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Abstract: Nowadays people almost have had the ability to realize 

everything we want using codes. What could be improved is how are we 

using it. Our team wants to design an AR music pad so that people can enjoy 

their interactive experiences whenever they want. It would be portable to any 

device and very convenient to use, and would include a web application. All 

you need to do is having a camera, computer and a table.  

 

Indexed terms: Augmented reality, Edge detection, Hand detection, 

Music 

I.Introduction 
This would be a computer program implemented in python mostly. When it 

starts, it will try to find a table through the camera and display buttons on 

computer screen. When the camera detects a person’s hand on the buttons, 

the program will play sounds and music correspondingly. The major 

improvement here is to have the program to be portable so that people do not 

need to buy and carry that heavy music pad everywhere. Instead, they could 

use this computer program and interact with AR effects. People can also save 

a lot of money. We would want this program to be very sensitive to people's 

hands movements. Program should respond to virtual "press button" within 

0.5s to give users good experiences. 

 

II. Design Requirements 
We have broken down our program into three major parts. A table edge 

detection program is written to detect plain table so we can display AR on it; 

AR generation program is used to display buttons and interactive changes 

with users' hands movements; hand detection program is applied to detect 

users' hands movements. Also there is music generation program which plays 

sound tracks according to button got pressed. 

 

For table edge detection, we would want the program to be able to detect a 

plain table. It should, first of all, be correct in detecting edges. The edges' 

positions as results should be within 10% range of real edge positions. These 

edge positions in terms of coordinates are used to generate AR button effects. 

If the table is too large that we could not find the edges, we will not detect it. 

If the table is too small in the camera such that we do not have enough space 

for placing buttons, we will not detect it. If the table's positioning is skewed 

too much such that it would unreasonable to use as a music pad, we will not 

detect it. 

 

For AR generation, we will display buttons as 2D squares. When people press 

on it virtually, they should be playing music soundtrack. There should be a 

default template, but the user is able to customize their interface as well. 

 

For hand movement detection, we would like the program to have relative 

fast latency, as a music pad should have fast response when users have 

"instructions". Currently we set the goal to be less than 0.5s response time. 

We will try our best in improving this number in order to have better user 

experiences. It will be realized through trying different algorithms for 

detecting hand movement. Time required to calculate current hand position 

will be a metric that we measure and compare. Another major goal is being 

able to correctly detect "press button" action. Since camera only has a 2D 

view from top down we could not detect the "press" action, but we want to 

differentiate that from simply flying over buttons. We might realize this 

function through hand gesture detection i.e. making fist as press action 
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III. Architecture and/or Principle of Operation 

 
MusicPad is deployed in two versions: the local version and the 

webapp version. Above diagram is for the webapp version of the deployment. 

The frontend side would reside at user’s browser when user opens up our 

webapp page. The frontend comprises of HTML, CSS and Javascript code. 

Its primary responsibility is for collecting video input from user’s web 

camera, sending video frame by frame to backend server for further 

operations, and collecting frames back and displaying on the browser. It is 

also responsible for displaying the webpages and collecting other user actions 

such as button clicks. 

 

The backend server is where all the computations take place. It is built and 

ran with Flask and Aiohttp and deployed on a linux server. The computation 

comes in three parts: hand detection, table edge detection, and AR and music 

generation. The hand detection part and the table edge detection part collect 

the video frame inputs from aiohttp server, and then perform their 

corresponding computations. After that, these two parts would send the 

computation results to the AR and Music Generation part, which would 

perform the hand-button interaction test and draw the AR effect on the frame. 

Finally, the modified frame would be sent back to the frontend for display, 

alongside the choice of music to be played if any key is pressed. 

 

All the communications within the back-end server is performed with Python 

calls, and the communication between the front-end server and the back-end 

server is carried out with WebRTC. 

 

The local version of MusicPad is very similar to the back-end server of the 

webapp version with the difference that the web camera input is directly fed 

to the three working parts, and the modified frame and the music choice is 

displayed right away. 

 

  

 

 

 

 

 

 

 

 

 

 

 

IV.  System Description and Design Trade 

Studies 
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1. Table edge detection  

 

The table edge detection step is the first and a fundamental step of 

the process. It will be responsible for the providing input data for the next 

stages, AR projections and hand detection. 

