we spent much longer than we expected
on initial research. We learned that research and design play
vital roles in approaching a challenging project such as this
one. Also, we spent longer than expected on both the gesture
detection and OCR components of this project. There were
many more phases of testing and iteration than we initially
accounted for. Finally, we started working on some compo-
nents in parallel, because multiple of the components relied
on each other to be advanced.

See Appendix A for a full schedule.

B. Team Member Responsibilities

To break up tasks, we divided our work into three over-
arching areas, each of which was assigned to a team-member.
Olivia was primarily responsible for OCR, Raunak was pri-
marily responsible for gesture recognition, and Arman was
responsible for our modules interfacing with Google Cloud
and integration in general.

As a part of OCR, Olivia primarily worked on training a
Neural Network to do OCR and implementing a touch screen
UI in Pygame to perform letter segmentation.

For gesture recognition, Raunak was primarily responsible
for writing software that detected hand-gestures using a Log-
itech HD web camera. Raunak was also responsible for feeding
the results of his gesture recognition software to the Chromium
Web-browser using web-sockets on Python’s Tornado web
framework.

For our Google Cloud usage, Arman was primarily re-
sponsible for integrating all of the parts, by designing and
implementing a multi-tiered cloud and software architecture,
including a REST API, a No-SQL Database, a Cloud Storage
Bucket, and a Machine Learning Model running on a cloud
instance. As a secondary responsibility, Arman designed and
implemented the Table and Dashboard UIs.

C. Budget

The break down of our budget and the parts used are
detailed in Appendix C.

D. Risk Management

To minimize our risk, we designed a risk-management plan.
This plan included a bare-bones MVP, as well as minimum
deliverables for each of our respective responsibilities.

1) MVP: Our MVP was defined as a table capable of
displaying and interacting Sticky Notes. Specifically, as part
of our MVP users can put new sticky notes on the table by
writing with their fingers on a tablet and pressing send. Our
back-end then runs the OCR on the hand-writing and creates
a new sticky note. Users can then interact with these sticky
notes using very simple hand-gestures.

This design simplifies our work by getting rid of the need
to store static files in a storage bucket, create a dashboard,
recognize two forms of each character, and detect complex
hand-gestures.

2) OCR: For the OCR, the main way we reduced error was
by focusing on getting the classification to work any amount,
and then improving the classification accuracy from there. This
was done both in preprocessing and in the neural net itself.

3) Gesture Detection: For Gesture Detection, we could
make our work extremely complex by allowing complex
backgrounds, creating complex gestures, and allowing multiple
hands to work at once. In our most simple version, though,
we considered having just two gestures (clench and tap) on a
simple white background. To account for complex changing
backgrounds, we added some background subtraction and
enhanced our robustness and accuracy by introducing the use
of a red foam in the user’s hands.

4) Integration: For Integration, we could have a dashboard,
store and display screenshots, and integrate G Suite tools. In
our most simple version, though, we did not have any of
that. Instead, we focused on setting up the barebones cloud
infrastructure (REST API, Database, and Cloud ML Engine
Instance), and design and implement the table UI.

VII. RELATED WORK

There are two main competitors on the market: Jamboard
by Google [4] and Surface Hub by Microsoft [6]. The tools
are extremely similar: Jamboard integrates with GSuite Tools
and Surface Hub integrates with Office Tools; Jamboard and
Surface Hub both allow for more than one use to interact with
the tool; Jamboard and Surface Hub both have web dashboards
and web/mobile clients; and Jamboard and Surface Hub are
both vertical touch-screens.

When analyzing these tools, we learned a lot from them
and pulled from their strongest features. For example, we
have GSuite integration, which allows for more then one
person to interact, and even have a web dashboard. However,
we differentiate from Jamboard and Surface Hub in two
places: web and mobile clients and a vertical touch-screen.
We decided not to create a web and mobile client for purely
logistical reasons- we do not have nearly enough time to do
so. The creative decisions came into play when deciding not
to have a vertical touch-screen.

Jamboard and Surface Hub both have vertical touch-screens,
but we decided to go with a horizontal screen that users
interact with using hand-gestures. With this, we had two big
design decisions: the horizontal display and the interactions.
We decided to have a horizontal display because that’s how
people have been meeting for thousands of years. It’s natural
and it’s agnostic to the professional field or culture. As for
the interactions, we decided to go with hand-gesture based
interactions for two reasons: cost and user experience.

Touch-screens of that size are about an order of magnitude
more expensive than the camera we worked with, so this
decision leads to a much cheaper product. As for the user
experience, we decided it makes more sense to interact with
the table as if there are objects on it, rather than as if it’s a
touch screen.

