
18-500 Team B4 Design Review Report: May. 8, 2019 1/15

2D Autonomous Mapping

Amukta Nayak Tiffany Chiang Kanupriyaa
18-500 ECE Design Experience, Team B4

Electrical and Computer Engineering, Carnegie Mellon University
{apnayak, tchiang, knosurna}@andrew.cmu.edu

Abstract—The goal of this project is to create a small
ground vehicle that autonomously and simultaneously
localizes and maps the 2D maze it is placed in. The maze
will have smooth, straight walls and a smooth ground. This
is an educational demonstration of an autonomous vehicle
that may be used for search and rescue or scientific
exploration.

Keywords—Mapping, 2D, Autonomous, Visualization,
Localization, SLAM, Maze

I. INTRODUCTION

Autonomous vehicles are often used to explore difficult to
reach or dangerous places for situations like search and rescue,
and scientific exploration in general. This project aims to
create a low cost, educational demonstration of autonomous
mapping and navigation by building a vehicle that explored a
simulated environment. Mechanical design challenges will be
largely eliminated by reducing a real, textured environment to
a static environment with smooth ground and flat walls. The
ground vehicle will be capable of producing a 2D map of the
maze it is placed in by traversing through it and updating live
changes. It should use simultaneous localization and mapping
(SLAM) to do this efficiently.

II. REQUIREMENTS

The ground vehicle shall:

 be capable of exploring an area with smooth surfaces.

 traverse the area above a minimum decided speed

 have a battery life of at least two hours

 track map coverage

 be able to simultaneously localize itself and map the
area

 travel efficiently without hitting any walls

The user must be able to:

 see the map being updated as the vehicle moves

18-500 Team B4 Design Review Report: May. 8, 2019 2/15

III. ARCHITECTURE

A. Summary

Our architecture consists of both hardware and software
systems, as described in detail in the following section.

Fig. 1. Subsystem Interaction Diagram

B. Electrical and Mechanical System

The mechanical structure of the robot consists of mounts
made for various components laser cut tempered wood,
stacked vertically using standoffs. The base is a two wheeled
differential drive balanced with two ball caster wheels, which
has a simpler motor control interface and mechanical design,
and high maneuverability. Heavier components such as the
motors and battery pack are compacted on bottom layers to
increase stability, while the Raspberry Pi and motor controller
are allocated more space for heat dissipation. We decided to
use a Raspberry Pi 3 on our robot running an ubuntu 16 OS
with ROS. ROS allows easier integration between separate
subsystems, and the wireless capabilities of the Pi 3 allow us
to port code and run tests remotely.

Fig. 2. Robot

C. Software Subsystems

This system is divided into six subsystems: Sensors,
SLAM, Odometry, Path Planning, Motion, and Map
Visualization. Each subsystem (with exception of the web
application) is contained in a ROS package and communicate
via ROS topics.

1. Sensor - This subsystem consists of the lidar, encoder, as
well as I/O and preprocessing software. For the lidar
(RPLidar) we used the manufacturer included SDK and ROS
package to read data points. The RPLidar publishes an array of
data points which correspond to the distance at which an
object was detected at that degree. This data is subscribed to
by the SLAM module which uses the scan data to calculate
pose transformation for SLAM. For the encoder, a custom
ROS node parses the digital signal from Phase A and B hall
sensors in the encoder into vehicle position in terms of “ticks”,
a measurement of the wheel position relative to its starting
position.

2. SLAM Software - The SLAM subsystem is the software
that computes the occupancy grid map of the surrounding
environment by taking in scans from the encoders and
outputting the pose estimation from one scan to another.

3. Odometry - The odometry subsystem receives encoder
ticks and calculates the robot’s transformation frame from its
starting pose to current pose.

4. Path Planning - The path planning subsystem is separate
into the local path planner and global path planner. The local
path planner produces motor velocity commands to move the
robot from current point A to destination B in the maze, where
A and B can be connected in a straight path without obstacles
in between. The global planner analyzes the grid map
generated by the SLAM subsystem and provides the local
planner with destinations to go to. The path planning
subsystem subscribes to the robot pose transformation matrix
and the grid map produced by the SLAM subsystem. Within
the path planning subsystem, the global planner uses this
information to calculate map coordinates of the next
destination, and the local planner uses the coordinates of the
current pose and destination to calculate motor velocities. In
the final version of our system, due to delays with
implementing SLAM, we were unable to complete integration
and testing for the global path planner. Therefore the global
path planner is replaced by a human controlling the robot. The
UI can be used remotely via ssh with X forwarding. The UI
also outputs variable motor speeds, which still demonstrates
the PID velocity function.

