SkyFi

The Wireless Networking Paradigm

Dhruva Kaushal, Electrical and Computer Engineering, Carnegie Mellon University
Syed Raziq Mohideen, Electrical and Computer Engineering, Carnegie Mellon University
Sribhuvan Sajja, Electrical and Computer Engineering, Carnegie Mellon University

Abstract—SKkyFi is a near-range full-duplex communication
system which uses infrared or visible light (VLC) at the
physical layer to transfer data. Precisely-timed pulses of light
are transmitted via Overlapping Pulse Position Modulation.
Using simple components (LEDs, photodiodes) and FPGA-based
encoding/decoding, we were able to achieve speeds of at least
1.1 Mbps at a distance of a few centimeters to a meter. SkyFi
demonstrates the reliability, performance, and robustness of VLC
as a viable communication medium for the future.

Index Terms—FPGA, Infrared, Modulation, Networking, Vis-
ible Light Communication, Wireless Communication

I. INTRODUCTION

Wireless data transfer is a key component of communication
between the numerous devices that surround us today. With
the advent of IoT and smart-devices, the wireless networks
that support them also need to scale up proportionally. Many
common wireless networks such as Wi-Fi, Bluetooth, and 4G
are based on data transmission using radio waves. When the
number of devices increases, the fixed bandwidth makes data
transmission slower as radio waves are a small part of the
electromagnetic spectrum. It is becoming increasingly difficult
to develop new radio-based standards due to the decreasing
available spectrum. These networks are also susceptible to
security threats since radio waves can pass through walls.
In places like hospitals, airports, and military bases, radio
waves are intentionally interfered with so that data transfer
is restricted. With our capstone project, we aim to address
some of the above key technical challenges using visible light
since recent research predicts visible light communication to
have comparable transmission speeds, orders of magnitude
more bandwidth than radio waves, suitability in areas sensitive
to electromagnetic interference, and increased security and
directionality.

SkyFi is a system that demonstrates the benefits of visible
light communication. It supports full-duplex communications
between two nodes. As VLC is still a nascent technology,
there is ongoing research on how to most effectively exploit
the available spectrum. Based on current understanding, we
aimed for a throughput of at least 1 Mbps with greater than
99% accuracy. As a secondary goal, we sought to maximize
the distance between nodes to at least 1 meter.

II. DESIGN & SYSTEM DESCRIPTION

Refer to Figure 13 for the complete system level block
diagram. The overall design can be broken down into three
sections.

A. The Physical Layer

In the data-transfer and communication system, the physical
layer is the first and lowest layer in a network. It is the
fundamental layer which underlies the higher level functions
in the network. It consists of the electronic circuit transmission
technology of a network. For our project, this represents the
circuitry which would transmit the signal, in the form of bits,
from the transmitting FPGA to the receiving FPGA. We cre-
ated two circuits: a transmitter and a receiver. The transmitter
takes a digital signal from the GPIO pin of the FPGA and
broadcasts it to any listening receiver circuits by modulating an
LED. This idea of modulating an LED forms the backbone of
the physical layer in visible light communication. The receiver
circuit is responsible for picking up any broadcasted signal
from a transmitter circuit and reconstructing the transmitted
signal successfully. This receiver would be connected to the
GPIO pin of the receiver circuit which would interpret the
received signal.

|| Analog Data from i
Transmitting SEpns Transmitting Gircuit +--------+ ;

FSM
FPGA 1
Analog Data to

Receiving Il GFIT pins ” '
ESM Receiving Cirguit f--===----"---=

ieibs Y

Analog Data te
L3

oo JeuBis Yl o jouonisad
PUE Spriijdure Sy uf pApooLs BiEq

; | GPIO pins
Receiving Receiving Circuit [----------
FSM
FPGA 2
Analog Data from
Transmitting pins Transmitting Gircuit
B | 9209090909000 I ST s
Key
Analog Newly Designed

FPGAs

Component Verilog module

IR light AnalogData

L

Fig. 1. Block Diagram depicting interaction and signals between components

Figure 1 depicts the interactions between the various com-
ponents of the physical layer which enable a full duplex
communication between two distinct nodes. The transmitting

18-500 Final Project Report: 05/08/2019

FSM of the transmitter FPGA drives an analog voltage signal
which represents the data we want to broadcast to receivers.
The signal flickers the LED in the transmitter circuit, thus
broadcasting to all receivers within the viewing angle of the
LED. The photodiode in the receiver circuit which is in the
field of view will generate a current corresponding to the
wavelength and intensity of the incident light. This is amplified
and then reconstructed and sent to the receiver FPGA for
interpretation.

