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Abstract—The goal of this project is to create a small
ground  vehicle  that  autonomously  and  simultaneously
localizes and maps the 2D maze it is placed in. The maze
will have smooth, straight walls and a smooth ground. This
is an educational demonstration of an autonomous vehicle
that  may  be  used  for  search  and  rescue  or  scientific
exploration.
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I. INTRODUCTION

Autonomous vehicles are often used to explore difficult to
reach or dangerous places for situations like search and rescue,
and  scientific  exploration  in  general.  This  project  aims  to
create a low cost,  educational  demonstration of autonomous
mapping and navigation by building a vehicle that explored a
simulated environment. Mechanical design challenges will be
largely eliminated by reducing a real, textured environment to
a static environment with smooth ground and flat walls. The
ground vehicle will be capable of producing a 2D map of the
maze it is placed in by traversing through it and updating live
changes. It should use simultaneous localization and mapping
(SLAM) to do this efficiently.

II. REQUIREMENTS

The ground vehicle shall:

 be capable of exploring an area with smooth surfaces. 

 traverse the area above a minimum decided speed

 have a battery life of at least two hours

 track map coverage

 be able to simultaneously localize itself and map the
area

 travel efficiently without hitting any walls

The user must be able to:

 see the map being updated as the vehicle moves
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III. ARCHITECTURE

A. Summary

Our architecture consists of  both hardware and software
systems, as described in detail in the following section.

Fig. 1. Subsystem Interaction Diagram

B. Electrical and Mechanical System

The mechanical structure of the robot consists of mounts
made  for  various  components  laser  cut  tempered  wood,
stacked vertically using standoffs. The base is a two wheeled
differential drive balanced with two ball caster wheels, which
has a simpler motor control interface and mechanical design,
and  high  maneuverability.  Heavier  components  such  as  the
motors and battery pack are compacted on bottom layers to
increase stability, while the Raspberry Pi and motor controller
are allocated more space for heat dissipation. We decided to
use a Raspberry Pi 3 on our robot running an ubuntu 16 OS
with  ROS.  ROS allows  easier  integration  between  separate
subsystems, and the wireless capabilities of the Pi 3 allow us
to port code and run tests remotely.

Fig. 2. Robot

C. Software Subsystems

This  system  is  divided  into  six  subsystems:  Sensors,
SLAM,  Odometry,  Path  Planning,  Motion,  and  Map
Visualization.  Each  subsystem  (with  exception  of  the  web
application) is contained in a ROS package and communicate
via ROS topics.

1. Sensor - This subsystem consists of the lidar, encoder, as
well  as  I/O  and  preprocessing  software.  For  the  lidar
(RPLidar) we used the manufacturer included SDK and ROS
package to read data points. The RPLidar publishes an array of
data  points  which  correspond  to  the  distance  at  which  an
object was detected at that degree. This data is subscribed to
by the SLAM module which uses the scan data to calculate
pose  transformation  for  SLAM.  For  the  encoder,  a  custom
ROS node parses the digital signal from Phase A and B hall
sensors in the encoder into vehicle position in terms of “ticks”,
a measurement  of  the  wheel  position relative  to  its  starting
position.

2. SLAM Software - The SLAM subsystem is the software
that  computes  the  occupancy  grid  map  of  the  surrounding
environment  by  taking  in  scans  from  the  encoders  and
outputting the pose estimation from one scan to another. 

3. Odometry - The odometry subsystem receives encoder
ticks and calculates the robot’s transformation frame from its
starting pose to current pose.