5. Motion - This subsystem consists of PID velocity node,
and motor controller. The path planning subsystem sends
velocity commands PID velocity node, which uses encoder
data to calculate the motor commands needed to achieve the
target velocities. This software subsystem interacts with the
Adafruit Raspberry Pi motor hat, which outputs the correct
PWM signal to the motor. The robot’s motion will change the
robot’s perception of the maze, thus changing the sensor inputs
and creating a sensor feedback loop.

6. User Web App - This subsystem is a web application

18-500 Team B4 Design Review Report: May. 8, 2019 3/15

that receives and displays the most recent occupancy grid map
and robot position. After every round of ICP, the grid map will
change slightly. This updated grid map is sent to the web
server via a POST request. The server sends all clients the map
it stores every 5 seconds. The client visualizes the data it
receives. The overall web application will be custom designed
for this application, however we will utilize the React.js
library to create the map visualization. Our software
components will all be deployed on the Pi to achieve
autonomous movement with the exception of the Web App
which the user can use on any computer.

Fig. 3. Web Application Interface

18-500 Team B4 Design Review Report: May. 8, 2019 4/15

IV. DESIGN TRADE STUDIES

A. Performance Metrics

As mentioned in the design requirements, we will be using
the following performance metrics:

Fig. 4. Performance Metrics

The map coverage and localization accuracy metrics are
based on the resolution of the RPLidar. The vehicle speed,
efficiency (time to complete maze), and battery metrics are
based on the following calculation. Assuming our maze is 6ft
x 6ft, with hallways around 1x1ft wide, we can have a max of
36 (x2 for horizontal and vertical direction hallways) ft or 24
(x2 for horizontal and vertical direction hallways) ft of
hallways. Depending on how hallways are connected, the
robot may need to travel through the same hallway a few times
(let’s say 2 times for the whole maze) to explore the whole
map, in which the worse case scenario would be 144 (72x2) ft.
Therefore 20 ft / min will allow us to cover 100 ft in 5 mins,
which should comfortably allow the robot some mistakes.

B. Theoretical Design

We used the resolution of the RPlidar to make the grid
accuracy of the map. Since the resolution can be adjusted we
used 288 by 288 so extra lag doesn't slow down the Pi.

Our total traversal time depended on how large we wanted
the maze to be. Using an average of 20 ft/min we could
traverse all mazes relatively fast.

C. Validation Plan

Fig. 5. Maze components and a sample 3x3 maze

We built a modular maze to test the robot against the

aforementioned performance metrics. The maze was modular,
easily configurable, and had multiple types of junctions in
order to ensure that the robot dynamically localized itself and
mapped the area it was in. The maze had 1 ft wide hallways
and the following modular combinable 1x1x1 ft section types.

Validation will had two phases. In Phase 1, we built a
small maze with 4-6 sections to test basic navigation without
autonomous mapping. In Phase 2, we expanded the maze to a
6x6 grid, which was the size of the final demo grid. We tested
the map coverage on various configurations, and concurrently
tested the map algorithm with software simulations. This is a
diagram of the configurable pieces and a sample 3x3 maze.

The validation timeline will be discussed further in the
Project Management section.

18-500 Team B4 Design Review Report: May. 8, 2019 5/15

V. SYSTEM DESCRIPTION

A. Sensor Subsystem

We will be using the A1M8 RPLidar due to its
affordable cost, and convenient SDK. This module has also
been used by previous capstone teams. It reads 360 points per
rotation at 1 degree resolution, and rotates 5.5 times per
second, resulting in 1980 points per second.

We used the hall sensor quadrature encoders included in
our DC motor kit. The encoder position can be determined by
catching the rising and falling edges of the A and B phases of
the hall sensors, and counting the number of ticks the encoder
has turned. A significant challenge in this module was that the
hall sensor signals must be collected with no interruptions to
avoid missing readings. However, when we added a ROS
wrapper around the encoder reading python script, the ROS
publisher was originally executed serially with the encoder
reader, resulting in incorrect encoder readings. This in turn
breaks the PID velocity controller, since the encoder-detected
velocity is now capped at the ROS publishing rate, which is
much lower than the target velocity. Therefore the PID
velocity controller will continue to increase the motor speed in
an attempt to reach the target velocity. The solution to this
problem was to reimplement the encoder and encoder ROS
wrapper in C++ with multithreading, so that encoder ticks are
not missed while the ROS publisher sleeps in between
publishing new encoder data.

