
18-500 Final Project Report: 05/08/2019

1

Abstract — Amica Aura is a wireless headphone system that has

active noise cancellation as well as audio sharing as additional
capabilities. The system also features gesture controls and wireless
charging. With this system, users can listen to audio, host a
broadcasting session of their own audio, or join a nearby mesh
station another user is broadcasting.

Index Terms — Headphones, Bluetooth, Mesh, Active Noise
Cancellation, Wireless

I. INTRODUCTION

MICA AURA is set of wireless headphones containing
active noise cancellation and wireless audio sharing

capabilities. Audio prosumer technology has experienced rapid
development in the last few years. Specifically, the rise of
headphones has dramatically increased the convenience of on-
the-go listening. In this new age of auditory freedom, one area
that has still not been fully developed is the ability to socialize.
With our project, we would not only be able to have a device
that can satiate this growing desire for wireless audio
technology, but also fill the void of communal audio enjoyment
that is in the current market. Competing products do exist, but
they miss some aspect of this demand that our product covers,
either the mobile nature, isolated sharing, or ability for standard
headphone usage.
 We have chosen to optimize four particular areas of our
project to achieve a successful audio listening and sharing
experience: sound quality, audio sharing, usability, basic level
functionality. On the whole, we aim to achieve a pair of
headphones capable of (a) in normal playback mode, playing
44.1kHz stereo audio at a bitrate of 320kbps via Bluetooth (b)
detecting users' in-air hand gestures within 3cm of our headset
with electrodes carrying 115kHz oscillating electric field and
recognizing said gestures within 1s after their completions; (c)
charging wirelessly at 5W or connectedly at 15W; (d) in multi-
playback mode, broadcasting 320kbps stereo audio to at least
two other headphones simultaneously with less than 30ms of
latency (and less than 180ms for six other headphones in a mesh
network) while maintaining robust enough of a connection such
that any node that is not the sound source can fail with no longer
than 10s of an impact on the streaming of audio.

II. DESIGN REQUIREMENTS

The main aforementioned design requirement, paired with

the requirements for the four broken down aspects, will make
up the total requirements for our system in order to be
comparable to market standard.

Firstly, for the area of Sound Quality, our metrics related to
the sub-features of low-jitter software, low-noise circuitry,
active noise cancellation, and passive noise isolation. The
networking software must reduce jitter to below 40ms without
drastically increasing latency for a smooth listening experience
for the user. For low-noise circuitry, we will need to keep the
complexity low and compact such that it can fit within a
1800mm2. We will also need to keep the power consumption
less than 125mA during either playback mode. Finally for the
circuit, it must have a difference in signal-to-noise ratio of less
than 6dB and total harmonic distortion plus noise of less than
1% as compared to the Bose QuietComfort 35 version 2’s
Related to active noise cancellation, the signal-to-noise ratio
between our output and the input audio needs to be at least 12dB
and the total harmonic distortion must be less than 3% in order
to achieve successful cancellation. And lastly, for the passive
noise isolation in the form of cushioning, it needs to be less than
120cm3 in volume and must have at least a 6dB sound pressure
level reduction in order to provide both comfort and assist in
the noise cancellation.

The audio sharing system will send audio from a
broadcasting headset, or root node, to a series of receiver
headsets, or sub-nodes. The latency from the root node to any
given sub-node must not exceed 180ms. The failure of any
given sub-node should not cause a disruption to system
operation exceeding 10 seconds. In order to meet the bandwidth
requirements of the chosen codec, SBC, a minimum effective
link speed of 450kbps is required. In this way, users will not
experience noticeable desynchronization or disturbance in their
audio.

Regarding usability, we will need to have a number of
metrics met for battery life for a successful experience. We have
determined a playback time of over 40 hours, a multi-playback
time of 6 hours and a standby time of over 450 hours should
facilitate this. For charging we are looking to have a USB
charging unit within less than 900mm2 and have a performance
of 3A (5V), and a wireless charging coil within a dimension of
40mm by 60mm and a performance of 1A (5V).

Lastly for the basic functionality we are looking Bluetooth
playback conform to the A2DP profile and the overall power
consumption remain less than 125mA during playback.

Amica Aura:
Wireless Headphones with Audio Sharing

Ethan Bless-Wint, Winston Ching, Michaela Laurencin

Electrical and Computer Engineering Department, Carnegie Mellon University

A

18-500 Final Project Report: 05/08/2019

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our device consists of a digital audio playback system with
a novel digitally configurable analog noise cancellation system.
Each headphone half consists of either an ESP32-WROOM-
32D module or an ESP32-WROVER-IB module, a battery, a
speaker driver, op-amp circuitries, and either a DAC or power
management ICs. The headphones halves are connected via a
ribbon cable that transmits power and data. Some portions of
the headphone are asymmetric. One half will contain a 3D
gesture sensing subsystem, and the other will contain wireless
charging circuitry.

The ESP32 module is in charge of the headphone and is
responsible for configuring all the other hardware. The two
ESP32 modules are arranged in a master-slave pair, with once
accepting commands from the other. The modules are
responsible for controlling the other hardware inside the
headset, as well as wireless reception, transmission and local
playback of audio. The amp and driver receive an I2S signal
from one of the two ESP32 modules, and then decode and
amplify the signal, sending it to the drivers. Each headphone
halve also contains a 2500mAh battery for power, as well as a
USB-C port for charging and UART based debugging and
firmware updates. The 3D gesture sensing subsystem emits an
electric field and detects perturbations to the field, which allow
the subsystem to recognize in-air gestures of the users of our
device. The ESP32 module can then react according to the
recognized gestures per a predefined FSM.

A. UI and UX
The device exists in two main modes: Single Playback and

Multi-Playback. Within the Single Playback mode, users can
choose to either play their audio as they would with any normal
pair of headphones or enter the branch Broadcast mode. Upon
activation of this broadcast mode, the user is able to trigger the
creation of a mesh system created over WiFi. This mesh is then
joinable by other headphones, creating a tree topology for the
relaying of audio packets with the broadcasting headphone as
the root node. In the second main Multi-Playback mode, the
user can join an already established mesh that exists
immediately around it, adding on as a leaf to the tree that has
already been established. The user can then switch into a
“Pause” mode that simply silences the incoming audio for the
user. The switching between these modes is governed by inputs
to the MGC3130 gesture control module and the
Bluetooth/WiFi communication for the audio transfer will be
controlled by the ESP32 module.