4. Path Planning - The path planning subsystem is separate
into the local path planner and global path planner. The local
path planner produces motor velocity commands to move the
robot from current point A to destination B in the maze, where
A and B can be connected in a straight path without obstacles
in  between.  The  global  planner  analyzes  the  grid  map
generated  by  the  SLAM  subsystem  and  provides  the  local
planner  with  destinations  to  go  to.  The  path  planning
subsystem subscribes to the robot pose transformation matrix
and the grid map produced by the SLAM subsystem. Within
the  path  planning  subsystem,  the  global  planner  uses  this
information  to  calculate  map  coordinates  of  the  next
destination, and the local planner uses the coordinates of the
current pose and destination to calculate motor velocities. In
the  final  version  of  our  system,  due  to  delays  with
implementing SLAM, we were unable to complete integration
and testing for the global path planner. Therefore the global
path planner is replaced by a human controlling the robot. The
UI can be used remotely via ssh with X forwarding. The UI
also outputs variable motor speeds,  which still  demonstrates
the PID velocity function. 

5. Motion - This subsystem consists of PID velocity node,
and  motor  controller.  The  path  planning  subsystem  sends
velocity  commands  PID velocity  node,  which  uses  encoder
data to calculate the motor commands needed to achieve the
target  velocities.  This software subsystem interacts  with the
Adafruit  Raspberry Pi  motor hat,  which outputs  the  correct
PWM signal to the motor. The robot’s motion will change the
robot’s perception of the maze, thus changing the sensor inputs
and creating a sensor feedback loop.

6. User Web App - This subsystem is a web application
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that receives and displays the most recent occupancy grid map
and robot position. After every round of ICP, the grid map will
change  slightly.  This  updated  grid  map  is  sent  to  the  web
server via a POST request. The server sends all clients the map
it  stores  every  5  seconds.  The  client  visualizes  the  data  it
receives. The overall web application will be custom designed
for  this  application,  however  we  will  utilize  the  React.js
library  to  create  the  map  visualization.  Our  software
components  will  all  be  deployed  on  the  Pi  to  achieve
autonomous  movement  with the  exception of  the  Web App
which the user can use on any computer.

Fig. 3. Web Application Interface
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IV. DESIGN TRADE STUDIES

A. Performance Metrics

As mentioned in the design requirements, we will be using
the following performance metrics:

Fig. 4. Performance Metrics

The map coverage and localization accuracy metrics  are
based  on  the  resolution  of  the  RPLidar.  The vehicle  speed,
efficiency (time to complete  maze),  and battery  metrics  are
based on the following calculation. Assuming our maze is 6ft
x 6ft, with hallways around 1x1ft wide, we can have a max of
36 (x2 for horizontal and vertical direction hallways) ft or 24
(x2  for  horizontal  and  vertical  direction  hallways)  ft  of
hallways.  Depending  on  how  hallways  are  connected,  the
robot may need to travel through the same hallway a few times
(let’s say 2 times for the whole maze) to explore the whole
map, in which the worse case scenario would be 144 (72x2) ft.
Therefore 20 ft / min will allow us to cover 100 ft in 5 mins,
which should comfortably allow the robot some mistakes.

B. Theoretical Design

We used the  resolution of  the  RPlidar  to  make the  grid
accuracy of the map. Since the resolution can be adjusted we
used 288 by 288 so extra lag doesn't slow down the Pi.

Our total traversal time depended on how large we wanted
the  maze  to  be.  Using  an  average  of  20  ft/min  we  could
traverse all mazes relatively fast.

C. Validation Plan

Fig. 5. Maze components and a sample 3x3 maze

We  built  a  modular  maze  to  test  the  robot  against  the

aforementioned performance metrics. The maze was modular,
easily  configurable,  and  had  multiple  types  of  junctions  in
order to ensure that the robot dynamically localized itself and
mapped the area it was in. The maze had 1 ft wide hallways
and the following modular combinable 1x1x1 ft section types.

Validation  will  had  two  phases.  In  Phase  1,  we  built  a
small maze with 4-6 sections to test basic navigation without
autonomous mapping. In Phase 2, we expanded the maze to a
6x6 grid, which was the size of the final demo grid. We tested
the map coverage on various configurations, and concurrently
tested the map algorithm with software simulations. This is a
diagram of the configurable pieces and a sample 3x3 maze.