B. Odometry Subsystem

Encoder ticks are converted into metric distance or radians
by measuring the number of ticks per revolution. The encoder
we used has 682.4 ticks per rotation according to the datasheet
(closer to 700 when tested) and the wheel has a 0.065m
diameter, which translates to approximately 3342 ticks per
meter. This value can then be used to convert the ticks
detected into distance (in meters) traveled by the left and right
wheels. Wheel velocity is calculated by measuring travelled
distance over small constant time units (delta time).

Fig. 6. Ticks per meter calculation

Fig. 7. SLAM Subsystem Diagram

C. SLAM Subsystem

For this subsystem we have used the Iterative Closest Point
algorithm. This algorithm takes in two scans and determine
how much the distance the robot has travelled before taking
the second scan. This allows us to determine incremental pose
transformations each time the robot takes an additional scan
and place the scan points on the map accordingly. We also use
the incremental pose transforms to determine where the robot
is with respect to its starting point which we take to be (0,0,0).

ICP (Iterative Closest Point) works by taking first
matching the points in the scans to each other and then
determining what the transform between the two scans would
be with this matching. If the mean error from the matching is
below a certain threshold we take this as the final transform.
Otherwise the ICP runs again using the dot product of the Scan
A and the calculated transform until mean error is below the
threshold or we cross the maximum number of iterations
allowed.

1. Data Matching- This is the process by which each point
in Scan A is mapped to a point in Scan B. Hence every scan
points need to be matched with that scan point that is closest to
it if the two points we projected in space. I have used the
Python SkLearn library to do this computation.

2. Outliers- Determining outliers, or points that do not
occur in both scans helps make the ICP better by giving better
accuracy for the transform. For our system we have not used
any outliers since we only have 360 points so each reduction
would cost us in terms of accuracy.

3. Convergence- Convergence is achieved when the
difference between the previous mean error between the scan
points and the current mean error is less than a certain
threshold. In our case we used 0.001 inch as the threshold
since we are taking scans very close together. We have a
maximum iteration of 50 which is a good amount and gives us
100% convergence each time.

18-500 Team B4 Design Review Report: May. 8, 2019 6/15

4. Data Association Structure- These structures are used to
store the corresponding data points in an optimized way. For
our implementation we used the matrices from the Python
Numpy library to store these.

5. Transformation- This transformation is calculated by
using the matrices of the two scan points. We calculate the dot
product of A.T and B and then use Single Value
Decomposition function results from the Numpy library to
calculate the rotation and value between the two scans.

6. Loop Closure- Since we are using ICP for the entire
SLAM the accuracy is high enough that we do not need loop
closure for determining the map. In this case loop closure will
only be needed for determining which path to explore next.

D. Path Planning Subsystem

1. Local Planner

The local planner calculates the distance and angle
between current pose of the robot, published by SLAM
subsystem, and the destination coordinate, published by the
global planner. Based on the distance and angle, the local
planner will accelerate and decelerate the linear and angular
velocities at a constant acceleration rate, always plateauing at
a set maximum velocity. The distance and angle are
continuously updated as the robot moves, forming a feedback
loop.

Fig. 8. Local Planner Map

Fig. 9. Local Planner Loop

2. Global Planner

Due to implementation delays and time constraints, the
global planner was replaced by a remote control interface to
allow teleoperation of the robot. The remote control interface
was necessary to test SLAM, because if we move the robot
around manually to collect lidar data, our body will interfere
with the data and cause errors in SLAM. The remote control
interface creates a small window showing a coordinate frame,
where the x and y axes correspond to the angular and linear
velocities of the robot respectively. The linear speed is bound
by 0.5 m/sec for both forwards and backwards movement, and
the angular speed is bound by 5.0 rad/sec for both left and
right turns. This interface allows variable speed control similar
to a physical joystick controller, and is intuitive to use.

Fig. 10. Teleop Virtual Joystick Interface

E. Map Visualization Subsystem

The map representation of the maze will be an occupancy
grid map, which is a 2D array where a filled in cell represents
a wall and a blank cell represents a traversable hallway. The
robot will asynchronously broadcast the updated map to a
Node.js web server through POST requests. The web
application’s UI will be built on the React.js library, with the
React D3 graphing library to graph the map representation.
Upon the server receiving new coordinate information, the
graph will be updated and served to clients.