Fig. 1. UI FSM

B. Software Overview
The software itself consists of multiple of multiple tasks

controlled by a FreeRTOS scheduler as well as our lightweight
task dispatch system. Although we present the software as a
single entity, the two ESP32 cores have different
responsibilities, which are covered below. The slave ESP32 is
responsible for accepting, routing, and dispatching network
packets, controlling the multiplexer for I2S audio transmission,
and responding to intra-headphone communication and gesture
control. The master ESP32 is responsible for hardware control,
drivers for Bluetooth audio, drivers for I2S audio transmission,
and management of the state of the headphones via the control
FSM.

C. Mesh Network Design
The mesh network allows for a root to disseminate music to

multiples sub-nodes. It is a tree-based topology that is
optimized for broadcasting from the root node to the sub-nodes.
The mesh topology will be supported by multiple daisy-chained
54mbps WiFi networks. Each one-to-many collection of
parents and nodes will comprise a separate WiFi network. Each
node is capable of acting as both an AP and a Station. The
parent nodes in the mesh will broadcast a special SSID that will
indicate it is part of a mesh as well as what layer it occupies.
Each root node will set a nonce in the SSID to differentiate
separate mesh networks. All the parent nodes in the mesh
topology subtree will have the same nonce bits in the SSID as
the root node of the mesh. 15 bytes of the SSID will be reserved
for the nonce. Since characters are restricted to the
alphanumeric subset of ASCII characters, each byte can be one
of 62 values. Thus, assuming a high-quality source of
randomness, there is a 1 in 7.689097049E26 chance of collision
for each additional overlapping mesh network.

Each node that wishes to join the mesh will first scan the
SSIDs to discover parent nodes. Then it will contact parent
nodes, going in ascending layer order. It will connect to the first
parent node that indicates it has not reached the maximum node
limit. A node will be considered lost if it does not receive data
for 3 seconds. The node will then reset itself and try and join
the mesh as if it was new.

The mesh will route data between nodes using a custom
IPv6/ICMP stack. Not all of the packet fragmentation and
broadcast features of IPv6 will be supported. In order to support
routing, each node will maintain a list of its neighbors, as well
as routes for all the IP addresses it is aware of in the mesh. In
order to support smooth playback, the mesh network must
support a minimum effective link speed of 450kbps to all nodes,
as well as a reconnection speed of 10 seconds, and a packet jitter
below 40ms.

D. Device Formfactor
One of the most prominent challenges in this project is

accommodating not only the components required for
supporting all the aforementioned features, but also the battery
needed to power said components. To add to the challenge, both
wireless charging and 3D gesture sensing require large flat non-
conductive surfaces made available on our device, to house an

18-500 Final Project Report: 05/08/2019

3

inductive coil and five electrodes respectively. Moreover, to be
competitive with existing products in the market, our device
must be in a reasonable formfactor such that it is not too bulky
to fit on our users' head. As such, we jump-started our design
process by scrutinizing an artist's rendition of a pair of
headphones and then physically laying out various subsystems
within the predetermined enclosure. Though this would not
function as our final enclosure design, it gave us a rough idea
on the constraints in terms of real estate that we must conform
to, which cannot be obtained otherwise.

E. Hardware Considerations
Due to the aforementioned constraints in real estate, we have

a stringent constraint on the size of our electronics. As a result,
we must design our own PCB with SMD components in lieu of
breadboards or perma-proto boards with breakout boards and
through-hole components. Such a design decision incurs a large
amount of engineering complexities that must be accounted for.

 Moreover, within PCB design, there is a constant struggle
among reducing the components' footprints, minimizing the
number of different components, and avoiding extremely
expensive parts. For example, a highly integrated IC might
reduce the external passive components needed and thus reduce
power consumption, number of components, and area occupied.
However, such an IC could be prohibitively expensive due to
budgetary constraints.

 To aggravate the challenge, the optimizations as described
above are non-linear, since trade-offs in one subsystem do not
necessarily correspond linearly to trade-offs in another
subsystem. For example, the integration of battery charging,
monitoring, and protection and load-balancing circuitry into a
smaller footprint allows for a more efficient design of power
supply due to freed-up space, which in turn permits high power
consumption elsewhere in the headphones.

Fig. 2. Layout of PCBs labelled by functional areas

 The PCBs are laid out in functional areas as indicated in

the figure above. The full schematic is available in the
Appendix section. Though the PCBs are eventually designed
and manufactured per specification, they fail unexpectedly. It
has been confirmed that, given functional components and
correct PCBs, a populated PCB can become defunct over time,
first slowly deteriorating and then failing precipitously. It is
suspected that contaminated flux is causing such an issue, but
in the interest of time, we decided to utilize the populated PCBs
parasitically. Specifically, we only use the speaker drivers on
them, paired with external DAC and ESP32 module; as such,
the fault areas of the PCBs can be circumvented while salvaging

some use from the remainder of them.
 Moreover, to demonstrate the wireless charging and

gesture control capabilities of our software design, we devised
a deconstructed version of our headset with breakout boards and
off-the-shelf components. In particular, a Flick HAT, a
breakout board equipped with a MGC3130, interfaced directly
with a Raspberry Pi, sending its reading with a ESP32 module
via network; a universal Qi charging module, a breakout board
equipped with BQ51013B (namely that wireless charging
controller we were to use), supplies power to the battery
charging/discharging circuitry whenever possible.

