
18-500 Final Report: 05/08/2019

Team B9: BreakTime

Augmented Reality Pool Guidance System

Christina Ou: Electrical and Computer Engineering,
Carnegie Mellon University

Harry Xu: Electrical and Computer Engineering,
Carnegie Mellon University

Samuel Kim: Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system that helps beginning pool players practice
and improve. As the user lines up their shot at the table,
computer vision is used to read ball positions, cue stick location,
and cue stick speed. A software backend processes the data and
predicts the outcome. Finally, a GUI is projected back onto the
table for a user to see.

Index Terms— billiards (pool), camera, computer vision,
geometry, image processing, physics, prediction, projector, PVC
frame, user feedback

I. INTRODUCTION
BreakTime is a practice aid for the game of pool. Shooting

straight and visualizing the correct paths for the pool balls are
important techniques to mastering pool. BreakTime is a
system to help beginners develop these two critical skills: aim
and stroke.

Our system is friendly for casual players because our
system is inexpensive, user-friendly, and real-time. Other
competing solutions do not achieve these characteristics.
Competing solutions include: hiring a professional coach
(expensive), inventing our own pool table with embedded
technology (not scalable), or displaying feedback on a separate
monitor (poor user experience).

BreakTime's goal is to be an accurate training tool that is
user-friendly for beginners. To achieve this goal, we
summarize our system requirements as follows:

● Functionality: 50% improvement in shot-making ability
● Accuracy: 2° margin of error from intended to resultant shot
● Performance: 1 second end-to-end latency

Functionality will be measured with a 9-shot skills test

(Figure 1), where users will be measured by how many more
shots they can make with BreakTime. Accuracy will be
measured by how many degrees, at most, the object ball will
deviate from the predicted line output by our system.
Performance will be measured by the total time a user must
wait for visual feedback, from the time they lay the cue stick
on the table to the time that feedback is projected onto the
pool table.

Figure 1: User skills test for testing system functionality. With our system,

users should be able to make more of these shots.

II. DESIGN REQUIREMENTS
In order to achieve our goal of creating a tool that will help

beginning pool players improve their skills, we must define
design requirements for our system. These requirements are
derived from the user perspective and what will most benefit
the user while using our product. We have previously stated
our overall requirements, and these are geared towards our
stakeholder: the user. To help fulfill these overall system
requirements, we have defined quantitative requirements for
each of the components in our system.

Our system must have an accurate perception of the real
game state; we are utilizing computer vision for this, and so
we must ensure that our computational intake of the current
game state is accurate and able to handle real-time plays.
Without accurate ball location data, it becomes difficult for the
software to give a viable shot. In addition, image processing
can be time-consuming. In order to adhere to our overall
system performance requirement, we will optimize our image
size and algorithms as much as possible. Below are the
requirements for our computer vision component:

● Accuracy: 1 cm distance between the actual and
perceived pool ball and cue stick locations

● Performance: 500 ms object detection latency

Our software backend will compute the ball path projections
based on the positions of balls and how fast the user is moving
the cue stick. The outputs of the software will be projected
onto the pool table to help players visualize shots. This
projection determines how the player shoots their ball and is
thus the most important user-facing part of the system.
Inaccuracies here will lead to missed shots, regardless of a
player's skill level. In accordance with our overall

2
18-500 Final Report: 05/08/2019

performance, we will minimize latency. As such, these are our
software backend requirements:

● Accuracy: visual suggestions projected onto the table
are accurate within 5 mm

● Prediction outcomes: at most 2 degrees deviation
between predicted and actual paths

● Performance: 500 ms latency for computing
predictions

Hardware in our project encapsulates the different physical

objects in our system setup. A camera is used to take in the
table game state, and our projector will display our
computational results back onto the table. As these items
process the input and output of information, they need to be
accurate to support computer vision and our backend. Some
distortion can be accounted for on the software side. Our
frame will be holding our camera and projector. As one of the
physically bulkier additions to our project, it must be
unobtrusive to the player and remain stable during a game of
pool. We present the following requirements for our hardware
pieces.

● Camera:
○ Field of view covers 100% of pool table
○ Captures at least 1 image per second
○ Color contrast and resolution supports

distinguishing physical objects
○ Supports the colors of 9 pool balls

● Projector:
○ Projected image covers 100% of pool table
○ Image has enough brightness and contrast to

be visible on table surface
● Frame:

○ 90% of pool shots are achievable even with
frame setup

○ Body-weight shifts on pool table setup do
not affect projector and camera position

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our system consists of the physical components, the

Computer Vision, and the Software Backend/Prediction &
Feedback subsystems. These components work together to
parse the player action and provide accurate and timely
response to the player. We delve into more detail on each of
the components in sections IV and V.

Figure 2: Our block diagram describes the high level architecture of our

system and the interfaces between our parts.