F. Motion Subsystem

1. Motor- We are using a 12V, 350 rpm DC motor kit,
which has an encoder, wheel and motor mount. The max speed
of the wheel is 229 ft / min, which is more than enough for our
requirement.

2. Motor Controller- We used the Adafruit Raspberry Pi
Motor Hat, which can power up to 12V motors and 1 A of
current, which is enough for the stall current for the motor.
This motor controller also includes a python library that we
used to control the motor duty cycle.

18-500 Team B4 Design Review Report: May. 8, 2019 7/15

VI. PROJECT MANAGEMENT

A. Schedule

Fig. 11. Project Timeline

Refer to Appendix C for Gantt Chart

B. Member Responsibilities

Amukta was responsible for web application design and
implementation for map visualization, Raspberry Pi/ ROS/VM
setup, lidar data input and preprocessing, ICP setup and
implementation.

Kanupriyaa was responsible for SLAM research, finalizing
calculations and algorithm for our implementation of SLAM,
ICP setup and implementation, mapping and sending the map
representation to web UI.

Tiffany was responsible for researching and ordering
components, ROS integration, electrical system design,
mechanical system design, encoder interface, odometry,
motion, and path planning (both local and global) software
subsystems.

Everyone as a team worked on software architecture
design, writing reports, building the maze, and doing Phase 1
and 2 testing.

C. Budget

The three most expensive components of the robot were the
RPLidar, the Raspberry Pi, and the two motors. We assumed
that low-cost scavengable parts like wires and acrylic pieces
for the chassis were nearly free and therefore did need to be
added to the budget. The RPLidar was sufficient and none of
the foreseeable risks occurred (see Risk Management), which
brought the total cost of the robot to about $250 dollars.

If all the foreseeable risks had occurred, we would have
needed to buy an additional RPLidar and an ultrasonic sensor,
resulting in a total cost of about $370 dollars. Either way, we
were well under the $600 limit. Refer to the Bill of Materials
in the Appendix for more details. Refer to Appendix D for our
full budget.

D. Risk Management

We have outlined our major risks and anticipated their costs in
the budget.

Fig. 12. Risk Assessment

18-500 Team B4 Design Review Report: May. 8, 2019 8/15

VII. RELATED WORK

Paper [1] talks about a new approach to ICP based SLAM
which uses both pose graph optimization and ICP to build a
map with better accuracy.

1. Construction- The first stage consists of building a graph
where the poses of the robot are modeled by the nodes in the
graph. Each pose in the graph contains the scan taken at that
point as well as the x,y and z component from the starting
point which is considered ground zero. The edge between two
nodes represents the spatial constraint relating the two robot
poses. This means that it is modeled by a posterior distribution
over the relative transformation between the two poses. These
transformations are either odometry measurements between
sequential robot positions or are determined by aligning the
observations acquired at the two robot locations (Iterative
Closest Point).

Fig. 13. SLAM Graph Construction through ICP

2. Graph Optimization- Once the graph is constructed the
researchers use the configuration of the robot poses that best
satisfies the constraints. Thus, in this paper using graph-based
SLAM the problem is decoupled in two tasks: constructing the
graph from the raw measurements (graph construction),
determining the most likely configuration of the poses given
the edges of the graph (graph optimization) using Probability
Distribution:

P(X2 |X1 , U, M, Z) = P(Z | X2 , M) P(X2 | X1, U)

Fig. 14. Prior Distribution of Probability and Probability Equation

Other work is being on using different combination of ICP
modules such as data matching and covariance functions to
determine what results in best accuracy. The DARPA Project
at CMU is also aiming to build robotic vehicles that can map
unknown terrains by themselves.

18-500 Team B4 Design Review Report: May. 8, 2019 9/15

VIII. SUMMARY

Autonomous vehicles have a variety of important applications,
including search and rescue, and scientific exploration. We
have created an educational demo of a ground vehicle that
performs simultaneous localization and mapping in a
simplified environment. Our demo was configurable and user-
friendly, through the use of a modular 2D maze and a webapp
for controlling the vehicle and visualization.

What we learnt throughout this entire semester first and
foremost was the importance of team work and open
communication. Our team did an exemplary job in each
member doing their own parts and holding others accountable
for theirs.

In terms of the development of the project, we learnt that
learning new technology is harder and takes longer than
actually developing the module. The importance of early
integration also came into play starkly when our mid-term
demo was not up to standards and we had to work very hard to
get our project together after that. All in all, this was a team
effort and the credit goes to all members of the team equally.