B. The Data Link Layer

The data link layer is the bridge between the physical and
application layers of the networked system. It packages bits
from the application into frames which are sent out as pulses
to be emitted by the LEDs, and it receives other nodes’ pulses
through the photodiode and interprets them as packets of data.
This is referred to as modulation and demodulation and it is
where a great deal of research is being done regarding visible
light communication.

Our modulation technique is inspired by a Dartmouth
project named DarkLight [1]. It is called Overlapping Pulse
Position Modulation (OPPM) and it is an advanced version
of Pulse Position Modulation. Bits are transmitted as n-bit
symbols, and each symbol is represented as a single pulse of
length ?p15e Within a period of time Zsympor. Each symbol period
is divided into 2" time slots of length L. Data is encoded
by the time slot in which the pulse is located (hence, pulse
position). Unlike regular PPM, OPPM is only concerned with
the rising edge of the pulse, allowing for ¢,y > L (hence,
overlapping). To achieve our speed goal of at least 1 Mbps,
we used 2-bit symbols and a time-slot width of 400 ns. Refer
to Section III-B for information regarding how these values
were determined.

Figure 2 summarizes the high-level design of the Data Link
Layer. The Encoder buffers the data to be sent and divides the
packet into a series of data pulses. Each packet is preceded by
two preamble pulses for synchronization. Each data pulse is
transmitted using the Modulator, which uses counters to emit
pulses in the correct slots. On the receiving side, a low-pass
filter is used for debouncing purposes. The Decoder looks for
rise edges of each packet. The preamble pulses are used to
synchronize the Decoder’s counters so it properly demodulates
the data pulses. The packet is then reassembled and presented
to the application layer.

C. The Application Layer

The application layer is the layer closest to the end user. We
wanted an application which demonstrates the working of our
network while also showcasing its real-world usefulness. The
scenario we thought would best show this was a file transfer
over the SkyFi network. We simulate a duplex file transfer by
allowing two nodes to send packets of data to each other. The
data is generated psuedo randomly by a linear feedback shift
register (LFSR). The LFSR of both nodes is initialized with
the same seed. This allows both nodes to know exactly what
data is being sent and what data it should be receiving. Once
a node receives its expected data, it increments a counter and

Tx/Rx Circuits

DEO-CV Board

ﬂenﬁSer\mr

Encoder
Soomeel] Modulator
LFSR
send data (data_in BDJ:::"_ (.g)o:::gr Pulser
LGPIO
expected Decoder IE
data control —
f— v
data_out| Data OPPM Edge LPF
«—— Buffer Counter Detector
Key
Hardware Verilog Pre-existing
modules
Newly
designed IR light

Fig. 2. Data Link Block Diagram

goes onto generate and send the next random number. This
will work as a signal to the other node that the sent data has
been received and will increment its own counter and generate
the next random number to send. We can use the counters to
practically measure the number of packets of data correctly
received by each node.

D. Changes From Design Report

Our final project is different than the one described in the
design report, and therefore changes were made. Briefly, the
originally-proposed project was a network of nodes connected
to a central hub using VLC. Users would be able to play
multiplayer Pong, with the hub acting as a game server. This
project had a much lower speed requirement of about 1.6
kbps but also directly demonstrated the concurrency support
of OPPM.

1) Data Link Layer Changes: Different OPPM parameters
were needed in order to achieve the combination of speed, dis-
tance, and concurrency. In our design, we used 8-bit symbols
and a time slot width of 16.22 us for a throughput of 1.926
Kbps. This speed was sufficient to support the Application
Layer. Because the server had to handle concurrent transmis-
sions, we were especially concerned with goodput. Through
probabilistic analysis, we chose a speed that balanced raw
throughput and collision rates.