IV. DESIGN TRADE STUDIES

A. Physical components
In order to assemble a testing configuration, we had to

purchase and acquire a table, camera, projector, and construct
a frame to hold our components together. For each component,
we considered alternatives and chose the best option.

i. Pool table

For purchasing a pool table to use, we measured the ball
size, the pocket size, and the table’s diagonal length. We
wanted a table that allowed for a large margin of error such
that our system has some flexibility and the player can make
easier long distance shots. Our motivation for this was to

3
18-500 Final Report: 05/08/2019

accomodate for small deviations in a player’s form as they
practiced on a small demo table as we are developing a
training tool.

We were able to model this problem with the cosine law
geometry formula. With the hardest and farthest shot on the
table, we determine how far off in inches the ball can deviate
from the center of the pocket. From this, we compute the angle
margin of error, which is the number of degrees a player's shot
can be off by and still make the shot. It is important to note
that across the 20”, 40”, and 96” tables that there are differing
ratios of ball size to pocket size to table length, so the margin
of error does not scale proportionately to table length.
Ultimately, we chose the 40” table due to its large margin of
error.

Figure 3: Angle margin of error visualization

hot deviation pocket_size ball_diameterS = −

 Pocket size
(inch)

Ball diameter
(inch)

Shot deviation
(inch)

20" table 1.6 1 .6

40" table 3 1.5 1.5

96" table 5 2.125 2.875

argin of error os ()M = c −1
2 table_length table_length* *

table_length + table_length − shot_deviation2 2 2

 Shot deviation
(inch)

Table
diagonal
length (inch)

Margin of
error (°)

20” table .6 21.65 1.59°

40” table 1.5 37.5 2.29°

96” table 2.875 100.438 1.64°

ii. Camera

For the camera, we initially chose to use a 1080p 30fps
Logitech c615. This camera was well within budget compared
to better performing cameras. We had tested our Computer
Vision subsystem with test photos taken with a 1080p cell
phone camera. These test photos were found to be within our
system requirements of 0.5cm.

However, we soon noticed that the Logitech camera output
was much blurrier than our cell phone's camera, and this was
due to a misunderstanding of camera quality specifications.
We were relying on the video mode and selecting 1080p our
cell phone also shot images with 1080p. Instead, we should
have looked more into the megapixel count, which helps
determine the resolution of our resulting image. Our original
Logitech C615 had 8 MP, and we eventually used a Logitech
C920 that has 15 MP and was similar to our cell phone camera
specifications. The images from the C920 were much sharper
and more viable for our CV input.

In addition, the C920 supported videos at a rate of 30 frames
per second, which falls well within our initial requirement of
1s of latency. For this camera to become the bottleneck, we
would need our latency to be less than 33ms.

iii. Projector

For the projector, we tested the Hunt library projector, the
Epson VS250, in the pool table of the UC basement. We held
the projector 6’ above the table and projected a color matrix
with additional light from a flashlight. We measured for
brightness, resolution, and table coverage. We found that
brightness was sufficient, resolution was well within our
0.5cm requirement, and the projection covered the whole
table. We expect that at a smaller scale, the same projector can
deliver comparable brightness, resolution, and coverage. Thus,
the Epson Powerlite 1776W available in the ECE lab - which
is superior in every way - is more than sufficient for our
requirements. It surpasses the VS250 in every metric (the
1776W is a $1100 model while the VS250 is a $300 model)
and thus meets our requirements.

iv. Frame

For the frame to hold our parts together, we chose to
prototype a PVC frame as opposed to another material such as
wood, specifically 1.5” Schedule 40 PVC. 1.5” Schedule 40
PVC is shown to have a tensile strength of nearly 1000 pounds
for 8” of pipe . From a structural standpoint, this number can 1

assure us that an overhead frame constructed of this PVC will
not bend under weight. One advantage of PVC over wood is
the speed of prototyping and ease of assembly of PVC. Pairing

1
https://www.pvcfittingsonline.com/resource-center/strength-of-pvc-pipe-with-
strength-chart/

4
18-500 Final Report: 05/08/2019

that with its affordability, we choose PVC as the material and
construction of our frame. Additionally, we were considering
an overhead tent frame versus an overhanging crane design.
We chose to go with the crane design due to the minimal
obstruction to the player, and the ability for the crane design to
be mounted separately from the table. Ultimately, we unable
to fully prevent any vibration or movement of the frame due to
the ground mounted nature (if a player knocks into the frame
no change of material will protect against that), and we will
implement redundancies for re-calibration into our software.

v. Computer

To run our hardware, we will be using a 2015 Macbook Pro
with a 2 core 2.7 ghz processor. OpenCV and the rest of our
computation utilize only the processor. With this hardware, we
are currently able to achieve around 34ms of latency for our
Computer Vision subsystem, and 20ms of latency for our
Software Prediction subsystem.