The  validation  timeline  will  be  discussed  further  in  the
Project Management section.
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V. SYSTEM DESCRIPTION

A. Sensor Subsystem

We  will  be  using  the  A1M8  RPLidar  due  to  its
affordable cost,  and convenient SDK. This module has also
been used by previous capstone teams. It reads 360 points per
rotation  at  1  degree  resolution,  and  rotates  5.5  times  per
second, resulting in 1980 points per second.

We used the hall sensor quadrature encoders included in
our DC motor kit. The encoder position can be determined by
catching the rising and falling edges of the A and B phases of
the hall sensors, and counting the number of ticks the encoder
has turned. A significant challenge in this module was that the
hall sensor signals must be collected with no interruptions to
avoid  missing  readings.  However,  when  we  added  a  ROS
wrapper around the encoder reading python script,  the ROS
publisher  was  originally  executed  serially  with  the  encoder
reader,  resulting in  incorrect  encoder  readings.  This  in  turn
breaks the PID velocity controller, since the encoder-detected
velocity is now capped at the ROS publishing rate, which is
much  lower  than  the  target  velocity.  Therefore  the  PID
velocity controller will continue to increase the motor speed in
an attempt  to  reach the target  velocity.  The solution to this
problem was to reimplement  the encoder and encoder ROS
wrapper in C++ with multithreading, so that encoder ticks are
not  missed  while  the  ROS  publisher  sleeps  in  between
publishing new encoder data.

B. Odometry Subsystem

Encoder ticks are converted into metric distance or radians
by measuring the number of ticks per revolution. The encoder
we used has 682.4 ticks per rotation according to the datasheet
(closer  to  700  when  tested)  and  the  wheel  has  a  0.065m
diameter,  which  translates  to  approximately  3342  ticks  per
meter.  This  value  can  then  be  used  to  convert  the  ticks
detected into distance (in meters) traveled by the left and right
wheels.  Wheel velocity is  calculated by measuring travelled
distance over small constant time units (delta time).

Fig. 6. Ticks per meter calculation 

Fig. 7. SLAM Subsystem Diagram

C. SLAM Subsystem

For this subsystem we have used the Iterative Closest Point
algorithm. This algorithm takes in two scans and determine
how much the distance the robot has travelled before taking
the second scan. This allows us to determine incremental pose
transformations each time the robot takes an additional scan
and place the scan points on the map accordingly. We also use
the incremental pose transforms to determine where the robot
is with respect to its starting point which we take to be (0,0,0).

ICP  (Iterative  Closest  Point)  works  by  taking  first
matching  the  points  in  the  scans  to  each  other  and  then
determining what the transform between the two scans would
be with this matching. If the mean error from the matching is
below a certain threshold we take this as the final transform.
Otherwise the ICP runs again using the dot product of the Scan
A and the calculated transform until mean error is below the
threshold  or  we  cross  the  maximum  number  of  iterations
allowed.

1. Data Matching- This is the process by which each point
in Scan A is mapped to a point in Scan B. Hence every scan
points need to be matched with that scan point that is closest to
it  if  the  two points  we projected  in  space.  I  have  used  the
Python SkLearn library to do this computation.

2.  Outliers-  Determining  outliers,  or  points  that  do  not
occur in both scans helps make the ICP better by giving better
accuracy for the transform. For our system we have not used
any outliers since we only have 360 points so each reduction
would cost us in terms of accuracy.

3.  Convergence-  Convergence  is  achieved  when  the
difference between the previous mean error between the scan
points  and  the  current  mean  error  is  less  than  a  certain
threshold.  In  our  case  we used  0.001 inch as  the  threshold
since  we  are  taking  scans  very  close  together.  We  have  a
maximum iteration of 50 which is a good amount and gives us
100% convergence each time.
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4. Data Association Structure- These structures are used to
store the corresponding data points in an optimized way. For
our  implementation  we  used  the  matrices  from  the  Python
Numpy library to store these.