Relatedly, there was more of a focus on error handling.
We had selected Reed Solomon codes, as they support short
packets, have hard decision decoding support, are low in
complexity, and are suited for transmission purposes. However,
from our testing, we found that error correction was not
necessary for our system, though this would definitely be used
for any networking built on top of SkyFi.

18-500 Final Project Report: 05/08/2019

ITI. DESIGN TRADE OFFS
A. Application Constraints

Our application drives our design choices. With our new
application of data transfer, the main goal is speed and
accuracy. In the real world, transferring a file as quickly and
reliably as possible is of utmost importance. We start with a
base speed of 1.6 kbps. This speed ensures an extremely low
error rate due to the high probability of correctly receiving
pulses. We then incrementally modify speed and accuracy to
get the best parameters for our project, as described below.

B. Modulation Parameters

In Overlapping Pulse Position Modulation, the bits per
symbol n, symbol width tsmpol, and time slot width L are
all variables that can determine the data rate or throughput 7.
They are related by Equation 1:

n n

T = = —
tsymbol 2"L

6]

In our design space exploration, we set n and L as indepen-
dent variables and plotted the resulting throughput in Figure
3. It is clear that reducing the bits per symbol and time slot
width both increase data rate. Ideally, to reach 1 Mbps, we
would make n = 2 and L < 500 ns.

Data Rate

X:4292e-07
Y:2

10
1077 Z: 1.165e+06

Throughput (b/s)

P 04

Bits per symbol 8 1 Time slot width (s)

Fig. 3. Data Rate

Our system demonstration does not require the receiver to
disambiguate between multiple concurrent transmissions, so
a few design choices were simplified. In order to distinguish
between multiple transmitters, the receiver would need to be
able to accurately determine when the rising edge occurs.
Depending on the sampling rate, there is an offset in the
measured rising edge from the start of the intended time slot.
In [1] the distribution of offsets tends to follow a Gaussian
distribution. For a 1 MS/s sampling rate, the offset range
0 = 1us covers at least 90% of this distribution. However,
since we only have two nodes, 6 is allowed to be much wider
and cover more of the slot.

Another simplification is that we did not have to worry
about collisions between multiple transmissions. It is likely
but not guaranteed that different transmitters’ clocks (and

thus pulses) are unaligned. The probability of two transmitters
sending a pulse within the same time period (which is the
offset range 6) is given by Equation 2:

L—NO n_q
)
This equation, proven in [1], demonstrates the effects of

slot width, number of devices, and offset range have on the

probability. In the original plan for SkyFi, N = 4 and § = 1us

so Figure 4 demonstrates the relationship between L and p.

p=1—()

Probability of Slot Collision

4
)
0ot |
08
o7 | X:1622¢05
\ Y:05723
= 0.6 .
= \
Tos \
[
& oar \
\.
0.3 h
0.2t
01F T
0 . . . ‘ . .
0 0.2 0.4 0.6 0.8 1 1.2 14

Time slot width (s)

Fig. 4. Collision Probability

As is evident, shorter time slots lead to more frequent colli-
sions. Thus, we had to balance between speed and reliability in
the multi-node SkyFi system. Here, we do not have to worry
about collisions so we could focus solely on accuracy and
distance.

C. Equipment for the Physical Circuit

In order to support the above mentioned data-rate, the
physical circuit needs to have parts which are able to operate
at that frequency. Specifically, the IR LED, photodiode and
the op-amp should be able to operate as expected.

As our IR LED, we chose the VSLY3943. The key rationale
for choosing the VSLY3943 was that it has a cut off frequency
of 12MHz which is more than what we need to transmit at at
least 1 Mbps. In addition, the rise and fall times are both less
than 6 ns, meaning the LED can support pulses as short as we
need to.

