
1

SkyFi
The Wireless Networking Paradigm

Dhruva Kaushal, Electrical and Computer Engineering, Carnegie Mellon University
Syed Raziq Mohideen, Electrical and Computer Engineering, Carnegie Mellon University

Sribhuvan Sajja, Electrical and Computer Engineering, Carnegie Mellon University

Abstract—SkyFi is a system which uses wireless network
using visible light communication (VLC) at the physical layer
to transfer data. Four nodes are connected to a hub router
capable of receiving multiple transmissions simultaneously using
Overlapping Pulse Position Modulation. The nodes are running
a multiplayer version of Pong, and the hub acts as a game
server. We aim to achieve at least 1.6Kbps of system goodput
for responsive gameplay, and we use SkyFi to demonstrate the
reliability, performance, and robustness of VLC for similar use
cases.

Index Terms—FPGA, Gaming, Modulation, Networking, Visi-
ble Light Communication, Wireless Communication

I. INTRODUCTION

Wireless data transfer is a key component of communication
between the numerous devices that surround us today. With the
advent of IoT and smart-devices, the wireless networks that
support them also need to scale up proportionally. Current
wireless networks such as Wi-Fi and cellular data are based
on data transmission using radio waves. When the number of
devices increases, the fixed bandwidth makes data transmission
slower as radio waves are a small part of the electromagnetic
spectrum. These networks are also susceptible to security
threats since radio waves can pass through walls. In places
like hospitals, airports, and military bases, radio waves are
intentionally interfered with so that data transfer is restricted.
With our capstone project, we aim to address some of the
above key technical challenges using visible light since recent
research predicts visible light communication to have high
transmission speeds, orders of magnitude more bandwidth than
radio waves, suitability in areas sensitive to electromagnetic
interference, and increased security and directionality.

SkyFi is a system that will demonstrate the benefits of
visible light communication. It supports full-duplex commu-
nications between nodes and a central hub/router. Multiplayer
gaming is an intuitive use-case, as it requires low latency, suffi-
cient data rates, and simultaneous transmission and reception.
As VLC is still a nascent technology, there is ongoing research
on how to most effectively exploit the available spectrum.
Based on current understanding, we are aiming for a reliable
1.6Kbps system throughput, with full support for reception
of concurrent transmissions at the hub. For a smooth gaming
experience, we need a refresh rate of at least 24Hz, taking into
account all communication between nodes and the server.

II. DESIGN & SYSTEM DESCRIPTION

Refer to 15 for the complete system level block diagram.
The overall design can be broken down into three sections.

A. The Physical Layer

In the data-transfer and communication system, the physical
layer is first and lowest layer in a network. It is the fun-
damental layer which underlies the higher level functions in
the network. It consists of the electronic circuit transmission
technology of a network. For our project, this represents the
circuitry which would transmit the signal, in the form of
bits, from the transmitting FPGA to the receiving FPGA. The
goal is to create two circuits: a transmitter and a receiver.
The transmitter will take a digital signal from the GPIO
pin of the FPGA and broadcast it to any listening receiver
circuits by modulating an LED. This idea of modulating an
LED forms the backbone of the physical layer in visible
light communication. The receiver circuit is responsible for
picking up any broadcasted signal from a transmitter circuit
and reconstructing the transmitted signal successfully. This
receiver would be connected to the GPIO pin of the receiver
circuit which would interpret the received signal.

Fig. 1. Block Diagram depicting interaction and signals between components

Figure 1 depicts the interactions between the various com-
ponents of the physical layer which enable a full duplex
communication between two distinct nodes. The transmission

18-500 Design Review Report: 03/04/2019

FSM of the transmitter FPGA drives an analog signal which
represents the data we want to broadcast to receivers. The
analog signal flickers the LED in the receiver circuit, thus
broadcasting simultaneously to all receivers in the field of
transmission of the LED. The photodiode in the receiver circuit
which is in the broadcasting field will generate a current
corresponding to the wavelength and intensity of the incident
light. This in then reconstructed and sent to the receiver FPGA
for interpretation.

B. The Data Link Layer

The data link layer is the bridge between the physical and
application layers of the networked system. It packages bits
from the application into frames which are sent out as pulses
to be emitted by the LEDs, and it receives other nodes’ pulses
through the photodiode and interprets them as packets of data.
This is referred to as modulation and demodulation and it is
where a great deal of research is being done regarding visible
light communication.