 

Functionally, at first we thought the camera would scan the surface, 

if there is no edge to be found, use the entire scope as the data transferred to 

the AR module, if edges and vertices are found, the coordinates of the edges 

and vertices within the frame will be recorded. However we then found that 

it’s more practical to assume the camera would find a suitable surface and let 

the process be instantaneous.   

 

A traversal will be done with the data to distinguish and filter out 

the desired table’s vertices and transfer them to the AR and hand detection 

part which will know which part of the image is used for effect projection. If 

the camera is too high from the surface such that the detected surface is too 

tiny, no data would be transferred.  

 

A lot of different algorithms were attempted in the process. First is 

the Canny edge detector with the hough line transform, as the numpy nd 

arrays of grayscale “edges” created by Canny edge detection is required for 

the houghlines operations. The lines obtained are mostly definite and clear, 

  

 
Canny Edge detection(first pic) and Hough line transform 

  

however there was no good way of pinpointing the coordinates from the lines. 

Harris Corner detector was also experimented. It’s a combined 

corner and edge detector. In static images where conditions were ideal the 

algorithm worked well, however when dealing with frames captured with 

camera in real time many more unnecessary corners were detected most of 

the time, making it less reliable for our case. 

 

 
                          Harris Corner Detector results 

 

The next attempt was with the contour features in opencv. The most 

critical part was detecting the contours in a frame. The process was related 

with the algorithms discussed in an academic paper about topological 

structural analysis of digitized binary images. As a result we got an array of 

contours in the frame. Then we have to find the largest one in size within it. 

After obtaining it there were two paths that were explored: one was using the 

polygon approximation, which would find the polygon that’s the closest in 
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size and shape encompassing the contour and give out the coordination of the 

vertices; the other one was finding the minimum external rectangle, after 

which we could get the coordinated of its four vertices.  

 
Determining the surroundness relation among borders 

 

  The polygon approximation was more precise in terms of capturing 

the edge of the surface exactly, however in many cases when obtaining the 

coordinates a minority of vertices would be skipped over mainly due to the 

irregularity of the shape and the occasional instability of the algorithm, which 

would greatly undermine its ability to transfer data to the next stages; The 

minimum rectangle approach, would find a rectangle encompassing the target 

regardless of the target’s shape, so it’s slightly less precise in this regard, 

however because it’s always a rectangle we can reliably receive the 

information of all four of its coordinates, making it very reliable to transfer 

data to the next stages, which is why the minimum rectangle approach was 

used at the end. 

 

        
 
Polygon approximation(red) vs minimum rectangle approach(blue) 
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2. Hand-Detection Subsystem 
 This component was originally designed for detecting user’s hand 

movements, and deciding whether the user is trying to activate a button. As 

we moved forward with the project, we decided to move the decision part to 

the AR and music generation component. Thus, in the final implementation, 

this subsystem works solely for the purpose of capturing hand movements, 

and reporting to the AR generation subsystem. 

 

 

A. First approach: Static thresholding 
 The first approach we tried for Hand-Button-Interaction Detection 

was by using static thresholding. In this approach, we tried to differentiate 

the between user barely moving his/her hand over a button and actually trying 

to activate the button. 

  

The most intuitive way for user to activate a button on the table 

would be for him/her to press against the button icon. However, since we plan 

to display multiple buttons on the table, there would be cases that users needs 

to move their hands over some other button before pressing on the button that 

they wish to activate. This is troublesome since all hand detection algorithms 

that we looked into were not capable of telling the “depth” of the hand or 

whether the hand contacted with a surface or not. To address this problem, 

we decided to fallback to a less intuitive but more feasible way of detecting 

hand-button interaction. 

  

 The updated plan is that we would be requiring users to clench their 

fists while moving towards the target button. Once their hands are on the 

button, they should release all their fingers to activate the button. With this 

design, we could then implement  hand-gesture detection for telling if the 

user really wish to activate a button or is just merely moving his/her hand 

towards the target button.  