5.  Transformation-  This  transformation  is  calculated  by
using the matrices of the two scan points. We calculate the dot
product  of  A.T  and  B  and  then  use  Single  Value
Decomposition  function  results  from  the  Numpy  library  to
calculate the rotation and value between the two scans.

6.  Loop Closure-  Since  we are  using ICP for  the entire
SLAM the accuracy is high enough that we do not need loop
closure for determining the map. In this case loop closure will
only be needed for determining which path to explore next.

D. Path Planning Subsystem

1. Local Planner

The  local  planner  calculates  the  distance  and  angle
between  current  pose  of  the  robot,  published  by  SLAM
subsystem, and  the  destination coordinate,  published  by the
global  planner.  Based  on  the  distance  and  angle,  the  local
planner will accelerate and decelerate the linear and angular
velocities at a constant acceleration rate, always plateauing at
a  set  maximum  velocity.  The  distance  and  angle  are
continuously updated as the robot moves, forming a feedback
loop.

Fig. 8. Local Planner Map

Fig. 9. Local Planner Loop

2. Global Planner

Due  to  implementation  delays  and  time  constraints,  the
global planner was replaced by a remote control interface to
allow teleoperation of the robot. The remote control interface
was necessary to test SLAM, because if we move the robot
around manually to collect lidar data, our body will interfere
with the data and cause errors in SLAM. The remote control
interface creates a small window showing a coordinate frame,
where the x and y axes correspond to the angular and linear
velocities of the robot respectively. The linear speed is bound
by 0.5 m/sec for both forwards and backwards movement, and
the angular  speed is bound by 5.0 rad/sec for both left  and
right turns. This interface allows variable speed control similar
to a physical joystick controller, and is intuitive to use.

Fig. 10.  Teleop Virtual Joystick Interface

E. Map Visualization Subsystem

The map representation of the maze will be an occupancy
grid map, which is a 2D array where a filled in cell represents
a wall and a blank cell represents a traversable hallway. The
robot  will  asynchronously  broadcast  the  updated  map  to  a
Node.js  web  server  through  POST  requests.  The  web
application’s UI will be built on the React.js library, with the
React  D3 graphing library  to  graph the map representation.
Upon  the  server  receiving  new  coordinate  information,  the
graph will be updated and served to clients. 

F. Motion Subsystem

1.  Motor-  We are  using a  12V,  350 rpm DC motor  kit,
which has an encoder, wheel and motor mount. The max speed
of the wheel is 229 ft / min, which is more than enough for our
requirement.

2.  Motor Controller- We used the Adafruit  Raspberry Pi
Motor Hat,  which can power up to 12V motors and 1 A of
current,  which is enough for the stall current for the motor.
This motor controller also includes a python library that we
used to control the motor duty cycle.
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VI. PROJECT MANAGEMENT

A. Schedule

Fig. 11. Project Timeline

Refer to Appendix C for Gantt Chart

B. Member Responsibilities

Amukta was responsible for  web application design and
implementation for map visualization, Raspberry Pi/ ROS/VM
setup,  lidar  data  input  and  preprocessing,  ICP  setup  and
implementation.

Kanupriyaa was responsible for SLAM research, finalizing
calculations and algorithm for our implementation of SLAM,
ICP setup and implementation, mapping and sending the map
representation to web UI.

Tiffany  was  responsible  for  researching  and  ordering
components,  ROS  integration,  electrical  system  design,
mechanical  system  design,  encoder  interface,  odometry,
motion,  and path  planning  (both  local  and  global)  software
subsystems.

Everyone  as  a  team  worked  on  software  architecture
design, writing reports, building the maze, and doing Phase 1
and 2 testing.