Initially, we planned to order an off-the-shelf trans-
impedance amplifier to use in the receiver circuit. However,
we found that we get more control over the voltage levels
by assembling this ourselves. Most of the equipment we need
is available in the CMU labs. The only component we will
order is the operational amplifier. We chose the LM 7171 op-
amp. The choice of the this op-amp was dictated by the gain-
bandwidth product value. We know that op-amps have a finite
bandwidth. A fairly practical approximation of the frequency
response is the integral of the gain. The gain of an op-amp
is inversely proportional to its frequency. As an example, an
op-amp with a gain-bandwidth product of 600MHz has a gain

18-500 Final Project Report: 05/08/2019

of 6 at a frequency of 100MHz. Another factor that we needed
to consider was the slew rate of the op-amp. The slew rate is
defined as the maximum rate of change of the output voltage
in response to the input voltage. Since we are operating at high
frequencies, we need the slew rate to be as high as possible. In
an ideal op-amp, the bandwidth and slew rates are both infinite.
For our purposes, the LM7171 which has a gain-bandwidth
product of 20MHz as well as a slew rate of 4100V/s, works
perfectly and is strictly higher than needed.

The QSD2030F photodiode in the circuit acts as a current
source that peaks for the 880 nm wavelength which corre-
sponds to the IR part of the electromagnetic spectrum. This
was another factor that determined our choice of the IR LED
as the transmitter, which peaks at 940 nm. The QSD2030F has
a rise and fall time of 5 ns which means it can theoretically
operate at frequencies as high as 50 MHz which is much higher
than the frequency we intend to operate at. It also has a forward
voltage of 1.3V which is almost equal to the forward voltage
of our IR LED.

Note that having the physical circuit support frequencies
higher than what we expect to be operating at allows us to
make further speed optimizations later on without having to
change the design of the physical circuit.

D. Modulation Parameter Testing

Although we had identified parameters that should theoret-
ically work, we still didn’t know how reliable the communi-
cation would be once integrated with the physical layer. We
performed a series of experiments to test how far we could
push our system on speed, accuracy, and distance and so we
could make implementation changes far enough in advance
should they be needed.

The first test we performed was a test on how receptive
the edge detection was given varying pulse widths. We used a
function generator to transmit pulses of varying widths. Due
to the nature of our receiving circuitry, the pulse widths did
constrain the slot width; if pulses overlapped, then their edges
would be lost. Finally, our filters used a shift register to buffer
the most recent samples. The “history size” turned out to be
another important variable. We fixed the distance at about 3
cm when performing these tests. Our results are presented in
Figure 5 and Table I.

Edge Detection Accuracy

1S 100%

—e—1us
60% 800ns
600 ns

30%
1E-07 1E-06 1E-05
Pulse Width (s)

Fig. 5. Experimental Results

TABLE I
EXPERIMENTAL RESULTS
History Size (s) Pulse Width (s) Accuracy Theta (s)
1.00E-06 5.00E-04 100% 1.23E-06
1.00E-06 5.00E-05 100% 1.23E-06
1.00E-06 5.00E-06 100% 1.23E-06
1.00E-06 1.25E-06 100% 1.23E-06
1.00E-06 7.14E-07 95% 1.23E-06
1.00E-06 6.00E-07 50% 1.23E-06
8.00E-07 5.00E-06 100% 1.23E-06
8.00E-07 7.14E-07 100% 1.23E-06
8.00E-07 5.56E-07 92% 1.23E-06
8.00E-07 4.67E-07 50% 1.23E-06
5.00E-07 5.00E-06 100% 6.60E-07
5.00E-07 7.14E-07 100% 6.60E-07
5.00E-07 5.56E-07 100% 6.60E-07
5.00E-07 5.00E-07 99% 6.60E-07
5.00E-07 3.33E-07 80% 6.60E-07

We found that the filter size played a bigger role in the edge
detection accuracy than we expected, and this inspired us to
change our implementation of our filter to be more reliable.
Once we did, we were able to use pulse widths even lower
than 500 ns, down to just 100 ns. This let us set the slot width
to 500 ns and achieve at least 1 Mbps speeds. As described
in Section V we performed further validation tests to ensure
reliability.