 

 We separated hand-gesture detection implementation into two major 

steps: hand detection and gesture detection. For hand detection part, we were 

using skin color detection with static threshold. Basically, through testing we 

fixed a lower bound and a higher bound for skin color we are looking for, 

perform dilation and erosion based on that, and threshold binary to extract 

the hand pixels.  

Hand Detection with static thresholding 

 

Gesture detection is the next step. We would first find the contour 

of the hand if it is present in the frame. Based on this information, the program 

will then calculate the convex hull, center of mass and the convex defect of 

the hand. The closest four convex defects from the center of mass would be 

the finger webs, and we know that a finger is pointed if the distance between 

some pixel on the convex hull and the center mass exceeds the distance 

between finger web and the center mass by some distance.  

 

The biggest concern, as mentioned by TAs and Professor Marios, is 

that static thresholding suffers as the lighting condition and table color varies. 

Moreover, this algorithm is unable to differentiate between hands and arms 

or even human faces. Thus, having any of these elements in the camera would 

largely affect the correctness of the result. After several rounds of testing, we 

decided to give up on this implementation and move on to more adaptive 

methods. 
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       Hand Gesture Detection with static thresholding 

 

 
          Static thresholding misidentify face as hand 

 

 

B.  Second Approach: Adaptive Thresholding 
 The second method that we tried was to use a adaptive threshold. 

Here “adaptive” means that adapting to the background frame. The idea is 

pretty simple: the background in our use case would be a table and a table’s 

color would normally be fixed. Therefore, we could get the RGB values of a 

frame containing only a table before user decides to start the MusicPad. After 

the user starts play and lays his/her hand in, we would be able to compare the 

values of the frames with and without hands and be able to recognize the 

hands in the picture. 

 

 In our implementation, we capture the first 50 frames and use their 

average value as the value for frame without a hand. Then, we allow the user 

to put his/her hand in. We extract the hand pixels by subtracting the pre-

captured frame from the new frame and performing a binary thresholding. 

The rest of the implementation is exactly like our first approach with static 

thresholding, with contour finding, convex and convex defects generating, 

and deciding the hand gesture based on these information. 

  

 The result was rather disappointing. When light condition varies on 

the table (some parts lighter and some parts darker), and the user’s hand cross 

both areas, our algorithm tend to only recognize part of the hand. Moreover, 

this method does not solve the problem of misidentifying arms and other 

human body parts as hands, and would even recognize any other intruding 

object as a hand. This method also posts more restriction on user’s operations 

since the user would now have to maintain the camera frames still when 

reading in the first 50 frames.  

 

 

  

 

 

 
 Adaptive thresholding 

only recognizing part of 

the hand (the part circled 

in red line) 
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C. Final Approach: Machine Learning Based Hand 

Detection 

 
 When we first discussed about how to implement the hand-detection 

subsystem, we debated between using a machine learning based approach or 

using only OpenCV. We first settled with using only OpenCV for hand-

detection because we were concerned that detecting hands frame by frame by 

ML would be too slow, and our application would need more a timely 

detection method. However, when our first two attempts with pur OpenCV 

methods failed, we decided to give machine learning a try. 

 

 We decide to use Tensorflow’s Object Detection API for our hand-

detection implementation mainly for the reason that there are a great number 

of pretrained models that could work with this API, and this would make the 

training process much easier. Also, this API, when detecting objects in an 

image or a video, could generate a bounding box around the detected object. 

We could then use this bound box to determine whether or not user is putting 

his/her hands over a button.  The dataset that we are using is the Egohand 

Dataset1. The dataset contains 4800 images of hands in egocentric view and 

with hand annotations, and we believe would closely resemble our 

requirement. We spared 500 images for validation, and used the rest 4300 

hand images as training set. 

 

 The first model that we tried was Faster R-CNN since we learnt that 

it would be the most accurate object detection model. It is also faster than 

conventional Fast R-CNN model by replacing the slow Selective Search with 

a small convolutional network called Region Proposal network. 

 

 

                                                 
1
 Egohands Dataset: 

http://vision.soic.indiana.edu/projects/egohands/ 

 
Faster R-CNN workflow 

 

  

We trained using transfer learning on Google Cloud ML Engine 

with 50000 steps. The obtained hand-detection model was able to detect 

hands in images with high precision. The problem was that when processing 

a video, it was too slow for our purpose. The FPS rate fails below 1 (around 

0.7), and it was unacceptable for our application which is supposed to be 

responsive and timely. 