B. Computer Vision

In order to detect the different objects on our pool table, we
decided to use computer vision techniques. We knew that our
input would be from a camera, and CV's image processing and
techniques are the best for giving our pipeline the location
data needed. For our computer vision component, we made
design decisions along the following areas: (i) technologies
used, (ii) choosing our ball detection algorithm, (iii)
stabilizing our detection results, and (iv) determining our cue
stick detection algorithm.

 i. Technologies Used

We are using the OpenCV 4.0 as our computer vision
library. It is one of the most popular open-source image
processing libraries with many functionalities for image
processing and computer vision techniques. OpenCV is very
computationally efficient, as it is built upon C/C++. At the
same time, it supports fast development as there is a Python
wrapper around the core C/C++ library.

ii. Choosing Ball Detection Algorithm

In our work of determining the best algorithm, we have
considered two options: (1) HSV filtering + contour extraction
and (2) edge detection.

HSV filtering and contour extraction utilizes the fact that all
our pool ball objects have distinct colors and patterns. HSV
stands for hue, saturation, and value. We can filter our image
by a range of hues, or the shades of color. With an image
filtered for only a certain color of ball, we can perform
contour extraction to compute the minimum enclosing circle

of a ball object. This is useful in averaging out the ball
position and accounting for imperfect input data.

Edge detection finds the boundaries of objects by detecting
discontinuities in the brightness of an image. There are
varying filters that help determine the edges in an image such
as the sobel filter. From this, we use the hough transform to
extract circular contours from the image. In order to determine
the color of each circular outline, we extracted 200 points
from the contour of the ball to determine the color the ball was
closest to.

After tuning both of these algorithms, we compared their
accuracies to our ground-truth measurements of the pool ball
locations. We used a 4-ball setup and ran both algorithms for
20 frames, capturing the CV's computation of each ball's
location. In figure 4, we show the sum squared error of the
difference of the physical and computed ball locations for both
algorithms. HSV filtering outperforms edge detection in both
the location difference and computational time. However, with
the addition of our stabilization algorithm, HSV filtering and
edge detection start to both perform well and at a similar level.

Figure 4: CV Testing Results

iii. Stabilizing Detection Results
In order to stabilize and reduce variance in our ball

detection results, we implemented an Average Queue (AVG
Q) data structure that averages the past 10 ball locations. This
greatly helped reduce variance as shown in figure 4 for both
HSV filtering and edge detection algorithms.

iv. Determining Cue Stick Detection Algorithm

Determining the position and angle of the cue stick is vital
for accurate feedback to the user. We experimented with
several different methods of detecting the cue stick.

First, we used RGB filtering for the white, tan color of the
cue stick. From this mask, we drew a line of best fit between
the points in order to determine the angle. This method was
not the best as the cue stick is not completely white and has
wood patterns on it. Additionally, it did not allow us to have
consistent points for the tip and middle of the cue stick.

Next, as HSV filtering worked well for pool ball detection,
we decided to apply HSV filtering to the cue stick. We placed
a single red tape on the tip of the cue stick, and this was well
detected by our CV algorithm. Having a consistent relative

5
18-500 Final Report: 05/08/2019

location for the tip of the cue stick was very useful for our
speed module. We continued to use RGB filtering to detect
any midpoint on the cue stick.

Lastly, we wanted to try detecting all parts of the cue stick
(position, angle) through HSV filtering. We used red and blue
tape for the tip and a midpoint on the cue stick, respectively.
This led to detection and accuracy issues if a player's hand
covered part of the middle blue point. Additionally, the
midpoint on the blue point was not as accurate as the midpoint
found through RGB filtering on the cue stick body. Thus, we
decided to stick with our single red tape method.

C. Software Backend

For the software backend, several design decisions were
made with project requirements in mind (e.g. timeframe,
system requirements, user experience). These decisions
include: (i) technologies used, (ii) simulation vs prediction,
(iii) choice of pool game, (iv) choice of user feedback, and (v)
user interface display.

i. Technologies Used

For the code, we decided to use Python 3.7.0 - the latest
version of Python. The alternative was to use C++. C++ is a
compiled language, so it is considerably faster than Python
and is often used for programs that have high performance
requirements. Despite these advantages of C++, we ended up
choosing Python because of developer constraints -- it was the
language everyone on the team felt comfortable with and
Python also encourages more rapid development over C++,
which we felt was suitable for the timeframe of this project.
Additionally, we found our computations to run on the
order-of-magnitude of nanoseconds -- that is to say, the
performance improvement of C++ becomes unnecessary with
the computations we’re running.

ii. Simulation vs Prediction

A major design choice was deciding between (a) simulating
the outcome of where all balls would end up, or (b) just
computing the path of the cue ball and object ball.