VIII. SUMMARY

This section focuses on detailing a summary of what our
project managed to achieve. It also touches upon any future
work that could be incorporated into the project to make it
more robust and successful. Finally, this section also details
some lessons that we learned as a team as we worked on this
project.

To summarize, we built a smart meeting table that fo-
cuses on improving collaboration, communication and record
keeping in a meeting. Specifically, we built a table that one
can interact with using hand gestures to perform basic tasks
such as interact with widgets such as advancing through and
manipulating meeting documents and taking screenshots. In
addition, we built a robust and accurate segmentation and

classification algorithm using a neural net, to allow users to
write their own hand written notes during the meeting, which
are then digitally embedded into the meeting notes. Finally,
we implemented an easy to use and intuitive UI for users to
manage these meetings and have a place to view and interact
with all their notes.

There are a few things we would like to consider for future
work. Firstly, with regards to the classification of letters and
words, we realized we could improve our accuracy by basic
methods such as an auto-correct API, and built in checks to
account for common mistakes between the classification of
letters. Had we had more time, I think these two simple steps
would have significantly improved our classification accuracy.
Secondly, after some research I believe that our hand gesture
detection algorithm could have been more robust to changes
in the background by focusing on CV algorithms based on
feature detection and extraction. If we were to work on this in
the future, we would work on improving the accuracy and
robustness of our hand gesture detection, by using feature
based detection and maybe even incorporating some ML
techniques such as a convolutional neural network.

There are a lot of things we learnt, both individually and as
a team, as we worked on this project. In this report we focus on
some of the msot crucial things. Firstly, with regards to the
OCR we learnt that pre-processing images can significantly
impact the accuracy of classification. Before fine tuning our
pre-processing we were getting an accuracy of about 40−50%,
and simple changes in how we handled the pre-processing
immediately bumped us up to over 80% accuracy. Secondly,
we learnt that background noise in a computer vision based
algorithm can significantly impact accuracy and is tricky to
deal with. We ended up having to modify our approach to
background detection by introducing the red foam to increase
accuracy, which is not ideal. Thirdly, manufacturing a table
can take longer than we thought initially. Finally, we learnt
that we should have left more time to integrate with our
hardware, especially the Raspberry Pi’s that we used. Things
that we assumed would be simple, such as boot up scripts,
and installing modules on the Raspberry Pi, turned out to
be significantly more challenging than we had anticipated -
leaving a lot of integration to be done in the last week or so.

REFERENCES

[1] Amelia, Amelia. Convolution Neural Network to
Solve Letter Recognition Problem. Convolution Neu-
ral Network to Solve Letter Recognition Problem,
users.cecs.anu.edu.au/ Tom.Gedeon/conf/ABCs2018/paper/ABCs2018

paper 190.pdf.
[2] Erkmen, Burcu, and Tulay Yildirim. Statistical Neural Network Based

Classifiers for Letter Recognition. SpringerLink, Springer, 1 Jan. 1970,
link.springer.com/chapter/10.1007/978-3-540-37258-5 140.

[3] Geitgey, Adam, and Adam Geitgey. Machine Learning Is Fun!
Part 3: Deep Learning and Convolutional Neural Networks.
Medium.com, Medium, 13 June 2016, medium.com/@ageitgey/machine-
learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-
f40359318721.

[4] Google, Google, gsuite.google.com/products/jamboard/.
[5] Kandaswamy, Chetak, et al. Improving Classication Accuracy of

Deep Neural Networksby Transferring Features from a Different
Distribution. 2014, Improving Classication Accuracy of Deep Neu-
ral Networksby Transferring Features from a Different Distribution,
www.researchgate.net/publication/269392865 Improving Classification

Accuracy of Deep Neural Networks by Transferring Features from
a Different Distribution.

[6] Microsoft Surface Hub. Software Asset Management Microsoft SAM,
www.microsoft.com/en-us/surface/business/surface-hub.

APPENDIX A
SCHEDULE

APPENDIX B
SYSTEM ARCHITECTURE - BLOCK DIAGRAM

APPENDIX C
BUDGET & PARTS

Part Cost per unit Quantity Total cost
Raspberry Pi 3 B+ $38.10 2 $76.20

Raspberry Pi 7” Touch Screen $74.00 1 $74.00
Logitech HD Web Camera $19.90 1 $19.90

Asus 42” TV Screen $200.00 1 $200.00
Fabrication cost $50.00 1 $50.00

Total - - $420.10