 

To obtain a better detection time, we turned to Single Shot 

Detection model (SSD). This model runs a convolutional network over each 

image only once, and therefore would be much faster than Faster R-CNN. 

On the downside, its accuracy would be compromised compared to R-CNN 

models. We trained again using the same 4300 images as training set with 

transfer learning. The result was pleasing. The model was able to reach a 

0.89mAP2, and the frame per second is around 7 when applied to a video.   

 

 
SSD workflow 

 

2
 mean Average Precision 

http://vision.soic.indiana.edu/projects/egohands/
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 This result is pretty satisfactory since now we have a moderate 

FPS rate and still a very high accuracy. Compared to the previous two 

OpenCV approaches, the Object Detection based method is able to work 

under more extreme lighting conditions, and detect hands on tables with 

very similar colors. Moreover, it makes it possible to differentiate between 

hands and other parts of human bodies so that other objects such as human 

arms would no longer trigger any button. 

 The problem with this approach is that we are not able to further 

detection hand gestures after finding the user’s hands. Therefore, it makes it 

impossible to tell whether users are just moving their hands over a button, 

or actually wanting to activate it. After massive research, we found this 

problem very hard to address. Finally, we have to make the decision to put 

the burden on the users’ side, by instructing them to leave their hands out of 

the camera frame and only putting their hands in when moved above the 

desired keys. 

3. User Interaction Component 
 

This component comprises everything that program would interact with 

users' actions. It has two major parts: graphics and music.  

 

In graphics, our program will draw a table and buttons on the screen based 

on the table we detect. After our program detects the table, it will forward 

corner positions and our program will draw buttons within the table. The 

default button number is four. By default relative positions for buttons and 

table are fixed. When users change their angle of viewing the table by camera, 

the locations of buttons will change as well. There is another mode inside 

program called "design mode." When users press button "d" they will enter 

into the design mode. In design mode users have the ability to draw the 

buttons wherever they want. They just need to simply drag mouse. Button 

positions will be remembered relative to table position. All these are done 

through python opencv package. In the demo template, we use pictures from 

Zelda to represent buttons. They are overlapped onto the original frame by 

tuning pixels. 

 

After drawing buttons, their positions will be remembered. When hand 

position data came in, the program will compare hand position with button 

positions. To simplify the model the hand position is represented as a single 

point by taking the center position of the box detected. If that point is inside 

any button, the program will react with it by playing a single sound or rhythm. 

In our demo template we choose to play a single sound.  

 

Audio files are played through simpleaudio package in python. To embrace 

better user experience, all audio files are adjusted through audacity so that 

they have same length and similar amplitude. To avoid repetitively playing a 

single sound, there are logics to decide if the hand is placed on a button 

already or the hand is moving to a button. The soundtrack is played on a 

separate thread so that it would not interfere with the main page. 

 

To add more interactions with users, when users press buttons in a certain 

sequence, they would listen a whole soundtrack instead of single sounds. 

Also, a special animation will be displayed. There is a global array 

remembering last few buttons and a function to check if there are any 

sequence matches the designated one. If so corresponding soundtrack will be 

played. The soundtrack is produced using Audacity by combining and tuning 

single notes. 
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The animation contains two parts: text and image. It will display "bingo!" 

when you successfully press such sequence character by character. A cartoon 

character will also be displayed as he is playing an ocarina. Those are set to 

be finished in a few frames so that it would be animated effects instead of a 

single picture. In each frame the program will modify the pixels on the main 

page and as the frames go on an animated effect will be displayed.  

 

To improve user experience further, we add "fix" and "release" buttons onto 

our screen. They will be triggered by mouse clicks. When "fix" is clicked, 

our table will be fixed so that no matter how our camera moves, the table 

position would not change. This tends to help user play with the buttons after 

they find a sweet spot for their camera. If "release" is clicked, our program 

will use real-time table edge detection again.  