IV. IMPLEMENTATION PLAN
A. The Physical Layer

The way we implemented this was by constructing the
physical circuits onto a breadboard and wiring them to the
FPGA. Each node had a transmitter and a receiver circuit.

The transmitting circuit is a simple IR modulation circuit
which flickers an IR LED. The on voltage of the selected IR
LED is 1.4 V. This means that for the bit 0 for which the
FPGA will supply a 0 V, the LED will be off. Conversely,
for the bit 1 for which the FPGA supplies 3.3 V and 5 W of
power, the LED will be on. The circuit is thus able to broadcast
the data as a stream to any listening receiver circuits inside
its field of transmission. The intensity of the transmitted light
is proportional to the voltage applied across the circuit. The
only device that requires a power source in this circuit is the
FPGA. The rest of the circuit is driven by the power supplied
by the FPGA. We considered constructing alternative circuitry
involving transistors to drive higher current through the LED,
but this was deemed unnecessary to achieve the speed and
reliability goals. If we were to expand on SkyFi and increase
distance, this would be an area to look into.

The receiving circuit is responsible for picking up any
signal being broadcast in the field of the photodiode and
successfully reconstruct the originally sent signal. The way
the above circuit does this is by using a trans-impedance
amplifying circuit with the photodiode acting as a current
source. The current source produces a potential difference
which gets amplified at the output of the op-amp. The GPIO
pin of the receiving FPGA is connected in parallel with a small
resistor at the output node of the op-amp. Hence, it is able to
read the amplified signal. The photodiode produces a current
proportional to the intensity of light incident on it. Since the

18-500 Final Project Report: 05/08/2019

Transmitting FPGA

P1 GND

<~

D1
VSLY3943 \

N\

R1
100 Q

Data

Fig. 6. The Transmitting Circuit Diagram

photodiode is largely in phase with the transmitting IR LED,
as long as we choose components with the correct bandwidth,
we know for certain that when the IR LED is transmitting a 0
bit, the photodiode will not produce any current and thus the
voltage will be O at the output of the op-amp. Similarly, when
the IR LED is transmitting a 1 bit, it has a voltage of 3.3 V
across the circuit. The photodiode will produce a proportional
current and according to our calculations, the output node of
the op-amp will have a value of 3.3 V which will be interpreted
as a 1 bit by the FPGA.

— P2
Receiving FPGA

<~

Op-Amp
LM7171
+

R3

D2
QSD2030F

74

Fig. 7. The Receiving Circuit Diagram

B. The Data Link Layer

The data link layer runs on the FPGA. All FPGA devel-
opment (including at the Application Layer) was done using
Synopsys VCS to develop and Intel Quartus to synthesize our
hardware designs. Each module (modulation/demodulation,
encoding/decoding, etc.) was developed in isolation and tested
before being integrated as part of higher-level constructs.

The Encoder stores a packet of data at a time in its internal
buffer, which is a shift register that allows n bits to be
transmitted at a time. The OPPM Counter counts off slots, and

the Pulser transmits each pulse, of length ¢y, in the correct
slot. The Pulser’s output goes through one of the GPIO pins
to the physical layer. Refer to Figure 8 for an overview of the
transmitter FSM.

start

Wait for packet to transmit L IDLE
start \

\ct_data == NUM_DATA
\

ct_pre == NUM_PRE |

) ct_pre < NUM_PRE

) ct_data < NUM_DATA

Send data pulses
Fig. 8. Encoder FSM

On the receiving side, we use a simple filter that resembles
a switch debouncer. It samples the GPIO input at the FPGA’s
clock frequency (50 MHz) and buffers the last few samples.
We only needed a history size of 100 ns to reliably filter
out noise. Then, the Decoder uses a simple Edge Detector
to find rise edges. When the preamble pulses are received,
the Decoder’s counters are synchronized, and it accurately
demodulates the incoming data pulses. Refer to Figure 9 for
an overview of the receiver FSM.

To achieve at least 1 Mbps, we used ?pye = 100 ns, n = 2,
L =400 ns, # = 160 ns, and a filter history size of 100 ns.
Distance was not a primary goal, but we were able to transmit
at about 5-10 centimeters. With slower speeds (1.6 Kbps), we
could get up to 1 meter, showing that our modulation technique
has potential to be developed with better components for
higher performance in all areas.