Our modulation technique is inspired by a Dartmouth
project named DarkLight [1]. It is called Overlapping Pulse
Position Modulation (OPPM) and it is an advanced version
of Pulse Position Modulation. Bits are transmitted as n-bit
symbols, and each symbol is represented as a single pulse of
length tpulse within a period of time tsymbol. Each symbol period
is divided into 2n time slots of length L. Data is encoded
by the time slot in which the pulse is located (hence, pulse
position). Unlike regular PPM, OPPM is only concerned with
the rising edge of the pulse, allowing for tpulse > L (hence,
overlapping). In our design, we will be using 8-bit symbols
and a time slot width of 16.22 µs, giving us a throughput of
1.926 Kbps. Refer to Section III-B for information regarding
how these values were determined.

On top of the modulation technique is any additional
encoding/decoding required. It is possible that interference
or ambient noise may cause pulses to be misinterpreted, so
we would like higher-level control of potential errors. One
possible technique is Reed-Solomon (RS) error correction.
RS codes are widely used in both data storage and data
transmission. They are suitable for VLC because they support
short packets, have hard decision decoding support, are low in
complexity, and are suited for transmission purposes. Typical
RS codes have a code rate of 50-90% [2].

Figure 2 summarizes the high-level design of the Data Link
Layer. Most of the modules will be written from scratch, but
there are existing implementations of common Forward Error
Correction (FEC) techniques which we can adapt to our board
and data sizes.

C. The Application Layer

The application layer is the layer closest to the end user.
We wanted an application which demonstrates the working of
our network while also showcasing its real-world usefulness.
Gaming is one such use case that involves real-time duplex
communications between multiple nodes and exercises many
useful aspects of networking. We chose the arcade game, Pong,

Fig. 2. Data Link Block Diagram

to run on the application layer of SkyFi. Pong is a two-
player game, where each player controls a paddle on opposite
sides of the screen. A ball is set into motion in between the
paddles. The objective of each player is to use their paddle to
bounce the ball to hit the wall behind the opponents paddle.
Apart from being easy to understand and play, Pong is a very
lightweight application which requires simple graphics and
user input.

Fig. 3. Node Block Diagram

2

18-500 Design Review Report: 03/04/2019

Figure 3 shows the block diagram for the application. This
will be replicated on each node. The Pong wrapper module
will contain the bulk of the logic implementing Pong. This
module is responsible for interfacing with user input and
displays the state of the game on a monitor through a VGA
cable.

The Pong wrapper will interface with the packet control
to send and receive data. The packet control module has two
functions: One, it will look at the data and control signals
received from Pong wrapper and encode packets containing
the destination and forward it to the Transmitter module. Two,
it will decode the packets received from the Receiver module
and forward the data to Pong wrapper.

Fig. 4. Hub Block Diagram

Figure 4 shows the block diagram for the application
running on the hub board. The game server module will
contain information on all player matchings as well as ball
and paddle information for each player. To setup a new game,
the nodes must communicate with the server to synchronize
their state. When the game starts, each player will send their
paddle location to the server. The server will then transmit
the opponents paddle location and ball location to ensure that
state is maintained.

III. DESIGN TRADE OFFS

A. Application Constraints

Our application drives our design choices. We want multi-
player Pong to run smoothly, so the data transmission must be
capable enough. To maintain a smooth gaming experience, the
game state will need to update at a rate of at least 24Hz for
each node. This means that the game server will need to send
data about the ball location and opponent paddle position to a
node at least once every 0.042s to ensure smoothness. The X
and Y coordinates of the ball and the paddle location of each
player is encoded in 11 bits. So, we will need to transfer 44
bits of data between the server and nodes every 0.042s. This
requires a network speed of at least 1.047Kbps.

B. Modulation Parameters

In Overlapping Pulse Position Modulation, the bits per
symbol n, symbol width tsymbol, and time slot width L are
all variables that can determine the data rate or throughput T .
They are related by Equation 1:

T =
n

tsymbol
=

n

2nL
(1)

In our design space exploration, we set n and L as independent
variables and plotted the resulting throughput in Figure 5:

Fig. 5. Data Rate

In the domains we specified (8-20 bits, 4-125 µs) we find
that minimizing n and L increases T . Naively, one would
assume that the best performance is achieved with n = 1 and
L as low as the hardware can support (which is equivalent
to On Off Keying). However, the need to support multiple
transmissions with a single receiver complicates matters.