 

Buttons, soundtracks, and combo sequence are all customizable by users. But 

for demo purpose we have planned out a template for you already. Users can 

select their own desired ones and play with it. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Webapp Deployment 

                                                 
3
 WebRTC: https://webrtc.org/ 

4
 Flask-SocketIO: https://flask-socketio.readthedocs.io/en/latest/ 

  

 As the last step of our project, we wish to deploy MusicPad as a 

webapp, so that people could use our app anywhere, anytime in the world. 

 

 We choose Flask as our backend server framework since all our code 

is written in Python, and compared to django, Flask is more lightweight and 

easier to deploy. We used HTML and Javascript to build our frontend layer. 

 

 The biggest challenge in deploying MusicPad as a webapp is to 

gather the video frames at users’ browsers using their webcam, stream the 

frames one by one to the backend, and streaming them back for display. For 

gathering video frames from users’ browser, we use WebRTC3, which is a 

open sourced project developed by Google, and embedded the project API in 

Javascript code. The result is pleasing, and we are able to get a smooth video 

stream from the webcam, and displayed on the browser. For transmitting the 

frames back and forth between the client-side and the server-side, we first 

tried using Flask-socketio4 library. As the library works well with 

transmitting images, the latency is too high to stream video frames, and thus 

not applicable for our usage. 

 

 As our second try, we used AioRTC5, which is a Python library built 

around the WebRTC project. It provides the same functionality as WebRTC 

of exchanging images and videos between sites, and could be binded to 

Python code easily. With the help of AioRTC, the latency of sending, 

manipulating and receiving a frame is largely cut down, and we were able to 

raise the FPS rate to 2-3. It is still very low compared to our local version of 

MusicPad, but we believe that it is presentable, and could allow the users to 

get a bit of taste of MusicPad. 

 

 Finally, we deployed our project using a single linux server6 

acquired from Linode. Since it was approaching the deadline for the project, 

we were not able to acquire SSL for our website, and our service is only 

deployed using HTTP, but not HTTPS. For this reason, only Firefox, which 

allows users to open their cameras for HTTP sites could fully support our 

webapp at the current stage.  

 

5
 AioRTC: https://github.com/aiortc/aiortc 

6
 Our website: http://musicpad-500.com . Enjoy! 

https://webrtc.org/
https://flask-socketio.readthedocs.io/en/latest/
https://github.com/aiortc/aiortc
http://musicpad-500.com/
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   Webappp Interface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. Validation and Metrics 

 
We’ve done validations mostly for the table edge detection part and the 

hand detection part. For the edge detection, we calculated the average gap 

between the actual edge from the computed one, and the area ratio between 

the two versions, the average accuracies for them are over 90 percent. The 

response time of the program as calculated by the number of frames per 

second is 0.03 seconds(around 30 frames per second).  

 

For hand detection, and for the object detection based method with the SSD 

model, we put in pictures of hands from the testing dataset to test its 

accuracy, we were able to get a 0.89 mean average precision, and the frame 

per second is around 7, making the overall response time about 0.14 

seconds.  

 

There are also some edge cases that we paid attention to: The program is 

able detect more than one hand at the same time; because of the nature of 

contour finding algorithm, when human hand is in the camera it would also 

get interpreted, which conflicted with our original intention, and that’s why 

we decided to add the frame fixing feature in the interaction part; another 

one is that the program had trouble dealing with environment that’s too 

bright or too dark. 

 

 

 

 

 

 

 

 

 

VI. Project Management 
 

A. Schedule 
 

 Due to some changes of plans after the proposal, we made some 

modification on the schedule, which is attached at the end. More time is to be 

spent on bettering the color extraction process of hand detection part and the 

data transferring process of the (table) edge detection part. Since the cameras 
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just arrived, there would be more testing and data providing afterwards, and 

we were also reminded that we haven’t done things for music generation 

which is our major output, we will be focusing on that sooner. We also 

considered the time for code combination and integration. The chart is 

attached in later pages. 

 

 

B. Team Member Responsibilities 
 

Tianhan Hu:  
My primary responsibility is to build our hand-detection subsystem. During 

the first 8 weeks, I researched and implemented three different ways of 

detecting hands from videos, and fixed the Object Detection based method as 

our final implementation. I then help the team to merge the hand-detection 

subsystem with the AR and music generation part. 