C. The Application Layer

The main FSM of the Application Layer is straightforward;
each node has an expected data and data send inputs. When
the data packet received from the other node matches the
expected data input, the FSM generates a signal that incre-
ments a counter and causes the LFSRs to generate the next
random values. The node will then start to send the new
random number while expecting a different value from the
communicating external node. Figure 10 shows this process
in a visual format.

Every packet transmitted was 8 bits long in our implementa-
tion. Thus, 2 preamble pulses and 4 data pulses are transmitted
for every packet of data transmitted between the two nodes.

18-500 Final Project Report: 05/08/2019

— V. VALIDATION PLAN

« >

E, % \\ A. The Physical Layer

2 = \

i z ;\ In the physical transmission of our data, our goal is to

2 2 g\ accurately transmit a sequence of bits as an analog signal

E' g‘ ;' \ between the two FPGAs. Thus it would be intuitive to perform

- z \,‘ a quantitative and qualitative comparison of the transmitted

] %‘ \ wave and the received wave. This includes factors such as
& R the difference in amplitude, phase and waveform of the two

is_ed

signals. In addition, we also need to pay close attention to
the rise time as a very high rise time can limit the speed of
communication. The transmitter and receiver circuits can be
individually tested by sending a simple square wave on one
end and validating whether an FPGA can reproduce the square
wave on the input GPIO pins using Signal Tap or visually
‘ verifying the square wave using an oscilloscope.
| Our application is also a form of quantitative validation.
' We planned to code a short pseudo-random number generator
\ on the source and destination FPGAs and initialize it with
| the same seed. This resulted in the sequence of numbers
/‘ produced on both FPGAs being identical. We then send
{ alternate numbers between the FPGAs and validate whether
f the number received from the circuit is the number expected
/ from the sequence. The percentage of number of correctly sent
j bits from a source node to a destination node through the hub
/ will give a quantitative measure of the correctness of our entire
system.

In the following plots, the yellow graph depicts a signal we
sent from one FPGAs GPIO pins and the green graph depicts
the signal we received at the receiver FPGAs GPIO pins.

/ is_edge & is
ge & lis_valid) | chec

(is_ed

PRE
Signal error and reset

P
— is_edge
T

ge & is_pre & ct_pre == NUM

| Wait for incoming preamble, present data if avail B
is_ed

r_missing | Receive and demod data pulses e

k_fol

lis_pre) | chec

e & s
~—

@

| Receive and sync to preamble pulses B'

Fig. 9. Decoder FSM

Agilent Technologies SUN MAR 03 06:17:29 2019

Communication protocol ﬂ 1.00v/ E 2.00v/ s 00s 50008 Stop £ 3.92v

/ | .‘ t
Node1 Node2 ‘
[
loop) | ‘ |
|
random number 1 N
» | | |

check if received==expected

increment count

generate next value

I

) i |
f ‘ 1 f | ‘
|

loop |
Freq(1): 1.000kHz [Ampl(1): 2.47V IAmpl(2): 3.31V

random number 2 1/0 J File Explorer J Options l Service J Quick Action J
~ ~ ~ ~ ~

check if received==expected

Fig. 11. The Transmitter FPGA’s signal (yellow) and the Receiver FPGA’s

increment count signal (green)

te next val .. L .
generie next s Additionally, we checked the rise time and phase difference

in the two graphs at a 1kHz and measured it to be of the
order of 3us. This measurement was taken by recording
the difference in time between the O voltage and the 90%
Fig. 10. The application layer communication protocol amplitude voltage. Although we expect it to change as we
operate at higher frequencies this proves that our validation
procedure are sound.