In order to distinguish between multiple transmitters, the
receiver must be able to accurately determine when the rising
edge occurs. Depending on the sampling rate, there is an offset
in the measured rising edge from the start of the intended
time slot. In [1] the distribution of offsets tends to follow a
Gaussian distribution. For a 1 MS/s sampling rate, the offset
range θ = 1µs covers at least 90% of this distribution.

Once you are able to determine the time slots in which
pulses are occurring, you can then demodulate the signal

3

18-500 Design Review Report: 03/04/2019

by converting the pulse positions into n-bit symbols. This
becomes more complicated when there are multiple unsyn-
chronized transmitters (which is our case because each node is
a separate FPGA). It is likely but not guaranteed that different
transmitters’ clocks (and thus pulses) are unaligned. Thus, we
must consider the probability of two transmitters sending a
pulse within the same time period (which is the offset range
θ). Such probability p is given by Equation 2:

p = 1− (
L−Nθ

L
)N−1 (2)

This equation, proven in [1], demonstrates the effects of
slot width, number of devices, and offset range have on the
probability. In SkyFi, N = 4 and θ = 1µs so Figure 6
demonstrates the relationship between L and p.

Fig. 6. Collision Probability

Although DarkLight’s single-link prototype uses a slot
width of 3.2µs to achieve a 1.6Kbps throughput, when multiple
transmitters are in the vicinity, there is a high probability of
slot collision. Thus, there is a trade-off between data rate and
reliability.

To determine the values appropriate for SkyFi, we estimated
the ”goodput” (throughput of actual data) in Equation 3:

Gsystem = NTR(1− p) (3)

T is a function of n and L, and p is a function of L. R is the
ratio of data bits to total bits and is a factor dependent on the
error correction and was set to 0.6 as a conservative estimate.
G was plotted as a function of n and L in Figure 7:

In the specified domains, we find a local maximum at n =
8bits and L = 16.22µs, resulting in T = 1.977Kbps. This
meets our application requirements.

C. Equipment for the Physical Circuit

In order to support the above mentioned data-rate, the
physical circuit needs to have parts which are able to operate
at that frequency. Specifically, the IR LED, photodiode and
the op-amp should be able to operate as expected.

As our IR LED, we chose the TSHF5410. The key rationale
for choosing the TSHF5410 was that it has a cut off frequency

Fig. 7. System Goodput

of 12MHz which is far larger than the frequency we intend to
operate at. Additionally, it was cheap and easily available in
the 18-220 lab.

Initially, we planned to order an off-the-shelf trans-
impedance amplifier to use in the receiver circuit. However,
we found that we get more control over the voltage levels
by assembling this ourselves. Most of the equipment we need
is available in the CMU labs. The only component we will
order is the operational amplifier. We chose the LM 7171 op-
amp. The choice of the this op-amp was dictated by the gain-
bandwidth product value. We know that op-amps have a finite
bandwidth. A fairly practical approximation of the frequency
response is the integral of the gain. The gain of an op-amp
is inversely proportional to its frequency. As an example, an
op-amp with a gain-bandwidth product of 600MHz has a gain
of 6 at a frequency of 100MHz. Another factor that we needed
to consider was the slew rate of the op-amp. The slew rate is
defined as the maximum rate of change of the output voltage
in response to the input voltage. Since we are operating at high
frequencies, we need the slew rate to be as high as possible. In
an ideal op-amp, the bandwidth and slew rates are both infinite.
For our purposes, the LM7171 which has a gain-bandwidth
product of 20MHz as well as a slew rate of 4100V/s, works
perfectly and is strictly higher than needed.

The QSD2030F photodiode in the circuit acts as a current
source that peaks for the 880nm wavelength which corre-
sponds to the IR part of the electromagnetic spectrum. This
was another factor that determined our choice of the IR LED
as the transmitter. The QSD2030F has a rise and fall time of
5ns which means it can theoretically operate at frequencies
as high as 50MHz which is much higher than the frequency
we intend to operate at. It also has a forward voltage of 1.3V
which is almost equal to the forward voltage of our IR LED.