F. Software Design
 The software has significant considerations with respect to

the time of this project, as well as the compute power of the
system. One of the most powerful mechanisms the design has
is the intra-headphone communication path via I2S. This is
primarily used for forwarding I2S packets between headphones,
but it can also be used to enable complicated operations such as
dual radio network operation and dynamic task scheduling.
However, we’ve restricted its use, and the corresponding
interactions between ESP32 modules for the sake of time and
power consumption. The system has a 40hr battery life target,
so the software cannot be wasteful, especially with wireless
data transmission and complicated operations. To that end, the
software has the ability to utilize the ultra-low-power
coprocessor in the ESP32 when idle to avoid needless power
consumption by entering “deep sleep.” Also, the software has
to be limited with respect to our time for implementation and
debugging. It is difficult to debug embedded software, so we
must go with more simple designs so that they can be
constructed and debugged in a reasonable amount of time.

1) Network Stack Design
Our system uses a lightweight IPV6 stack for networking

capabilities. It was designed to have minimal code size and
functionality in order to work with the limited resources
available on the ESP32. At the same time, it had to be robust to
failure and changing network conditions, as it forms the
foundation for our WiFi mesh. To that end, our networking
stack does not allocate any dynamic memory, and features zero-
copy operations whenever possible. The elimination of heap
usage and excessive copying makes our network stack’s
behavior more predictable, stable and easy to debug. The
networking stack implements UDP, ICMP6, and IP6 protocols.
Only IP6 packets are supported, so from now in the context of
the networking stack the word packet specifically refers to an
IP6 packet unless explicitly stated otherwise.

When designing the networking stack, we had to choose
between supporting IP6 and IP4 since we did not have enough
time to code support for both. We ended up choosing IP6
because it Was better suited to the constraints of our system.
IP6’s SLAAC (Stateless Address Autoconfiguration)
specification made it easy to give each node in our network non-
colliding, self-assigned IP’s, which was important because we
did not want the overhead of adding a DHCP server into our
network. Additionally, IP4 headers are variable length, while
IP6 headers are fixed length with optional extensions. Because

18-500 Final Project Report: 05/08/2019

4

the IP6 header was a fixed size, it made it easier to design a
networking stack with fixed memory usage, as well as keep
most network operations zero copy.

The design of our Networking Stack is split into two major
components: core and drivers. The core of the networking stack
contains components that implement the RFC specifications for
UDP, ICMP6, and IP6 as well as general packet handling and
routing. The core can be ported to any system with the C
standard library and a compatible GCC compiler. The drivers
contain system specific code and are not portable to other
systems. The drivers and the core are separated by an abstract
entity called the network interface which provides a reusable
API to implement drivers without modifying the core. This
separation enabled us to develop and test the core on a regular
MacOS laptop, which significantly aided debugging and
development productivity. Since we had separate drivers
maintained for MacOS and the ESP32, we were able to freely
move back and forth between the two devices when debugging
or adding new features. Unfortunately, the additional discipline
and time required to maintain the boundary between core and
driver became too time-consuming to maintain in the last
couple weeks of development, so after we became confident the
network stack worked we stopped actively maintaining MacOS
compatibility and focused solely on the ESP32. One big change
we had to make to the design of the network core during
development was we realized the ESP32’s architecture
necessitated processing packets in a separate thread then we
received them in. However because the ESP32 hardware did not
filter packets, we still had to perform packet filtering before we
put the packets into a separate thread otherwise we would
overload the threading system with all the incoming packets.
The solution was to refactor the networking code to be more
modular, and expose select chunks of functionality, such as
packet filtering, forwarding and encapsulation to the device
level drivers. This let us implement multithreading in the device
level drivers while breaking encapsulation as little as possible.

2) Mesh Network Design
The effective link speed is the number of packets from the

root node that can reach a given node in 1s. This is independent
from the link speed of a single WiFi connection, as it takes into
account the latency of the entire mesh infrastructure. A node
that has a low effective link speed may still be able to play back
audio smoothly, but it will miss the latency targets.

Fig. 3. N is the number of nodes between the target node and the root node.
Link Speed is the speed of the connection between two nodes. C is a constant
that represents the average processing time for a packet when it reaches a node.

Effective link speed is a critical metric and drives mesh

design. A previous WiFi proposal, WiFi Proposal B was
abandoned because it did not have a high enough effective link
speed. WiFi proposal B was a novel connection-based design
that has redundant links for data transmission. It was optimized
for broadcasting from the root node and had no support for

node-to-node or node-to-root communication. The network
could sustain two node disconnection/failures per 10 seconds
without disruption. However, that design (and thus its
reliability) were abandoned in favor of the current design
because it was too slow.

Fig. 4. “While audio does not require a particularly high data-rate, the paltry 1
MBPS link speed could prove troublesome. Consider the path from Root to C.
The link speed is only 500kbps from ROOT→A and from ROOT→C if we
consider a packet processing time of 10ms (c=0.03125) we get an effective link
speed of 186kbps, which is already below our requirement. Node C will get
eventually get all the audio packets, as each individual link has enough speed.
However, it will have a latency of roughly 367ms. This latency shortcoming
cannot be overcome by using multicast packets, as WiFi has significant issues
with multicast reliability that could severely impact playback performance.
These issues make it difficult to recommend implementing this mesh design.”

- Two proposals for Mesh Networking on ESP32

G. Active Noise Cancellation
Due to the aforementioned constraints on signal-to-noise

ratio and total harmonic distortion plus noise, two algorithms
were considered in order to create the necessary filters to
achieve this. The first of which was least mean square (LMS)
algorithm. With this algorithm, one can create an adaptive
cancelling algorithm, but the main issue is that it is a stochastic
algorithm. In this case, there is some degree of randomness that
exists within the model itself and it does look to other past data
to create the current filter. In comparison, recursive least
squares (RLS) filtering is an adaptive filter algorithm that is
deterministic, in that the output is fully determined by the initial
condition and the corresponding input parameters. It also is
shown to converge faster than LMS. With these two main facts,
as well as the following mathematical definition of RLS, for our
purposes of a fast-responding algorithm that updates its filters
with new incoming information, RLS was the best of the
available options.

The approximation of FIR filters produced from RLS with an
analog counterpart is a non-linear approximation, since the
frequency response of a second-order filter is a non-linear
function with respect to any one of the resistance values in said
filter. Hence, a coordinate descent (CD) algorithm is used to
find the best setting that can be used in the digital
potentiometers such that their corresponding analog filter can
achieve the desired frequency response.