18-500 Team B4 Design Review Report: May. 8, 2019 10/15

IX. FUTURE WORK

This project’s scope has been limited to eliminate mechanical
and environmental challenges. There are many ways to extend
the functionality to real-world scenarios like:

1. Low light/ dark areas

2. Bumpy/rocky/grassy grounds

3. Curved/ bumpy walls of various heights

4. Sudden cliffs/ steep inclines

Modifying the robot to be compatible with these situations
would make it more useful for search and rescue, and
scientific exploration applications.

18-500 Team B4 Design Review Report: May. 8, 2019 11/15

REFERENCES

[1] Ellon Mendes, Pierrick Koch, Simon Lacroix. ICP-based pose-graph
SLAM. International Symposium on Safety, Security and Rescue
Robotics (SSRR), Oct 2016, Lausanne, Switzerland. International
Symposium on Safety, Security and Rescue Robotics, pp.195 - 200,
2016, <10.1109/SSRR.2016.7784298>. <hal-01522248>

[2] Borrmann, Dorit, et al. “Globally Consistent 3D Mapping with Scan
Matching.” Robotics and Autonomous Systems, vol. 56, no. 2, 2008, pp.
130–142., doi:10.1016/j.robot.2007.07.002.

[3] Censi, Andrea. “An Accurate Closed-Form Estimate of ICPs
Covariance.” Proceedings 2007 IEEE International Conference on
Robotics and Automation, 2007, doi:10.1109/robot.2007.363961.

[4] Grisetti, G, et al. “A Tutorial on Graph-Based SLAM.” IEEE Intelligent
Transportation Systems Magazine, vol. 2, no. 4, 2010, pp. 31–43.,
doi:10.1109/mits.2010.939925.

[5] Kohlbrecher, Stefan, et al. “Hector Open Source Modules for
Autonomous Mapping and Navigation with Rescue Robots.” Applied
Cryptography and Network Security Lecture Notes in Computer
Science, 2014, pp. 624–631., doi:10.1007/978-3-662-44468-9_58.

[6] Lu, Feng, and Milios. “Robot Pose Estimation in Unknown
Environments by Matching 2D Range Scans.” Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition CVPR-94,
1994, doi:10.1109/cvpr.1994.323928.

[7] López, Elena, et al. “A Multi-Sensorial Simultaneous Localization and
Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-
Denied Environments.” Sensors, vol. 17, no. 4, 2017, p. 802.,
doi:10.3390/s17040802.

[8] Olson, E.b. “Real-Time Correlative Scan Matching.” 2009 IEEE
International Conference on Robotics and Automation, 2009,
doi:10.1109/robot.2009.5152375.

[9] Pomerleau, François, et al. “Relative Motion Threshold for Rejection in
ICP Registration.” Springer Tracts in Advanced Robotics Field and
Service Robotics, 2010, pp. 229–238., doi:10.1007/978-3-642-13408-
1_21.

[10] Pomerleau, François, et al. “Comparing ICP Variants on Real-World
Data Sets.” Autonomous Robots, vol. 34, no. 3, 2013, pp. 133–148.,
doi:10.1007/s10514-013-9327-2.

[11] Thrun, S., et al. “A Real-Time Algorithm for Mobile Robot Mapping
with Applications to Multi-Robot and 3D Mapping.” Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),
doi:10.1109/robot.2000.844077.

[12] Choset, Howie., et al. “Robotic Motion Planning: Sample-Based Motion
Planning” Robotic Motion Planning, Ch. 7

18-500 Team B4 Design Review Report: May. 8, 2019 12/15

Appendix A: Electrical Schematic

18-500 Team B4 Design Review Report: May. 8, 2019 13/15

Appendix B: System Block Diagram

18-500 Team B4 Design Review Report: May. 8, 2019 14/15

Appendix C: Gantt Chart

18-500 Team B4 Design Review Report: May. 8, 2019 15/15

Appendix D: Bill of Materials

	I. Introduction
	II. Requirements
	III. Architecture
	A. Summary
	B. Electrical and Mechanical System
	C. Software Subsystems

	IV. Design Trade Studies
	A. Performance Metrics
	B. Theoretical Design
	C. Validation Plan

	V. System Description
	A. Sensor Subsystem
	B. Odometry Subsystem
	C. SLAM Subsystem
	D. Path Planning Subsystem
	E. Map Visualization Subsystem
	F. Motion Subsystem

	VI. Project Management
	A. Schedule
	B. Member Responsibilities
	C. Budget
	D. Risk Management

	VII. Related Work
	VIII. Summary
	IX. Future Work
	References