Note that having the physical circuit support frequencies
higher than what we expect to be operating at allows us to
make further speed optimizations later on (as a stretch goal)
without having to change the design of the physical circuit
later on.

4

18-500 Design Review Report: 03/04/2019

D. FPGAs

FPGAs serve a dual purpose for us. Firstly, they allow us
to have a data processing module and a data transfer module
on the same board. Since the processing capacity of an FPGA
is high and it can run both modules in parallel, we can safely
put a high load on the data transfer module which we know
will not constrict our speed in the data processing module.
Secondly, they allow us to parallelize the sending and receiving
processes. The base clock speed of the FPGAs we have is
50MHz. We do not use a microcontroller as they cannot
easily support parallelization of multiple processes on the same
device. In order to counter this we would need to select a
microcontroller with a proportionally higher clock speed. This
option thus turned out to be expensive and unfeasible since we
needed five nodes. All of the above factors led to the decision
to use FPGAs as our nodes.

IV. IMPLEMENTATION PLAN

A. The Physical Layer

The way we plan to implement this is by constructing the
physical circuits onto a protoboard and wiring them to the
FPGA. Each node will have both a transmitter and a receiver
circuit.

Fig. 8. The Transmitting Circuit Diagram

The transmitting circuit is a simple IR modulation circuit
which flickers an IR LED. The on voltage of the selected IR
LED is 1.4V. This means that for the bit 0 for which the
FPGA will supple a 0V, the LED will be off. Conversely,
for the bit 1 for which the FPGA supplies 5V (configurable),
the LED will be on. The circuit is thus able to broadcast the
data as a stream to any listening receiver circuits inside its
field of transmission. The intensity of the transmitted light is
proportional to the voltage applied across the circuit. The only
device that requires a power source in this circuit is the FPGA.
The rest of the circuit is driven by the power supplied by the
FPGA.

The receiving circuit is responsible for picking up any
signal being broadcast in the field of the photodiode and

Fig. 9. The Receiving Circuit Diagram

successfully reconstruct the originally sent signal. The way
the above circuit does this is by using a trans-impedance
amplifying circuit with the photodiode acting as a current
source. The current source produces a potential difference
which gets amplified at the output of the op-amp. The GPIO
pin of the receiving FPGA is connected in parallel with a small
resistor at the output node of the op-amp. Hence, it is able to
read the amplified signal. The photodiode produces a current
proportional to the intensity of light incident on it. Since the
photodiode is largely in phase with the transmitting IR LED,
as long as we choose components with the correct bandwidth,
we know for certain that when the IR LED is transmitting a
0 bit, the photodiode will not produce any current and thus
the voltage will be 0 at the output of the op-amp. Similarly,
when the IR LED is transmitting a 1 bit, it has a voltage of 5V
across the circuit. The photodiode will produce a proportional
current and according to our calculations, the output node of
the op-amp will have a value of 3.3V which will be interpreted
as a 1 bit by the FPGA.

B. The Data Link Layer

The data link layer will be implemented on the FPGA. All
FPGA development (including at the Application Layer) will
be done using Synopsys VCS to develop and Intel Quartus
to synthesize our hardware designs. Each module (modula-
tion/demodulation, encoding/decoding, etc.) can be developed
in isolation and tested before being integrated as part of higher-
level constructs.

The OPPM Modulator will latch onto n bits at the start
of each symbol period. It will contain internal counters to
count the number of FPGA clock ticks per time slot and the
number of time slots per symbol period. At the correct time
slot (determined by the value of the bits), the Modulator will
send a pulse of length tpulse through the GPIO pins.

The Demodulator is a bit more involved, because of the
potential to demodulate multiple transmissions at once. Dark-
light provides a viable algorithm (Figure 10) to determine the
source of an arbitrary pulse [1]. Due to a lack of inter-loop
dependencies, the imperative algorithm can be converted to
hardware with relative ease, whether manually or with tools
such as Vivado HLS.

5

18-500 Design Review Report: 03/04/2019

Fig. 10. Rise Edge Identification Algorithm

The encoding and decoding stages are also straightforward
to implement, and efficient open-source hardware implemen-
tations exist. We will tweak these to the desired code rate. The
data buffers exist because RS codes operate on blocks of data
at a time.