18-500 Final Project Report: 05/08/2019

5

Fig. 5. Summary of the RLS algorithm.

After simulating this functionality in Python, we decided that

for our final product we would no longer be including this form
of active noise cancellation. This decision was made after
noting it would require more integration time than previously
expected, and with the resulting dysfunction of our PCBs, it
would no longer be possible to integrate it at all.

IV. SYSTEM DESCRIPTION

Fig. 6.

A. Software - Headphone State FSM
The control FSM maintains the state of the headphone. It

receives FSM events, which cause it to update its state. The
FSM state drives the state of the rest of components and turns
other features (such as network and audio playback) on and off
as required for the given state.

When the headphones are powered on, the subsystems (Intra-
Headphone communication, Networking, Audio, and gesture
control) are all initialized. The headphones will connect to the
WiFi network, and then go to idle. At this point, the user can
operate the headphones through TOUCH, HOLD, and WHEEL
gestures as described in the UI and UX section.

B. Software - Dispatch
The ESP32 has limited resources and our code has a lot of

real time tasks that must be executed. Dispatch is a lightweight
discrete scheduler built on top of the Free RTOS scheduler. It
is designed to simplify coordination of complex data across
tasks and enable data driven event processing. With our system,
functions only take up computational time if there is data for
them to process so time is not lost polling for data. Dispatch

also keeps track of which data is in use and allows data to be
freed when it goes out of scope.

It functions by associating one or more functions are
registered to an event tag. When something inside the program
makes a call to dispatchEvent(event_tag,data,
callback), the event tag, data and callback are placed into a
queue and returns immediately. The next time the dispatch
system runs it pulls the first event added to the queue and looks
up all the functions associated with the event tag, executing
them sequentially. Once all the functions have been executed,
it triggers the callback. This callback enables cleanup (e.g.
freeing buffers) to automatically occur after the data has been
processed.

C. Software - Gesture Control
An Interrupt Service Routine (ISR) is connected to a pin on

the gesture sensing chip (MGC3130) in addition to an I2C
communication line. When a TOUCH, HOLD, or WHEEL
gesture is detected, an interrupt is raised and the ISR inserts a
task into the lightweight dispatch queue to read the gesture
sensor. Once the gesture is read, it will generate an FSM event
to respond to the user’s action.

D. Software - Intra-Headphone Communication and
Synchronization

The intra-headphone communication is used to relay
information between the headphones. The primary information
communicated over this link is state information about the
FSM. Each message consists of 64 bits and contains a command
as well as data.

The FSM_UPDATE command is issued from the master to
the slave in order to force the slave to the same state as the
master. The state is derived from the FSM, so this mechanism
enables clean synchronization between the master and the slave.
The GET_UI_EVENT command is issued by the master to the
slave to request the last UI gesture event that has occurred. In
this way, the master can receive updates from the slave. A test
is performed on power up to make sure the slave is present, and
the right software revision is loaded.

E. Software - Audio System
The audio system is composed of a pair of send and receive

buffers connected to SBC encoders and decoders. The SBC
encoders and decoders were originally developed by
Broadcom, and we ported them to the ESP 32.

When the user is in BROADCAST mode, they must first be
connected to an A2DP compatible Bluetooth source via the
Master ESP32. The Master ESP32 then outputs the Bluetooth
audio over I2S. The slave receives the audio over I2S and
compresses it into groups of SBC frames at 320kbit/s using the
SBC. Each SBC frame takes up 115 bytes and contains 128
samples of audio (2.9ms). With default settings, two SBC
frames (230 bytes) are encoded at a time and sent over the
network to every node via multicast packets. Audio is also
played back over the local speakers.

When the user is in MULTI PLAYBACK mode the audio
system listens for incoming Audio Packets on UDP port 8000.
As each audio frame is received, it is decoded into linear PCM

18-500 Final Project Report: 05/08/2019

6

packets and placed into a playback buffer. When the playback
buffer fills, it is written to the I2S output

The send and receive buffers are configurable and support up
to 4096 samples (92ms). The default configuration will send
256 samples (5.8ms) of audio at a time, and buffer 512 samples
(11.6 ms) at a time at the receiving end. If audio packets are
received for more than 200ms it is assumed the connection has
dropped and the audio system will automatically mute itself. It
will continuously play silence until the signal is restored.

Fig. 7.

Our testing showed that our system is capable of smooth,

jitter free playback. While roughly 10% of packets were late in
our testing, if a packet was late it was only late by an average
of 786us. This is well below the threshold of human perception.
The graph above shows the histogram of late packets vs how
late they arrived.

However, in environments with adverse WiFi environments,
such as Wiegand gym we found while we were not dropping
packets, the variance on when packets arrived skyrocketed, we
were seeing packets arrive in bursts at up to 100ms late. This
was most likely caused by WiFi’s collision detection system.
Because the 2.4GHZ environment was so saturated, the WiFi
hardware was waiting longer for conditions to clear, and then
sending packets in batches. We were able to remedy this by
increasing the amount of SBC frames buffered by the
broadcasting node from 2 SBC frames to 6 SBC frames. This
worked but came at the cost of increasing latency by 11.6 ms.

F. Networking Stack
Our network stack can support packets with a MTU

(maximum transmission unit) of 1200 bytes. One network
interface is assigned per physical network device on the chip.
Although we only use 2, the system can support up to 255
different network interfaces on a single device.

For the ESP32, we assign one network interface to our WiFi
Access Point, and one network interface to our WiFi Station.
Each network interface has 4 IP addresses. The EUI64 link local
address (unique address generated from the MAC address), a
multicast version of the EUI64 address used to respond to
neighbor solicitations, a manually assigned IP6 address, and a
multicast version of the manually assigned IP6 address used to
respond to neighbor solicitations requests. Although the

manually assigned IPs are not required for the system to work,
it makes it a lot easier for developers to keep track of which IP
belongs to which device.