Ul

Node1 Node2

18-500 Final Project Report: 05/08/2019

SUN MAR 03 03:44:51 2019
19208/ Stop £ 1607

3% Agilent Technologies
0 200v/ @ 2009/ # 00s

AX = 3.32540us 1/AX = 300.72kHz AY(1) = -2.70000V

-4.18200V +550.00mV . . 1.00GSa/s
e 1001 |oc 1001 Agilent Technologies

03-Mar 03:44
Fig. 12. Rise Time Measurement with a square wave input

B. The Data Link Layer

Using Synopsys VCS, we implemented testbenches for the
modules on the data link layer. This include both manual
inspection of waveforms and automated testing via System Ver-
ilog testbench constructs like assertions and properties. All
modules were unit-tested before being composed together into
larger integration tests.

The component modules of the Encoder and Decoder were
tested in simulation without any dependence on the physical
or application layers. These modules were then put together
for integration testing. Absent any errors, we found encoded
bitstreams to be perfectly decoded, and modulated signals to
be perfectly demodulated. In other words, in an environment
of simulated perfect transmissions, the data link layer should
never signal errant packets or misinterpret pulses. Once cor-
rectness was established, resilience was tested.

For OPPM, we know that two rise edges with an offset
greater than 6§ must be classified as coming from two different
sources. Tests can be written to check for this. Although our
project does not involve multiple transmitters to one receiver,
we still had to ensure the offset handling worked as expected.
We obtained perfect classification of rise edges separated by
sufficiently-supported offsets.

As described in Section III-D, we performed integration
testing with the physical and data link layers to determine the
fastest throughput we could obtain. We performed subsequent
tests with the application layer to ensure that all components of
SkyFi were operational. We slowly incremented the speed until
it was no longer reliable (below 99% accuracy), as determined
via SignalTap probing. We instantiated internal counters to
keep track of correct and incorrect packets received. With this
testing methodology we were able to push beyond 1 Mbps.

C. The Application Layer

The first aspect to test involves making sure the application
works as expected in simulation. On hardware, the first aspect
to be tested is to make sure that the application works correctly
with the encoder and decoder modules with the physical layer

replaced by a wire. This allows us to make sure that the
application is properly integrated with the data link layer.
Only when this is done should the developer move on to
integration with the physical layer. There are many sources
of random errors that can be caused by the physical layer
and debugging these without making sure the application is
reliable is a difficult task.

A linear feedback shift register is used to generate psuedo
random numbers which we use as data to send across the
network. An LFSR is a shift register whose input bit is a
linear function of the current value. The LFESR module we use
generates the next value using the polynomial 232 4 228 + 1.

Using the LFSR allows us to get a good mix of psuedo
random numbers which allows for better validation and testing
on the number of packets being correctly sent and received.
This module will need to be separately tested to be certain
that both nodes indeed have the same RNG and are sending
and receiving data in a synchronous manner.

VI. PROJECT MANAGEMENT
A. Schedule

A detailed version of the schedule is attached as Figure 14.

B. Work Distribution

In general, we distributed the work by assigning each of us
to a layer. Dhruva is primarily responsible for the Physical
Layer, Raziq is responsible for the Data Link Layer, and
Bhuvan is responsible for the Application Layer. As needed,
we assisted each other with tasks.

C. Risk Management

We provisioned plenty of time in our project for unexpected
hurdles in implementation and in the arrival of parts. We
worked concurrently on our independent tasks so that no time
was wasted and so our efforts could be parallelized. When we
had to shift gears in our project, we were able to achieve our
new goals, because many of our existing work could be used
for the new objective. This allowed us to complete our project
in time for the final presentation and public demo.

D. Bill Of Materials

Table II lists all the components the project utilized for the
final demo:

TABLE II
DETAILS OF ALL COMPONENTS REQUIRED

Component Price Quantity Source
Terasic DEO-CV FPGAs 0 5 CMU Labs

IR LED: VSLY3943 $28.11 10 Mouser
Photodiode: QSD2030F 0 10 CMU Labs

Op-Amp: LM7171 $28.87 10 Digi-Key
Resistors 0 - CMU Labs
Jumper Wires 0 - CMU Labs
Breadboards 0 2 CMU Labs

18-500 Final Project Report: 05/08/2019

VII. RELATED WORK

As mentioned before, we were inspired by the work of the
DarkLight team. We used their OPPM technique in a slightly
different domain, optimizing for speed and accuracy instead
of concurrency. There are also many other research papers
describing various VLC techniques, which are summarized in

[2].