Figure 5 illustrates these 2 options. Option A requires
simulating all events after a ball is hit, waiting for equilibrium
to be reached, and finally presenting the outcome to the user.
Option B requires computing where the cue ball would strike
the object ball, the line where the cue ball would deflect, and
the line where the object ball would deflect.

Option A’s advantage is that it fully predicts where all balls
will end up for the user. However, the major drawback of
Option A is its computational complexity (it requires a time
step-by-step simulation). One of our main system

requirements is low latency, so this prompted us to go with
Option B over A.

Additionally, Option B is better than Option A for the
purposes of helping a beginner train. Option A might be too
much information for a beginner who is focused on getting
one ball in at a time. Option B trains the user to focus on the
‘ghost ball’ technique -- a very common aiming technique 2

that many pool players use.

Figure 5: Simulation vs prediction

iii. Choice of pool game

Another assumption to be made before development was
deciding which game would be played. The two most widely
known games of pool are 8-ball and 9-ball. Although 8-ball
might be the more popular game for beginners , we ultimately 3

went with the decision of developing primarily for 9-ball to
simplify the development process.

In 9-ball, there is only 1 object ball at any point in time (i.e.
the player must hit the 1-ball if it is the lowest ball on the
table). This is in contrast to 8-ball, where the user can have up
to 7 balls available to hit. Figure 6 shows a 9-ball and 8-ball
layout with all balls on the table. In 9-ball, the user must hit
the solid yellow 1-ball. In 8-ball, if the user is solids (or
stripes), they have the option to hit balls 1-7 (or 9-15).

By only having 1 object ball instead of 7, the ‘feedback’
portion of the software backend is greatly simplified and
requires less computation (and, thus, less latency in our
system).

2
http://www.easypooltutor.com/articles/29-aiming-techniques-a-execution/31-h
ow-to-aim.html
3 As of 3/4/19, an Apple App Store search of ‘pool’ shows results for pool
games that are all focused on 8-ball, not 9-ball

http://www.easypooltutor.com/articles/29-aiming-techniques-a-execution/31-how-to-aim.html
http://www.easypooltutor.com/articles/29-aiming-techniques-a-execution/31-how-to-aim.html

6
18-500 Final Report: 05/08/2019

Figure 6: 9-ball vs 8-ball target ball options

iv. Choice of user feedback

In 9-ball, the goal of the game is to hit the current object
ball into a pocket in such a way that the cue ball is positioned
well for the next object ball. This is referred to as ‘cue ball
control’.

With the choice of the 40” table -- a toy version of an actual
pool table, there is not enough ball mass or surface area for a
player to apply ‘english’ or spin onto the cue ball, which
makes ‘cue ball control’ come down to simply how much
force is applied to the cue ball.

Figure 7 (below) shows how different speeds can affect
positional play for the next shot. In the scenario shown, the
yellow 1-ball is hit into the pocket, but must be hit at the
correct speed to get into good position to hit the blue 2-ball.
By taking spin out of the equation, the only parameter to work
with is cue ball speed. Controlling cue ball speed is also an
important skill for beginner pool players to develop . 4

Figure 7: Cue ball speed for positional play

v. User Interface Display

We use PyGame as our graphics library, and the projection
of the PyGame display onto the pool table is what the user
sees. We initially visualized our pool balls as a solid ball color
to emulate the actual pool ball. However, when pairing this
projector output with CV, if the circles were not perfectly
placed or if there were any lag, the CV algorithms would start
detecting these projected circles as additional balls.

4 https://billiards.colostate.edu/bd_articles/2004/nov04.pdf

To mitigate the side effects of the projector output on CV
ball object detection, we experimented lowering the projector
brightness, changing the PyGame ball colors, and only
visualizing the ball outlines. Only outputting the circular ball
outlines worked with the best with CV (Figure 8, right), and
that is what we ultimately went with.

Figure 8: Different projector visualizations of pool ball locations

Lastly, we knew that were was some standard deviation in

the CV perception of our pool balls, so we considered adding
in a visualization of the standard deviation. We tested drawing
a cone of where the the pool balls would end up if shot along a
certain path (Figure 9). However, when projected, we noted
that the cone was inhibiting to the user experience as it
introduces more visual clutter.