When the headphones are turned on and connect to the WiFi
network the routing table is initially empty, so it does not know
where any of the other nodes on the network are or how to reach
them. However, it does not need routing tables to handle
multicast packets, so playback or broadcast can begin
immediately. The headphone can then gradually discover the
other devices around it, sending out neighbor solicitations
whenever it encounters an unknown IP address and building up
the routing table as needed. Since the process is “lazy” in that it
does not try and discover routes until it is needed, it is
impossible to say how long it takes how long it takes to discover
all possible routes. The time to respond to a neighbor
solicitation request is negligible (t<50us), so the time it takes to
discover a route to a given IP is largely driven by how long it
takes for the message to physically travel across the network.
The worst-case time for a response to a neighbor solicitation
request is typically

2 × Number of Nodes in Network × Average Latency

For our demo setup, the average time it took to a node to
discover the route to an unknown IP address was 39ms.

Fig. 8.

We tested the network stability and latency by flooding the

system with ping packets and measuring the response. We setup
our target device on our WiFi mesh network two hops away
from a standard MacOS laptop. Except for the laptop, every
device was running our software. We were able to push a
maximum of 2800 kbps across the network and sustained 10%
packet loss.

To measure per-hop latency, we performed another test with
an identical setup, however instead of purposely trying to
overload our network, we simulated packets with several SBC
frames worth of audio (1024 bytes). We got an estimated per-
hop latency of 7ms, which was well below our initial target of
30ms.

The next section will explain how packets are processed.
1)

Packets are received by the networking hardware, and then
passed to the device level drivers and network interface. The
device drivers then call a function in the core to tag the packet.
Without copying, each packet’s headers are analyzed. Then the
packet is tagged with one of four actions before being returned
to the drivers. DROP, FORWARD, RECEIVE, or
FORWARD_RECEIVE. DROP means either the packet is not
destined for the network interface it was received on or is

18-500 Final Project Report: 05/08/2019

7

malformed. If a packet is marked as FORWARD, it is not
destined for this network interface, but should be rerouted and
sent towards the appropriate device. If a packet is marked as
RECEIVE, the packet’s final destination has been reached, and
the packet should be decoded and further processed. If a packet
is marked as FORWARD_RECEIVE, it should both be
forwarded and received. This is used for multicast packets that
should both be forwarded to other devices in the network, as
well as received by the current device. FORWARD, RECEIVE,
or FORWARD_RECEIVE it is put into a multithread safe
queue with a maximum size of 20 packets.

2)
The core networking thread then receives packets from the

queue. At this point, the packet has left the driver and is now
being processed by the networking stack core. Benchmarking
showed that our implementation is capable of processing a
packet within 25 microseconds. (excluding time spent by
networking hardware)

a)
If a packet was marked as FORWARD, the packet

forwarding engine starts. The packets destination IP is looked
up in the routing tables, and if a matching route is found, the
packet is written to the network interface connected to the route.
If no route is found, the packet will be dropped and an ICMP6
request will be generated to try and find a route to the
destination IP. Originally packet switching was done at layer 2,
unfortunately it was realized after the implementation was
nearly complete that the ESP32 did not have support for WDS.
WDS enables a WiFi packet to have different transmitter and
source MAC addresses, which is needed for layer 2 switching
over WiFi. When the ESP32 sends a WiFi packet, if the source
MAC address does not match the transmitter MAC address, it
drops the packet. So instead of supporting switching, the system
was rewritten to forward packets at the IP layer (layer 3).

b)
When a packet is marked RECEIVE or

FORWARD_RECEIVE the packet is sent to the UDP or
ICMP6 subsystems.

The packet type value is used to figure out what kind of
packet it is. As of now, only UDP and ICMP6 packets are
supported. If the packet is ICMP6, is sent to the ICMP6 system.
ICMP6 is responsible for responding to facilitating network
management functionalities such as neighbor discovery via
Neighbor Solicitations/Advertisements, duplicate address
detection, and reachability detection. The echo/reply feature of
ICMP6 was the basis of our latency and network reliability
tests. If the incoming packet is UDP, the checksum of the packet
is verified first to ensure the data Is correct. The UDP checksum
is calculated by summing all the data inside the packet using
16-bit arithmetic, and then inverting the result and adding it to
the packet’s checksum. If the checksum is correct, the result
should be 0. The checksum can be fooled by reordering groups
of valid data on a 2-byte alignment but in our practical tests we
never observed a corrupt packet pass the checksum.

3)
When the UDP packet passes the checksum, then it is routed

to the application layer based on the port number. When the
application is initialized, components outside of the networking
core can be “bound” to UDP port numbers so they have a
callback when data is received. Different UDP port numbers
correspond to different features within the rest of the software.
Port 8000 is for compressed audio packets, and port 9000 is for
remote commands to the headphone state machine.

Since the process of sending packets involves many of the

same components used in receiving, the process for sending a
packet will be abbreviated. Either UDP or ICMP6 packets can
be sent by the application. These functions accept data to send,
as well as the IP address of the final destination. Any additional
headers needed for either protocol is generated and placed into
a separate buffer from the packet data. Then the IP6 subsystem
will combine all the buffers into a single packet. This requires
copying data, so this occurs at the last step, and the resulting
packet is submitted directly to the network hardware. At the
same time the packet is being assembled, the routing tables are
used to lookup the appropriate path to the destination IP
address. If a route is not found, the packet is rejected with an
error and the ICMP6 system sends out a solicitation request to
attempt to discover the route to the destination IP address. If the
device is found and a response to the solicitation is received, the
IMCP6 system will update the packet routing tables with the
route to the destination IP.

G. WiFi Mesh and Demo Configuration

Fig. 9.

As part of discussions to narrow the scope of our project, we

removed the automatic WiFi network selection process
mentioned earlier in our report and replaced it with a static
configuration. This configuration only specifies in what
topology the WiFi network connections are made. All the
underlying network routing is still done dynamically.