C. The Application Layer

We identified a preexisting Pong implementation [3] that
can be adapted to suit our needs. This implementation is made
to be executed on a single Altera DE2-115 board with both
players controlling their paddles seated next to each other.
We will need to port this implementation to be synthesizable
on a DE0-CV board and enable a networked multiplayer
experience.

Pong Wrapper and Game server will communicate with
each other using the following packet type. The data in each
packet is decoded based on the packet type.

TABLE I
TYPES OF PACKETS

Packet type Content
BALL LOCX Packet contains ball’s X co-ordinate
BALL LOCY Packet contains ball’s Y co-ordinate

INIT Packet contains info to setup a new game
PAD LOC Packet contains paddle location

ACK Acknowledgement packet
VALID Sent when two players have valid setup conditions

For two players to set up a match, they must communicate
to the game server that they wish to play with each other.
Figure 11 shows the protocol to set up the connection table.
The server permits communication between two nodes only
after their connection table entries correspond to each other.

After setting up the connections, the two nodes will contin-
uously send their player’s paddle position to the game server.

Fig. 11. Protocol to setup a game

The game server is responsible for sending the opponent’s
paddle location and the X and Y coordinates of the ball to each
player. Figure 12 shows the protocol for a node to synchronize
game play with the server.

Development of the application layer can be broken down
into stages where each stage can be worked on sequentially
or in parallel. The first stage of development will require
implementing and testing the Pong wrapper module. The test
bench for this module will involve sending ball and opponent
paddle position to Pong wrapper and receiving the players
paddle position.

The next stage in development will require implementing
the packet control module which provides an interface between
Pong wrapper and the transmitter and receiver modules. Packet
control should receive data from Pong wrapper and generate
correctly structured packets to send. It should also provide
capabilities to receive packets and decode the data contained
and provide inputs to Pong wrapper.

The Game server will need to have logic to store the
game state and ball positions for up to two simultaneous
games between any two player nodes. It will need to interface
indirectly with the Packet control using the protocols defined
above. The last stage of development will require integrating
the different modules to function as expected on different
boards. Refer to the validation section for more detailed
information on how each of these stages can be tested.

6

18-500 Design Review Report: 03/04/2019

Fig. 12. Protocol for game play

V. VALIDATION PLAN

A. The Physical Layer

In the physical transmission of our data, our goal is to
accurately transmit a sequence of bits as an analog signal
between the two FPGAs. Thus it would be intuitive to perform
a quantitative and qualitative comparison of the transmitted
wave and the received wave. This includes factors such as
the difference in amplitude, phase and waveform of the two
signals. In addition, we also need to pay close attention to
the rise time as a very high rise time can limit the speed of
communication. The transmitter and receiver circuits can be
individually tested by sending a simple square wave on one
end and validating whether an FPGA can reproduce the square
wave on the input GPIO pins using Signal Tap or visually
verifying the square wave using an oscilloscope.

Another validation procedure is to implement tests for
one-way end-to-end communication between two FPGAs.
We plan to code a short pseudo-random number generator
on the source and destination FPGAs and initialize it with

the same seed. This will result in the sequence of numbers
produced on both FPGAs being identical. We will send
alternate numbers between the FPGAs and validate whether
the number received from the circuit is the number expected
from the sequence. The percentage of number of correctly
sent bits from a source node to a destination node through the
hub will give a quantitative measure of the correctness of our
entire system. We built the circuit using a low speed op-amp
and other materials available at our disposal to observe the
viability of our validation procedures and the results were
promising. In the following plots, the yellow graph depicts
a 1kHz signal we sent from one FPGAs GPIO pins and the
green graph depicts the signal we received at the receiver
FPGAs GPIO pins.

Fig. 13. The Transmitter FPGA’s signal (yellow) and the Receiver FPGA’s
signal (green)

Additionally, we checked the rise time and phase difference
in the two graphs at a 1kHz and measured it to be of the
order of 3µs. This measurement was taken by recording
the difference in time between the 0 voltage and the 90%
amplitude voltage. Although we expect it to change as we
operate at higher frequencies this proves that our validation
procedure are sound.

B. The Data Link Layer

Using Synopsys VCS, we will implement testbenches for
our data-link-layer-level modules. These include both manual
inspection of waveforms and automated testing via SystemVer-
ilog testbench constructs like assertions and properties. All
modules will be unit-tested before being composed together
into larger integration tests. And finally, SkyFi will be tested
as a whole, incorporating all layers.