 

I am also responsible for designing and deploying the webapp version of 

MusicPad. I collaborated with Xinyu in building the frontend layer. I 

implemented the backend server using Flask, and the communication layer 

between the client-side and server-side using AioRTC. Finally, I deployed 

our webapp on a single linux server on the following site: 

http://www.musicpad-500.com 

 

 

http://www.musicpad-500.com/
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Xinyu Zhao: 
My main responsibility is implementing the table edge detection part to 

provide coordinates for the AR effects. I did researches and experimentations 

on various detection algorithm extensively, with respect to both static images 

and moving frames, and finally settled at the method with contours. I then 

helped with the team’s resource finding, collaborated with Tianhan on the 

front-end part of the webapp, and also completed the poster for the final 

demo. 

 

Mingquan Chen: 
My major job is to implement all the interactions with users, including 

animation and music. I cooperate with my teammates by integrating their data 

into our program framework. I made all the image and animation effects as 

well as tuned the audio soundtracks. When our project headed into webapp 

deployment phase I also helped debugging and testing. 

 

Also, as a team member I helped decide on which strategy we should use and 

all the factors we should consider. As we said we have tried a lot of different 

methods, and we discussed together to figure out which one fits our project 

the best. 

 

 

C. Budgets 
 

 Items purchased: Genius 120-Degree Ultra Wide Angle Full HD 

Conference Webcam($52.99), Logitech C930e 1080P HD Video Webcam - 

90-Degree Extended View, Microsoft Lync 2013 and Skype 

Certified($78.15), Executive Office Solutions Portable Adjustable 

Aluminum Laptop Desk/Stand/Table Vented w/CPU Fans Mouse Pad Side 

Mount-Notebook-MacBook-Light Weight Ergonomic TV Bed Lap Tray 

Stand Up/Sitting-Black  ($39.9) 

  

We thought we would need to purchase an additional camera based on the 

performance of the given two, but it’s actually not needed. 

 

 

D.      Risk management 
 

We were worrying about testing out so many algorithms might make us miss 

our schedule. It turned out that we successfully tested out all we want. We 

worked as a team to support each other by keeping active and having weekly 

meetings. We kept giving feedbacks to each other and helped to solve the 

difficulty.  

 

During the last two weeks when we need to deploy our program as a webapp 

we faced some trouble, as none of us had experiences with webapp. We 

distributed work properly and helped debugging. Some of us stayed up late 

for a few days and we successfully managed it. 

 

 

 

 

 

VII. Conclusion and future work 

 
We met our expectation for this project. The major goal was to utilize hand 

detection to improve life quality and we chose to focus on music applications. 

Our algorithms at the end worked out well with average of more than 90% of 

accuracy. The best thing is the program will not recognize anything else, as 

we have tested, to be human hands. This is very acceptable, as even if it fails 

to detect hands in the rare cases user just need to hang on for less than one 

second and the program can recognize the hand. Also the latency by using 

Single Shot Detector is very low and we can have around 10 fps. This meets 

our original goal of having less than 0.1s latency.  

Our functionality is basically accomplished, as we have interactions both in 

graphics and music. Nevertheless, there are definitely more things we can do: 

 

If we have more time, we would like to implement following functions: 

 

1. 3D AR buttons. Instead of simply putting 2D squares we will use 

3D cubes as buttons. We will also have the pressed version of 

buttons to make users feel more realistic in using the music pad. 

2. Music soundtrack trace. We will have a record function and once 

users start to record, the button sequences will be remembered and 

could be played later in the future. 
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3. More functionality on webapp. Since we do not have experiences 

with streaming on webapp, we cannot resolve the latency issues. But 

we would definitely want to see it work with full version. 

4. More customizable items on webapp. As we wrote in interaction 

section, users can customize basically everything: buttons, 

animation, music, combo, etc. If we deploy full version onto 

webapp, it would definitely be great to have all these uploaded by 

users themselves. 

5. Using https instead of http. Currently we are using http, so it is 

limited to certain browser usage. If we can expand to https, people 

using mobile phones can access our website as well and it would be 

truly portable. 
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