In our demo, the phone connects to a base station. The base
station is a pair of ESP32’s loaded with a modified version of
our headphone software. They automatically go into broadcast
mode when they turn on. Similarly, we also have deconstructed

18-500 Final Project Report: 05/08/2019

8

version of our headset that has loudspeakers instead of small
headphone drivers. Since we only have one pair of headphones,
we had to develop these extra devices in order to demonstrate
the mesh functionality. A common smartphone connects to the
base station, which then simultaneously broadcasts the audio to
both the deconstructed headset and our actual headset.

H. Battery Life
Battery life is calculated by dividing the theoretical capacity

of our batteries (5000mAh in total) by the measured average
power consumption over two minutes. In single playback
mode, a battery life over 100 hours is achieved, while that in
multi-playback mode is about 5.8 hours. The standby battery
life is believed to be over 250 hours but cannot be ascertained
due to inherent noise of the provided multimeter in our lab.

V. PROJECT MANAGEMENT

A. Schedule
The diagram for our schedule can be viewed on Appendix III

of our report, but we will provide an overview and the relation
between tasks. In the below diagram, items that were finished
on time are listed in the base color of each individual: blue for
Ethan, purple for Michaela, red for Winston. The darker hues
of each color indicate items that were completed later than the
initial timeline, while lighter colors indicate items that were
removed from the timeline eventually. The design and
implementation of the mesh was fairly separate from the other
portions of the project. Due to constant improvement and tuning
of the system however, more time was devoted than initially
intended. During the time Ethan was working on this, Michaela
was be working on dimensioning out the physical enclosure
design so that Winston could finish his layout. The layout took
longer than expected as well, due to the fact that Winston was
testing the system in simulation, and per the request of our
advisor, updated some of the schematics to avoid potential
failure points. Before Winston had finished this, the next
physical design iteration occurred, was completed during the
last few weeks once the PCBs had arrived and alterations could
be made to properly fit and accommodate them. After mid-
April, Michaela and Ethan began integrating mesh networking
into the high-level software of the system. This took a bit longer
than initially expected however, due to previously unaccounted
for aspects, such as necessary data management solved by the
dispatch. During this time as well, the final CAD design was
developed, including both the cup and headband designs.
Unfortunately, there were some drawbacks in the assembly of
the PCB, as the system would regularly overheat and catch fire.
With that, towards the end of our work period, we worked
together to salvage what hardware we had and support it with
other components, in addition to modifying the software, such
that we had a viable demonstration.

B. Team Member Responsibilities
As previously touched upon in the, this project was broken

into 3 main categories: hardware, software, and signal
processing, with signal processing later being removed for the
previously stated reasons. Ethan’s main focus was on the

software. This includes designing and implementing the mesh,
as well as creating the related firmware to support it. Winston’s
main focus was on the hardware. This included the designing,
simulating, and testing the schematic, layout, intra-headphone
communication, and/or power supply and the implementation
of the filters derived for active noise cancelling. Finally,
Michaela’s main focus was on the signal processing. This
included, the development and testing of the RLS algorithm
used to derive the necessary filters for the active noise
cancelling system. Since this was relatively small related to the
other areas, she was also tasked with designing the physical
enclosure for the project that will then be printed. Later on when
the RLS was removed, she worked on the high level software
that supported the entire system along with Ethan. This
included such items as the UI, dispatch, and intra-headphone
communication, along with Ethan.

C. Budget
The chart for our budget is viewable in the Appendix of our

report.

D. Risk Management
For our project risks related to design, we did our best to do

our research on similar products beforehand so as to avoid
pitfalls in designs. In the case of the mesh, this included
researching different forms of wireless communication to
determine the optimal form for our use case. For the hardware,
we attempted to stick to chips that are popular and feature more
pre-established schematics. For those features that we had to
use chips other than the ones previously described, we had to
meticulously read the data sheets in order to develop an
effective design.

For our project risks related to resources such as components,
we did our best to research the components that both fit our
design requirements and the requirements of the routines and
algorithms we are using in order to mitigate the chance of
choosing ill-fitting components.

Finally, for our project risks related to schedule, we built in
multiple iterations of our design to allow for time to change any
aspects that did not work the way we had planned.
Unfortunately, we were not able to utilize this additional
amount of time on extra iterations, instead we spent the time on
refining the first iterations.

E. Related Work
As one of our main objectives was to create a pair of

headphones comparable to those on the market today, there are
many products similar to ours. The key thing that sets our
product apart from these however is the wireless audio transfer
system that is integrated in. However, there are portions of the
overall system that exist in a similar way across devices.

Most notably, for the Bluetooth and wireless mesh system for
audio sharing, there are two systems that utilize these
technologies to a similar end. The first of which are the Sonos
Multi-room speaker sets which utilize a Bluetooth/WiFi combo
chip. The speakers in these sets can be paired together in order
to have synchronized audio throughout multiple rooms. This
technology, however, has not been replicated in any of their

18-500 Final Project Report: 05/08/2019

9

portable audio devices. Another example of this is an
application called AmpMe which synchronizes audio between
mobile devices in order to compete with portable speaker
systems. They also employ AI and machine-learning in order to
account for things like the few fractions of a second delay that
exists when transferring data between packets in order to
achieve perfectly synchronized audio. For our use case
however, it does not make sense to optimize in this way as users
will still have isolated audio during sharing, versus their use
case of creating a collective speaker system.

VI. SUMMARY

In the end, we were able to meet some of our design
specifications and some we were unfortunately not able to meet.
This was mostly due to the fact that our main hardware was
eventually not usable. This resulted in some of our key metric
areas, related to both the hardware and the signal processing to
be lost. Fortunately though, we were able to meet our major
specifications when it came to the software.

If we had more time, we could definitely improve both our
system performance and functionality if we could complete a
working version of our PCB. This would mostly likely involve
a redesign that is one-sided and mainly focuses on the active
noise cancellation circuitry. The rest of the hardware we could
actually keep fairly similar to what we ended up with.