The OPPM and FEC modules can be tested in simulation
without any dependence on the physical or application layers.
These modules can then be put together for integration testing.
Absent any errors, we expect an encoded bitstream to be
perfectly decoded, and we expect a modulated signal to be
perfectly demodulated. In other words, in an environment of

7

18-500 Design Review Report: 03/04/2019

Fig. 14. Rise Time Measurement with a square wave input

simulated perfect transmissions, the data link layer should
never signal errant packets or misinterpret pulses. Once cor-
rectness has been established, resilience can be tested.

For OPPM, we know that two rise edges with an offset
greater than θ must be classified as coming from two different
sources. Tests can be written to check for this. We expect a
perfect classification of rise edges separated by sufficiently-
supported offsets. Then, on the FEC side, there are a subset
of errors that can be detected and/or corrected. Naturally, we
want all such errors to be handled appropriately and for the
appropriate flags to be raised to the Application Layer.

Later in the project, the Data Link and Physical Layers can
be tested together, for both single-link (one node to hub) and
multi-link network configurations.

C. The Application Layer

We will need to perform unit testing on each of the modules
listed in the application layer implementation plan. The test
bench for Pong wrapper will require sending ball and opponent
paddle position to Pong wrapper and receiving the players
paddle position. Tests will need to make sure that the screen
correctly updates with the new location of the ball and paddle.
The test bench for this packet control will need to test both
functions of the module. This includes sending packets to
Packet control and checking the produced outputs which feed
into Pong wrapper and checking the generated packets when
providing test values for ball paddle location. To validate the
game server module, test vectors will need to be generated to
simulate the protocol to setup a game. The developer will need
to write tests to ensure that the connection table is correctly
updated and generates the correct packets to send to the payer
nodes. The game server will need to be tested to ensure that
it sends accurate and synchronized ball and paddle locations
to both player nodes. The application layer will also require
integration tests to ensure that all of the individual blocks
work together. Integration tests will mostly involve setting up
arbitrary games and performing visual testing on game play.
If errors are present, the interfacing between different nodes

will need to be examined for inconsistencies in data or control
signals.

VI. PROJECT MANAGEMENT

A. Schedule

A detailed version of the schedule is attached as Figure 16.

B. Work Distribution

In general, we distributed the work by assigning each of us
to a layer. Dhruva is primarily responsible for the Physical
Layer, Raziq is responsible for the Data Link Layer, and
Bhuvan is responsible for the Application Layer. As needed,
we may help each other with tasks. For example, once the
Physical Layer is implemented and tested, Dhruva plans to
code modules in the hub for CRC & error-correction, write
testbenches for these modules and run speed & correctness
validation procedures on the entire system.

VII. BILL OF MATERIALS

Table II lists all the components the project is expected to
require for the final demo:

TABLE II
DETAILS OF ALL COMPONENTS REQUIRED

Component Price Quantity Source
Terasic DE0-CV FPGAs 0 5 CMU Labs

IR LED: TSHF5410 0 10 CMU Labs
Photodiode: QSD2030F 0 10 CMU Labs

Op-Amp: LM7171 $28.87 10 Digi-Key
Resistors 0 - CMU Labs

Jumper Wires 0 - CMU Labs
Protoboards 0 10 CMU Labs
VGA cables 0 4 CMU Libraries

Monitors 0 4 CMU Libraries

REFERENCES

[1] Z. Tian, K. Wright, and X. Zhou, “The DarkLight Rises: Visible Light
Communication in the Dark,” in MobiCom ’16 Proceedings of the 22nd
Annual International Conference on Mobile Computing and Networking,
pp. 2–15, October 2016.

[2] S. Rajagopal, R. D. Roberts and S. Lim, “IEEE 802.15.7 visible
light communication: modulation schemes and dimming support,” IEEE
Communications Magazine, vol. 50, no. 3, pp. 72–82, March 2012.

[3] D. Chhun, [Online]. Available: https://github.com/Dennis-Chhun/Pong-
Game. Base implementation of Pong to be used

8

18-500 Design Review Report: 03/04/2019

Fig. 15. Complete System Level Block Diagram

9

18-500 Design Review Report: 03/04/2019

Fig. 16. Projected Execution Plan

10