Figure 9: Path standard deviation visualization

V. SYSTEM DESCRIPTION

A. Computer Vision
The Computer Vision subsystem is our machine perception

of the game state. It is responsible for 4 major functions: (1)
Receiving and preprocessing images from the camera, (2)
Determining the locations of all pool balls on the table surface,
(3) Determining the location and angle of the cue stick, (4)
Computing the speed the player shoots the cue stick with.

i. Preprocessing camera input
We are taking input from a video camera and will need to

process each frame. Depending on our computer vision
accuracy, we may downsize the image for faster processing.

ii. Pool ball locations

There are 10 balls of various colors in a game of 9-ball
pool. As the balls have distinct outlines, we can use edge
detection and hough transforms to detect the balls. We find the
edges of an image using a sobel filter. From this, we use the

https://billiards.colostate.edu/bd_articles/2004/nov04.pdf

7
18-500 Final Report: 05/08/2019

hough transform to extract circular contours from the image.
In order to determine the color of each circular outline, we
compare 200 points from the contour of the ball to determine
the color the ball is closest to. From the circular contour, we
use the center point as our machine's perceived location of the
pool ball.

We take these center points and add them into our Average
Queue data structure. The average queue averages the past 10
locations of the ball, which greatly reduces the ball location
variance.

iii. Cue stick location and angle

The cue stick is the user's main interaction with the game
and our system. To detect the cue stick's positioning, we
employ filtering techniques.

To detect the cue stick tip location, we filter for the red tape
on the cue stick. Then, we perform some dilation on the red
tape mask. Then, we draw a minimum enclosing circle on the
red contour, and use the center point as the tip location.

For a midpoint on the cue stick, we employ RGB filtering.
We perform image smoothing with dilation and erosion of the
filtering mask. Instead of extracting contours, we compute the
best fitting line out of the cue stick mask. We take the
midpoint of the best fitting line to determine a middle point on
the cue stick. With a tip and a midpoint, we can now compute
a precise position and angle of the cue stick.

Figure 10: Computer vision subsystem architecture

B. Speed Detection
In our overall system, we wanted a couple features to aid

user experience:
1) Continually showing the lines to a user after they hit

the cue ball (so the user can compare predicted to
actual result).

2) Showing the user how far their ball(s) would go if the
user started doing practice strokes with the cue stick
(a common practice in pool).

The Speed Detection module is a small module that helps
achieve these 2 features. This module interfaces between the
CV and software backend. It takes in every updated ball and
cue stick position from the CV module. It keeps some state of
the most recent positions of the balls and cue stick positions,
and produces 2 outputs for the software backend:
“cue_ball_moving” and “cue_stick_speed”.

If the software backend receives “cue_ball_moving” to be
True, it means the user has struck the ball, and the software
backend should pause all computation so that the previously
projected lines remain on the table for the user to visualize
even after she struck the ball.

The software backend uses “cue_stick_speed” and predicts
how far balls will travel for the given speed, using classic 2-D
kinematics equations (e.g.) to solve for v 2advf = o

2 +
distance traveled (if the ball came to a complete stop without
colliding with another ball) or to solve for final speed (if the
ball collided with another ball, d distance away).

C. Software Backend
The software backend subsystem is responsible for

processing all data in the system. The entire subsystem is laid
out in Figure 11. This subsystem is responsible for 4 major
functions: (1) maintaining state of the pool game, (2)
predicticting where the cue ball and object ball will go, (3)
suggesting the best speed to hit the cue ball, and (4) outputting
the computed information as a GUI. In this section, we discuss
how these functions are implemented as separate modules.

8
18-500 Final Report: 05/08/2019

Figure 11: Software backend subsystem architecture

i. Maintaining game state (pool module)

The 'pool' module is static and straightforward - it simply
holds the current state of the pool table at any particular point
in time. Basic object-oriented principles were applied to model
the real-world game of pool closely by creating classes: Game,
Balls, Table, Cue. In an MVC framework, the ‘pool’ module
would serve as the ‘model’

ii. Computation and prediction (physics module)

As discussed in Section IV, most problems require the use
of one or more equations. To provide support for these
equations, the ‘'physics' module can be further broken down
into the following classes: Collisions, Geometry, Vector. Each
class holds utility equations to support the wide array of
formulas needed to support ball path prediction. We now

discuss how the game of real-life pool was modeled for this
software implementation. In an MVC framework, the ‘physics'
module would serve as a ‘controller’.

With some basic assumptions, the game of pool can be
abstracted as a 2-D Cartesian plane and all interactions can be
modeled as simple geometry problems. The following
assumptions are currently being made:

● Ball-to-ball collisions can be treated as 2-D point
collisions

● Friction between balls and table cloth is known and
constant

● Pool table cushions can be treated as perfect walls in
the case of ball-to-cushion collisions

● The cue ball will be struck with no spin

With these assumptions and abstractions in mind, most
problems can be solved with one or more simple equations.
Below are the most significant problems and how they were
solved with one or more equations:

Detecting collisions:

● Finding distance between two points:

 √(x2 − x) y)1
2 + (2 − y1

2
 ≤ r

● Assuming balls have the same radius

Figure 12: Ball collisions

Resolving collisions:

● Two-dimensional collisions with two moving objects 5

(x)v1′ = v1 − 2m2
m +m1 2 ||x −x ||1 2

2
<v −v , x −x >1 2 1 2

1 − x2

(x)v2′ = v2 − 2m1
m +m1 2 ||x −x ||2 1

2
<v −v , x −x >2 1 2 1

2 − x1

● Where indicates a dot product of 2 vectors, b< a >
and is the magnitude of a vector.|a||| 2

5
https://en.wikipedia.org/wiki/Elastic_collision#Two-dimensional_collision_wi
th_two_moving_objects

https://en.wikipedia.org/wiki/Elastic_collision#Two-dimensional_collision_with_two_moving_objects
https://en.wikipedia.org/wiki/Elastic_collision#Two-dimensional_collision_with_two_moving_objects

9
18-500 Final Report: 05/08/2019

Figure 13: New velocities after collisions

Finding 'ghost ball':

● Finding intersection between line and circle:
For a line equation and for a circle equationxy = m + c

.x) y)(− p 2 + (− q 2 = r2

Substitute the line equation into the circle equation:
m)x (mc q)x q cq)(2 + 1 2 + 2 − m − p + (2 − r2 + p2 − 2 + c2 = 0

Treating this equation as a quadratic of the form

,x xA 2 + B + c = 0
● If , the line misses the circleACB2 − 4 < 0
● Else if , the line is tangent to the circleACB2 − 4 = 0
● Else if , the line intersects the circle atACB2 − 4 > 0

2 points.

To get the intersection point(s):

x = 2A
−B±√B −4AC2

 y = m(2A
−B±√B −4AC2) + c

Figure 14: Finding cue ball contact point

iii. User suggestion (feedback module)
The 'feedback' module is a stretch goal (post-MVP) part of

the system that provides suggestions and feedback to the user
for how they should hit their shot. Currently, the following
assumptions are being made (to reiterate what was stated in
Section IV):

● The game being played is 9-ball
● The cue ball will be hit with stun (no follow or draw)6

As stated in Section IV, these assumptions imply a much
simpler implementation of the 'feedback' module. In 9-ball,
there is only 1 object ball every time (compared to 8-ball,
where there can be up to 7 object balls). This means that the
user's goal is to always hit 1 object ball into a pocket and setup
position for the next, sequential object ball. (i.e. Hit the 1 ball
in and setup position for the 2 ball).

Additionally, without follow or draw, we can assume the
cue ball deflection path will follow the tangent-line rule , so 6

the only remaining factor is the cue ball speed coming out of
the collision.

From Section IV, it was established that cue stick speed is
the best feedback to give back to a user. This module will
work backwards to find the range of ideal speeds to strike the
cue ball to end up in an ideal position for the next shot. Figure
15 (below), shows a range of acceptable cue ball positions as a
large circle. This range can be found by seeing if the resultant
cue ball position would be able to see enough of the object
ball to hit the next object ball into a pocket.

Once this ideal position range is found, we can work
backwards to find the best range of cue ball speeds.

Figure 15: Start with an allowed range for position. Then, work backwards.

iv. Projector output (gui module)

The GUI is straightforward and outputs the computed data
and results into a user-friendly format, to be projected back
onto the pool table. Figure 16 (below) shows a
proof-of-concept from a similar project. In an MVC
framework, the ‘gui’ module would serve as the ‘views’.

Figure 16: GUI proof of concept

6 https://www.billiards.com/article/the-tangent-line

https://www.billiards.com/article/the-tangent-line

10
18-500 Final Report: 05/08/2019

D. Hardware Components

The physical hardware components of the project consist of
a camera, a projector, a pool table, a frame, and a computer.

The pool table is the central component that the user plays
on. The camera takes in real-world data and this information
will be sent to our computer's computer vision algorithms. The
projector displays the output of our path prediction onto the
pool table.

To hold our camera and projector, we are building a frame
so that our input data is accurate and our output is stable for
the user. The camera and projector are mounted above the
center of the table, with the camera being above the exact
center and the projector mounted besides. Our software
accounts for this slight bias. The frame holds these
components roughly three feet over our 40” demo table, which
is a generous field of view for our purposes.

The computer takes raw data from the camera, runs CV,
predicts ball paths and user feedback, and finally generates a
GUI to be projected onto the table.

E. End-to-end Results

After our final product was constructed, we ran some tests
with the entire system. The motivation was to determine what
the end user experience would be like. Our testing process was
as follows:

1. Place balls for the specific scenario
2. User lines up a shot with the cue stick
3. Mark where the system predicts where the ball will go
4. User actually hits the shot
5. Mark where the ball actually ended up
6. Compare the prediction from (3) to the result from (5)

For a clearer illustration, refer to Figure 17, where two of
our testing scenarios are shown.