VIII. SUMMARY

We developed SkyFi as a near-range full-duplex VLC
system that demonstrates many of the benefits of infrared
and visible light as a fast, reliable, and robust transmission
medium. We achieved a throughput of at least 1 Mbps,
comparing favorably with standards like Bluetooth, NFC, and
Zigbee. We also achieved high accuracy of at least 99%. While
our distance was less than Bluetooth and Zigbee, we believe
that we could get closer with more performant components.
In addition, the modulation technique we used, OPPM, allows
for concurrent reception of transmissions, something the afore-
mentioned standards cannot do. This is another advantage that
we would hope to exploit in future versions of SkyFi.

As a team, we learned a lot about practical engineering
design with real scenarios in mind. We had to both come up
with a comprehensive design and implement our vision. We
also gained experience working with nascent technologies and
with interfacing between the analog and digital world.

IX. ACKNOWLEDGEMENTS

We would like to thank our Professor, Dr. Tamal Mukherjee,
our teaching assistant Shraddha Navalgund and the rest of the
18-500 course staff for their constant guidance and dedication
to making this an interesting course and providing us with
plenty of learning opportunities.

REFERENCES

[1] Z. Tian, K. Wright, and X. Zhou, “The DarkLight Rises: Visible Light
Communication in the Dark,” in MobiCom ’16 Proceedings of the 22nd
Annual International Conference on Mobile Computing and Networking,
pp- 2-15, October 2016.

[2] S. Rajagopal, R. D. Roberts and S. Lim, “IEEE 802.15.7 visible
light communication: modulation schemes and dimming support,” IEEE
Communications Magazine, vol. 50, no. 3, pp. 72-82, March 2012.

18-500 Final Project Report: 05/08/2019

/ DEO-CV Board \

LFSR
send data < » Encoder
YGPIO
LFSR N

expected N 0|
data La\%__l

Decoder [Filter

A
hJ

count

Tx/Rx Circuits }<—’

Tx/Rx Circuits
Y

/ DEO-CV Board

LFSR
serd data » Encoder
A J
LFSR Ve
expected
data L‘h't:_ﬂ,
count » Decoder [«— Filter
Key
Hardware Verilog Pre-existing
modules
Newly
designed "'.~'|F{ light

Fig. 13. Overall System Level Block Diagram

18-500 Final Project Report: 05/08/2019

Aeauy

2E¥E5% =

=

ueanyg g bizey

bizew g eAnYQ

uBAnYg

]]
UEANYE

[] ueAnyg

birey
EAnIyQ
birey
brzey
brzey
bizey

BRI
BARIYO
BANIYQ
BRIy

BANIY(]
BARILY]

Iafe uoneddy e -]
SNOAUB|IBISIN
uodau [Buly - [

QWP QN -
ucneesed Ul - |
OLUER R U -
owap wiey - |
T
Gunsal [euld - |
uopeiBai) ddvia -
uoneiSa| TQAH - |
uoneibis|
BINpoW Jaaes alwed 158) pue Sjup, - [
BNPOW [00U03 Kaxded 158] pUB Sl -
enpow seddeim Buod 158] pue slum - [
Buog 1881 pue apdusog) -
Jake] uogem|ddy
sajnpow wonelBagu ¥u) eleg -
SSINPOW IS JouT PUB JHD - [
sanpow Bupoosep/Bupooue 159y -
sainpou Buposep/Bupoaus sl - |
SONPOW UONEINPOWIRUCIEINPOW 153 -
S8INPOUI UOKEINPOLUBP/UOIBINPOW Slipg - |
safET jurm e1eQ
UDIIEPIIBA BXNHH - |
UCHEPIEA [BUONDENME -
uojEpje deyeubig - |
UCHEPI[EA WLOJSAER, -
W2 JOAD8 PIING - |
WN2UED MlIUSWRL pling -

safE) easiyg

Fig. 14. Final Execution Plan

10