A. Future work
After completing our project, we realize there are a number

of areas we wish to further explore past this semester. For
improved signal for our mesh design, we would like to look into
MIMO antennae in order to increase the complexity of our
mesh connections. Similarly, we would also like to generally
look into other aspects of antennae, utilizing the diverse
capabilities of them. Also related to the mesh, we would like to
look into Bluetooth 5 and explore the capabilities of that
protocol over what we utilized for the mesh. We would also like
to reintegrate active noise cancellation into our project. As
mentioned in the summary, we would like to consolidate our
PCB design to one-side and focus on achieve the appropriate
circuitry for this feature alone on it. Finally, we would like to
look into making some non-critical adjustments to our system,
such as identifying a better gesture control system for our needs,
adding debouncing to the gesture control system for better
movement recognition, and having our battery packs in series
rather than in parallel.

B. Lessons Learned
With this project, we have learned a number of lessons

related to team dynamic and project design. Firstly, for team
dynamic, we have learned that you need to make sure at least
two people are sufficiently knowledgeable about any critical
components. One of our critical missteps was that only one
person was knowledgeable regarding PCB design, thus the
other two were not able to help when things went wrong. With
a project with such a short time span such as this, having at least
two people be knowledgeable is key to sticking with the
schedule. Regarding project design, there are a couple of

lessons. First, always have a backup plan. We did have a backup
plan for most of the aspects of our design, for example the
PCBs, so we were still able to construct a final product, but
without it would have been disastrous. The next lesson is to not
prematurely optimize and focus on technical purity over results.
Since this project is on such a short timeline, once something
works well, it is better to move on and make sure the MVP is
achieved. And finally, with PCB design on such a short
timeline, try to keep the system as simple as possible. As
mentioned before, we would like to have another design
iteration where we simply make it one sided and only contain
noise cancellation circuitry. This way, when debugging we
would have less chances for error.

VII. REFERENCES
[1] https://www.ampme.com/about?locale=en_US
[2] https://venturebeat.com/2018/07/03/ampme-plans-to-kill-bluetooth-

speakers-by-syncing-music-between-smartphones/
[3] https://www.mathworks.com/help/dsp/examples/adaptive-noise-

cancellation-using-rls-adaptive-filtering.html
[4] https://www.mathworks.com/help/dsp/examples/acoustic-noise-

cancellation-lms.html

18-500 Final Project Report: 05/08/2019

10

APPENDIX I: SYSTEM BLOCK DIAGRAMS

18-500 Final Project Report: 05/08/2019

11

18-500 Final Project Report: 05/08/2019

12

APPENDIX II: BUDGET AND BILL OF MATERIALS
Category Vendor Item # Order # Cost

($)
Qty Amt ($)

