Project AutoMapper Team BC - Aditya Ranade, Akshat Jain, Wenxin Xiao

Use Case

- First Responder Situation
- Two requirements for successful and efficient evacuation:
 - 2D floor plan of unknown environment
 - Position of trapped people
- Deliverable Autonomous Robot that is able to navigate an unknown environment, create a 2-D floor plan, and mark the location of people present in that environment
- Software, Hardware, and Signals

Map taken from

http://www.ctralie.com/Teaching/DukeDusty2/

Requirements - Mapping and Localization

- Ability to create a 2-D Map (Floor Plan) of unknown environment and localize the robot within it.
- Challenges:
 - Uncertainty in Sensor and Actuator Data
 - Chicken and Egg Problem
- Hardware Requirements:
 - Wheeled robot platform with a mount for a LIDAR.
 - LIDAR sensor.
 - IMU Sensor to capture current pose.
 - Ability to rotate LIDAR sensor 360 degrees.

Requirements - Mapping and Localization cont'd

- Software/Embedded Requirements:
 - Ability to communicate data between laptop and sensors on robot over WiFi.
 - Ability to send control information to embedded system over WiFi..
 - Ability to capture point cloud data and process it to create a 2D Map.
 - Ability to estimate pose of robot from 2D map and vice versa.
- Performance Metrics:
 - Divergence between ground-truth and generated map.
 - Divergence between actual pose and estimated pose.

Requirements - Autonomous Navigation

- Ability to navigate to all unknown regions of the environment to create a complete map.
- Challenges
 - Obstacle Avoidance
 - Type of environment Nearly impossible if we cannot find closed contour of the 2D Map.
- Software Functionality
 - Path Planning algorithm to venture into previously unexplored regions of the map.
- Qualitative/Quantitative metrics
 - Generate a map covering at least 90% of entire surface area.

Requirements - Human Detection

- Ability to detect and mark location of humans on the generated 2-D map.
- Challenges
 - Detect living objects from stationary objects; detect humans from other animals based on size and temperature.
 - Streaming recorded video to PC uses up lot of bandwidth and processing power. Some initial computation will need to be done on edge.
- Hardware Requirements:
 - Thermal Camera mounted on robot.

Solution Approach

View of Subsystems

Solution Approach cont'd

- We will run the localization, mapping, obstacle detection, and autonomous navigation nodes on ROS running on a laptop.
- SLAM for localization and mapping nodes.
- Lidar Sensor Point cloud data
- Thermal Camera Detecting humans
- Communicate with laptop through the Pi on the robot.
- Third Party Libraries:
 - Move Base: Navigation stack of ROS

Testing, Verification and Metrics

- Metrics
 - Fidelity of Map (Divergence of generated map from ground truth)
 - Actual pose vs estimated pose over the entire path of robot
 - Coverage of Map Surface Area
 - Accuracy of location of humans
- Simulation
 - USARSim to simulate real-world sensor and actuator data. Has third party libraries to communicate with robot. Allows for virtual testing and verification of algorithms.
- Real World Testing
 - Need to test in real-world scenarios and make changes to algorithm.

Tasks and Division of Labor

S.No	Tasks	Duration	Team Members
1	Ordering all hardware equipment.	2 weeks	Wenxin, Aditya, Akshat
2	Tutorials on RobotOS, USARSim, openCV	1 week	Wenxin, Aditya, Akshat
3	Connecting all components and setting up communication interfaces.	1 week	Wenxin, Aditya, Akshat
4	Design Methodology	3 days	Wenxin, Aditya, Akshat
5	Manual SLAM Implementation - Mapping	1 week	Aditya
6	Manual SLAM Implementation - Localization	1 week	Akshat, Aditya
7	Simulated testing on USARSim, Bug fixing	1 week	Aditya
8	Autonomous Navigation in unknown regions	2 weeks	Wenxin
9	Simulated testing on USARSim, Bug Fixing	1 week	Wenxin
10	Combining autonomous navigation with SLAM	3-4 days	Wenxin, Aditya, Akshat
11	Obstacle avoidance	3-4 days	Akshat
12	Simulated testing/ Bug fixing	1 week	Wenxin, Aditya
13	Human Detection and testing	1 week	Akshat
14	Overlay Humans on map in right positions.	1 week	Akshat
15	Real world Testing and Bug Fixing	1 week	Wenxin, Aditya, Akshat