C. Budget

The three most expensive components of the robot were the
RPLidar, the Raspberry Pi, and the two motors. We assumed
that low-cost scavengable parts like wires and acrylic pieces
for the chassis were nearly free and therefore did need to be
added to the budget. The RPLidar was sufficient and none of
the foreseeable risks occurred (see Risk Management), which
brought the total cost of the robot to about $250 dollars. 

If  all  the  foreseeable  risks  had  occurred,  we  would  have
needed to buy an additional RPLidar and an ultrasonic sensor,
resulting in a total cost of about $370 dollars. Either way, we
were well under the $600 limit. Refer to the Bill of Materials
in the Appendix for more details. Refer to Appendix D for our
full budget. 

D. Risk Management

We have outlined our major risks and anticipated their costs in
the budget.

Fig. 12. Risk Assessment
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VII. RELATED WORK

Paper [1]  talks  about  a  new approach to  ICP based SLAM
which uses both pose graph optimization and ICP to build a
map with better accuracy.

1. Construction- The first stage consists of building a graph
where the poses of the robot are modeled by the nodes in the
graph. Each pose in the graph contains the scan taken at that
point as well as the x,y and z  component from the starting
point which is considered ground zero. The edge between two
nodes represents the spatial constraint relating the two robot
poses. This means that it is modeled by a posterior distribution
over the relative transformation between the two poses. These
transformations  are  either  odometry  measurements  between
sequential robot positions or are determined by aligning the
observations  acquired  at  the  two  robot  locations  (Iterative
Closest Point).

Fig. 13. SLAM Graph Construction through ICP

2.  Graph  Optimization-  Once  the  graph  is  constructed  the
researchers use the configuration of the robot poses that best
satisfies the constraints. Thus, in this paper using graph-based
SLAM the problem is decoupled in two tasks: constructing the
graph  from  the  raw  measurements  (graph  construction),
determining the most likely configuration of the poses given
the edges of the graph (graph optimization) using Probability
Distribution:

P(X2 |X1 , U, M, Z) = P(Z | X2 , M) P(X2 | X1, U)

Fig. 14. Prior Distribution of Probability and Probability Equation

Other work is  being on using different  combination of  ICP
modules  such as  data matching and covariance functions to
determine what results in best accuracy. The DARPA Project
at CMU is also aiming to build robotic vehicles that can map
unknown terrains by themselves. 
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VIII. SUMMARY

Autonomous vehicles have a variety of important applications,
including  search  and  rescue,  and  scientific  exploration.  We
have created  an  educational  demo of  a  ground vehicle  that
performs  simultaneous  localization  and  mapping  in  a
simplified environment. Our demo was configurable and user-
friendly, through the use of a modular 2D maze and a webapp
for controlling the vehicle and visualization.

What  we  learnt  throughout  this  entire  semester  first  and
foremost  was  the  importance  of  team  work  and  open
communication.  Our  team  did  an  exemplary  job  in  each
member doing their own parts and holding others accountable
for theirs.

In  terms  of  the  development  of  the  project,  we  learnt  that
learning  new  technology  is  harder  and  takes  longer  than
actually  developing  the  module.  The  importance  of  early
integration  also  came  into  play  starkly  when  our  mid-term
demo was not up to standards and we had to work very hard to
get our project together after that. All in all, this was a team
effort and the credit goes to all members of the team equally.



18-500 Team B4 Design Review Report: May. 8, 2019 10/15

IX. FUTURE WORK

This project’s scope has been limited to eliminate mechanical
and environmental challenges. There are many ways to extend
the functionality to real-world scenarios like:

1. Low light/ dark areas

2. Bumpy/rocky/grassy grounds

3. Curved/ bumpy walls of various heights

4. Sudden cliffs/ steep inclines

Modifying  the  robot  to  be  compatible  with  these  situations
would  make  it  more  useful  for  search  and  rescue,  and
scientific exploration applications.
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Appendix A: Electrical Schematic
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Appendix B: System Block Diagram
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Appendix C: Gantt Chart
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Appendix D: Bill of Materials
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