Figure 17: Example of end-to-end testing procedure

Our results were as follows:

Scenario Results (Δcm)

cue ball → wall (15cm) 0.275cm

cue ball → wall (30cm) 0.340cm

cue ball → wall (15cm) → wall (50cm) 0.315cm

cue ball → ball (15cm) → wall (15cm) 0.353cm

cue ball → ball (15cm) → wall (30cm) 0.412cm

cue ball → ball (30cm) → wall (15cm) 0.456cm

These results were achieved by getting the average over 10

trials. Note that the last 3 scenarios refers to the cue ball
striking an object ball, and measuring where the object ball
ends up on the wall. The higher result deviations (i.e. > 0.4
cm) were expected due to longer distances and more human
error. Overall, our results were not perfect, but we were
satisfied with our results (See Summary section for further
discussion).

VI. PROJECT MANAGEMENT

A. Schedule
Our schedule separates our project into its main

components, the Computer Vision, the Prediction and
Feedback software, and our physical parts. In addition, we
budget additional time for testing and integration. We do not
budget for project documentation and other deliverables,
instead we allocate generous deadlines as means of
distributing the impact of these deliverables. We removed the
robotics from our schedule and replaced it with more detailed
hardware analysis. Our schedule is at the back of this
document at Fig 14.

B. Team Member Responsibilities
As we have three main areas in our system, we have split

our roles accordingly.
Christina worked on the computer vision subsystem and

handled the integration between the camera and CV software.
She worked with the team on CV tuning and accuracy
adjustments as the data is passed into the backend.

Sam handled the software backend, working on maintaining
the game data and computing path prediction. He also worked
on developing all submodules for the software backend, taking
care of the primary functionality, discussed further in Section
V.

Harry oversaw our physical components and testing. He
designed and built our frame and mounted our camera and
projector over the table. He assisted Christina with
development of computer vision assistance modules such as

11
18-500 Final Report: 05/08/2019

the average queue module, and helped tune aspects of the CV
such as ball detection.

Overall, all the team members worked together for
integration and demo related tuning and development tasks.

C. Budget

Item Amount Description Status

Pool table 62.22 40" Green Pool Table Arrived

Projector 0
Borrowed from ECE
Lab Secured

MVP Frame 45.41
PVC Purchase from
Home Depot Arrived

Poster 0 Subsidized en masse Secured

Camera 34.32
Logitech C615
Camera Arrived

USB Extender 6.49
Extends the short
camera cord Arrived

Frame
Extension 25.75

More PVC parts for
the frame Arrived

Camera 2 72.28
Camera with more
megapixel accuracy Arrived

15' HDMI
Cable 11.77 HDMI Cable Arrived

Camera Arm 21.18 Holds the camera Arrived

Total 279.42

D. Risk Management
One of our major risk elements throughout the system is

accuracy and jitter. Accuracy is very important to the end user
and there are multiple areas where accuracy is affected. Jitter
causes our system to seem unstable, and is unusable to the end
user. These errors compound, so we must minimize these
errors as much as possible at each step of the system flow.

With computer vision, the ball positioning is essential for
the software prediction module to present accurate feedback to
the user. As computer vision is dealing with images, there can
be inaccuracies in the image processing and eventual
detection. To help the system best perceive the physical world
locations, we are working with two computer vision methods
of object detection. We tested two approaches, and chose the
more accurate of the two. In addition, we implemented an
aggregate bucket system to reduce random outliers and
provide a stable and accurate ball position. This aggregate
bucket system does not significantly increase latency, and

helps increase both accuracy and reduce jitter. There still
exists a potential for inaccuracies and jitter, and we try to
reduce with that with tuning for edge detection thresholds and
color ranges.

On the software backend side, a major concern is being able
to model the real-world well enough to accurately predict
where pool balls will go. We created a config file with
physical properties of the pool table. We ran experiments
where we rolled the ball and measured the time to stop. We
were able to extract different coefficients for different regions
of the pool table. Despite this, there is still the risk that the
manufactured pool table and balls are imperfect and deviate
from the expected as we are able to eliminate most of the
major cases, but there still exists edge cases.

On the physical components side, there may be issues with
the camera input, pixelation, and environment lighting. The
camera and projector alignment and orthogonality to the table
surface may also affect the measurements. Because the frame
holds both the camera and projector, its stability is essential
for our other components to receive and output visually
accurate data. We have aligned the pool table to the frame to
reduce variance, and fixed the camera and projector at marked
intervals.

Ultimately, our end-to-end system will inevitably suffer
from accuracy and jitter issues. We reduced these risks
through accurate tuning and experimental calculations.