Hardware Digikey BAV74LT1G
OSCT-ND

S19-679 0.12 2 0.24

296-38885-1-
ND

S19-680 3.49 2 6.98

478-1215-1-
ND

S19-681 0.1 2 0.20

1276-1036-1-
ND

S19-682 0.038 20 0.76

1276-1045-1-
ND

S19-683 0.024
5

100 2.45

1276-1009-1-
ND

S19-684 0.039 12 0.47

587-1256-1-
ND

S19-685 0.124 24 2.98

1276-1984-1-
ND

S19-686 0.1 4 0.40

399-1280-1-
ND

S19-687 0.1 4 0.40

1292-1425-1-
ND

S19-688 0.1 4 0.40

1276-1000-1-
ND

S19-689 0.012
3

100 1.23

490-9966-1-
ND

S19-690 0.7 4 2.80

1276-2222-1-
ND

S19-691 0.028
2

100 2.82

1276-1168-1-
ND

S19-692 0.1 4 0.40

PCF1132CT-
ND

S19-693 0.531 10 5.31

PCF1196CT-
ND

S19-694 0.46 4 1.84

PCE3753CT-
ND

S19-695 0.13 4 0.52

102-5642-ND S19-696 2.07 4 8.28
455-1734-1-
ND

S19-697 0.55 4 2.20

490-16641-1-
ND

S19-698 0.13 2 0.26

P10549CT-
ND

S19-699 0.1 2 0.20

CP2105-F01-
GMRCT-ND

S19-700 1.56 2 3.12

1904-1025-1-
ND

S19-701 4.5 2 9.00

1904-1017-1-
ND

S19-702 9.32 2 18.64

587-1923-1-
ND

S19-703 0.052 25 1.30

FUSB302B11
MPXOSCT-
ND

S19-704 1.75 2 3.50

609-1831-ND S19-705 0.2 8 1.60
535-13615-
ND

S19-706 4.91 2 9.82

445-6388-1-
ND

S19-707 0.14 4 0.56

296-28104-1-
ND

S19-708 1.21 3 3.63

732-4980-6-
ND

S19-709 1.316
67

6 7.90

DMP3085LS
D-13DICT-
ND

S19-710 0.45 4 1.80

296-51365-1-
ND

S19-711 0.5 4 2.00

296-47593-1-
ND

S19-712 0.46 4 1.84

MAX9700DE
TB+-ND

S19-713 1.08 4 4.32

MBT3904DW
1T1GOSCT-
ND

S19-714 0.21 4 0.84

MC74VHC12
6DR2GOSCT
-ND

S19-715 0.43 2 0.86

MCP4351-
103E/ST-ND

S19-716 1.39 0 5.56

MCP23008T-
E/SOCT-ND

S19-717 1.05 2 2.10

MCP23008T-
E/MLCT-ND

Winston 0.00 2 0.00

MCP73871-
2CCI/ML-ND

S19-718 1.84 2 3.68

MGC3130-
I/MQ-ND

S19-719 4.49 2 8.98

1910-1059-
ND

Winston 0.00 2 0.00

MM3Z3V3T1
GOSCT-ND

S19-720 0.15 2 0.30

MMDT5451-
FDICT-ND

S19-721 0.42 4 1.68

NC7NZ17K8
XCT-ND

S19-722 0.4 2 0.80

NCV8570BM
N300R2GOS
CT-ND

S19-723 1.14 4 4.56

296-36692-1-
ND

S19-724 2.01 2 4.02

296-35039-1-
ND

S19-725 2.94 2 5.88

568-10953-1-
ND

S19-726 1.05 8 8.40

CKN10822CT
-ND

S19-727 0.31 3 0.93

F3160CT-ND S19-728 1.11 2 2.22
423-1405-1-
ND

S19-729 2.97 6 17.82

423-1139-1-
ND

S19-730 0.73 4 2.92

TCK107GLF
CT-ND

S19-731 0.412 10 4.12

296-52032-1-
ND

S19-732 1.67 0 10.02

568-11912-1-
ND

S19-733 1.48 2 2.96

102-4484-1-
ND

S19-734 2.03 3 6.09

541-4378-1-
ND

S19-735 2.29 2 4.58

RG16P1.0KB
CT-ND

S19-736 0.299 10 2.99

RG16P3.4KB
CT-ND

S19-737 0.318 10 3.18

RG16P6.8KB
CT-ND

S19-738 0.299 10 2.99

RG16P10.0K
BCT-ND

S19-739 0.299 10 2.99

RG16P33.0K
BCT-ND

S19-740 0.299 10 2.99

RG16N68WC
T-ND

S19-741 0.8 10 8.00

RG16P100BC
T-ND

S19-742 0.299 10 2.99

RG16P220KB
CT-ND

S19-743 0.299 10 2.99

RHM1.00KA
DCT-ND

S19-744 0.12 20 2.40

541-2803-1-
ND

S19-745 0.134 10 1.34

P20339CT-
ND

S19-746 0.149 10 1.49

P20359CT-
ND

S19-747 0.149 10 1.49

RHM10KAD
CT-ND

S19-748 0.046
2

100 4.62

511-1704-1-
ND

S19-749 0.15 3 0.45

A130434CT-
ND

S19-750 0.132 10 1.32

RHM51.0AD
CT-ND

S19-751 0.046
2

100 4.62

2019-
RK73H1JTTD
66R5FCT-ND

S19-752 0.023 13 0.30

P20511CT-
ND

S19-753 0.108
4

30 3.25

P130BYCT-
ND

S19-754 0.16 5 0.80

311-2455-1-
ND

S19-755 0.12 3 0.36

511-1705-1-
ND

S19-756 0.132 20 2.64

P20214CT-
ND

S19-757 0.149 10 1.49

541-
294KHCT-
ND

S19-758 0.04 10 0.40

P300KBYCT-
ND

S19-759 0.16 5 0.80

A130446CT-
ND

S19-760 0.16 5 0.80

RHM470ADC
T-ND

S19-761 0.12 18 2.16

A130448CT-
ND

S19-762 0.16 5 0.80

P20264CT-
ND

S19-763 0.18 3 0.54

AE11363-ND S19-764 1.18 2 2.36

18-500 Final Project Report: 05/08/2019

13

HF16U-18-
ND

S19-765 7.43 2 14.86

P18853CT-
ND

S19-766 1.507 24 36.17

1528-1840-
ND

S19-767 14.95 2 29.90

1528-1841-
ND

S19-768 7.95 2 15.90

Adafruit 0328 Winston 0.00 2 0.00
0353 Winston 0.00 1 0.00
1699 Winston 0.00 1 0.00
1901 Winston 0.00 1 0.00
3006 Winston 0.00 2 0.00
3351 Winston 0.00 2 0.00
3619 Winston 0.00 2 0.00

Amazon B07DBNHJW
2

Winston 0.00 1 0.00

B07C1XD61
W

Winston 0.00 1 0.00

B01N0SB08Q Winston 0.00 1 0.00
B07546GQ9
W

Winston 0.00 1 0.00

B0718T232Z Winston 0.00 2 0.00
B01C6Q2GS
Y

Ethan 0.00 1 0.00

Jlc Pcb 8534009000
(Y9)

S19-846 3.00 1 3.00

8534009000
(Y10)

S19-843 4.00 1 4.00

8534009000
(Y11)

S19-849 5.00 1 5.00

8534009000
(Y12)

S19-850 4.00 1 4.00

SMT
STENCIL

- 6.03 1 6.03

SMT
STENCIL

- 6.03 1 6.03

SHIPPING - 25.69 1 25.69
Subtotal 397.93

Enclosure Maker
Space

FORM II
PRINTER

- 130.1
8

1 130.18

Amazon B07GQXK7C
7

Winston 0.00 1 0.00

Home
Depot

05114139523
4

Winston 0.00 1 0.00

05114192958
3

Winston 0.00 1 0.00

05114133392
2

Winston 0.00 1 0.00

05114140550
6

Winston 0.00 1 0.00

05114140551
3

Winston 0.00 1 0.00

05114140552
0

Winston 0.00 1 0.00

02120009292
3

Winston 0.00 1 0.00

02120009292
3

Winston 0.00 1 0.00

Subtotal 130.18
Others Lab

Supply
DELL
MONITOR

- 0.00 1 0.00

Scrap LASER-
CUTTING
WOOD

Michaela 0.00 1 0.00

Amazon B07DBX67N
C

Winston 0.00 1 0.00

B07GK1QR5
6

Winston 0.00 1 0.00

B01L8LLP2G Winston 0.00 2 0.00
B014EV0G3G Winston 0.00 1 0.00
B06ZYN4MC
7

Winston 0.00 1 0.00

Subtotal 0.00
Total 528.11

18-500 Final Project Report: 05/08/2019

14

APPENDIX III: PHOTOS OF DEMO SETUP

18-500 Final Project Report: 05/08/2019

15

APPENDIX IV: PCB DESIGN

18-500 Final Project Report: 05/08/2019

16

18-500 Final Project Report: 05/08/2019

17

APPENDIX V: GANTT CHART

18-500 Final Project Report: 05/08/2019

18

APPENDIX VI: SCHEMATICS

18-500 Final Project Report: 05/08/2019

19

18-500 Final Project Report: 05/08/2019

20

18-500 Final Project Report: 05/08/2019

21

18-500 Final Project Report: 05/08/2019

22

18-500 Final Project Report: 05/08/2019

23

18-500 Final Project Report: 05/08/2019

24

18-500 Final Project Report: 05/08/2019

25

18-500 Final Project Report: 05/08/2019

26