VII. RELATED WORK
‘This AR Projector System Acts Like A Billiards Coach’:
The following video showcases a similar project that utilizes
computer vision to project the expected path of balls onto a
pool table. This is our motivation, to expand on the
capabilities and features of such a system.
https://www.youtube.com/watch?v=zHVW2_lH9vs

Pool Live AR:
This product is an augmented reality system that is our
motivation to provide an interactive and engaging
environment for the user. It uses a strong projector system to
provide an augmented reality.
http://www.poollivear.com

8 Ball Pool (Apple App Store):
An interactive game that showcases lines from a top down
view. This is our motivation behind the display for our system.
http://itunes.apple.com/us/app/8-ball-pool/id543186831?mt=8

VIII. SUMMARY
We are working methodically and efficiently towards

meeting our design specifications. As we are in the
intermediate phases of our implementation, we are placing
priority on functional correctness as this impacts a player's

https://www.youtube.com/watch?v=zHVW2_lH9vs
http://www.poollivear.com/
http://itunes.apple.com/us/app/8-ball-pool/id543186831?mt=8

12
18-500 Final Report: 05/08/2019

training the most. Once we achieve the desired functionality as
stated in our requirements, then we will proceed to improve
system performance for a better user experience.

A. Fulfillment of Requirements
In terms of our computer vision requirements, we fully

fulfilled our goals. For our final demo, we used the Edge
Detection method with Average Queue.

Requirement Result

Accuracy: 1 cm distance between the actual
and perceived pool ball and cue stick locations

0.074 cm

Performance: 500 ms object detection latency 278 ms,
per frame

For our software backend requirements, we achieved:

Requirement Result

Accuracy: visual suggestions projected
onto the table are accurate within 5 mm

3.585 mm,
on average

Prediction outcomes: at most 2 degrees
deviation between predicted and actual
paths

2.2 degree
deviation,
on average

Performance: 500 ms latency for
computing predictions

74ms,
per iteration

For our end to end requirements, we achieved:

Requirement Result

Functionality: 50% improvement in
shot-making ability

40%

Accuracy: 2° margin of error from
intended to resultant shot

2.2 degree deviation,
on average

Performance: 1 second end-to-end
latency

393 ms, camera to
projector output

Overall, we were satisfied with our results. We were able to

satisfy a majority of our requirements, and work around the
requirements that were not met exactly.

B. Future work
To improve our project's extensibility to different settings,

we would like to implement an auto-calibration system. This
would be helpful in reducing our tuning time as we test our
system in different lighting conditions and environments.

Additionally, we would like to configure our system for a
standard-size pool table. With some upgrades to our hardware

components (e.g. better camera, larger frame), many of our
system components should scale up to a large pool table.

C. Lessons Learned
We learned many lessons throughout the different phases of

our project. In the beginning during our concept phase, we
could have explored more project ideas. We followed our
interests and areas of expertise, but it would have been useful
to explore more unfamiliar domains.

As we were refining our project idea, we could have done a
better job matching our project scope with the course
expectations. We were overly ambitious in wanting to include
a robotics component to our project, so understanding our
abilities and time constraints would have helped us formulate
an appropriate scope.

For the realization and implementation of our project, we
ran into many issues. Sometimes, we were fixing these issues
at the wrong step in our pipeline, whereas we should have
been fixing compounding errors at the root. For example,
when the projector projects an incorrect pool ball location,
instead of fixing it on the software or computer vision side,
there may have been an inaccuracy with the camera
placement.

Additionally, we ended up spending a lot of time tuning our
system for different lighting conditions and environments. It
would have been worthwhile to invest making an
auto-calibration system to speed up development time.

When people build projects, they place a lot of emphasis on
the building phase and tend to push risks aside. Evaluating
these beforehand allows us to be more aware of our risk
factors and create backup plans.

If our system were to be put into production, we really want
to make sure that we are factoring the user experience into
account; the system needs to be usable and offer practical
value. The main barrier between our system and production at
the moment is the need to tune for inconsistent lighting and
the replicability of our frame setup.

For scheduling, we realized that finer granularity would be
helpful. Adequate planning helps us determine our schedule
and allows us more room to be flexible.

REFERENCES
[1] Billiards and Pool Physics Resources from Colorado State University:

https://billiards.colostate.edu/physics/
[2] Rules of 9-ball pool: http://www.vnea.com/111111new-page.aspx
[3] Cue ball follow effect (stun, draw, follow):

 https://billiards.colostate.edu/FAQ/stun/90-degree-rule/
[4] Ball Tracking with OpenCV:

https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
[5] OpenCV Contours:

https://docs.opencv.org/3.4.2/d4/d73/tutorial_py_contours_begin.html

https://billiards.colostate.edu/physics/
http://www.vnea.com/111111new-page.aspx
https://billiards.colostate.edu/FAQ/stun/90-degree-rule/
https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
https://docs.opencv.org/3.4.2/d4/d73/tutorial_py_contours_begin.html

13
18-500 Final Report: 05/08/2019

Fig. 18 Gantt Chart of Current Progress

