
2D Autonomous
Mapping

Amukta, Tiffany, Kanupriyaa

Problem Statement
Autonomous vehicles are often used to explore difficult to reach places (i.e.
Search and Rescue, Scientific Exploration). This project aims to create a low
cost, educational demonstration of autonomous mapping and navigation
by building a vehicle that explores a simulated environment.

Scope:

● Eliminate mechanical design challenges by reducing a real, textured
environment to a static environment with smooth ground and flat
walls

● We will build a ground vehicle capable of producing a 2D map of the
maze, traversing through it, and updating live changes to the maze

Requirements
1. Small wheeled vehicle capable of

exploring entire maze in < 5 mins
a. Maze must fit within 4ft x 4ft

space (for demo)
b. Must operate on battery for at

least 2 hours
c. Explores at rate of 20 ft / minute.

i. Since maze design is variable,
vehicle performance will be
measured by distance/ time

d. Vehicle must not hit walls
e. Path must be optimized (vehicle

traveling parallel to walls,
minimize zigzagging)

2. Visualization of maze in 2D and
location of vehicle relative to maze

a. Visualization must update
location of walls/obstacles as
vehicle explores

b. Vehicle (and visualization) must
keep track of map coverage

c. Vehicle must recognize areas it
has explored already

d. Localization error < 20% of
vehicle dimension (width) or
maze path width, or 1 inch

Challenges
● Developing a SLAM algorithm such that robot:

○ does not endlessly wander around (stuck in loops)
○ Is able to cover entire maze quickly
○ does not run out of battery in the middle of mapping

● Budget
○ Lidar and camera modules may potentially cost at least $100+ each

● ECE Areas:
○ Software
○ Signals

Solution: SLAM
We will build a software for our ground vehicle that simultaneously builds a map of the
area and determines the robot’s (own) position within the map using the SLAM
(Simultaneous Localization and Mapping) method. The mix and match of these
components determines what the final algorithm would be.

SLAM method components

Mapping Topological maps/ Grid maps

Sensing Laser scan (LIDAR)/ Visual feature based(Visual cameras)/ Tactile
sensors.

Solution: SLAM
Sensor modes Landmark based/ Raw data approach(Point clouds and images)

Kinetics This is calculated using previous commands given to the vehicle,
Odometry data

Multiple Objects Multiple object recognition is done through technology like JPDAF or
PHD.

Loop closure Second algorithm to reset location priors/ Same algorithm using
kinetic data collected

Solution: Software
● We will be developing a web app using JS and Bootstrap for frontend UI

and Django for the backend server. The computation for the backend is in
python because most sensors and the raspberry pi come preloaded with
python.

● According to our research (ongoing) we will be using python libraries such
as numpy, scipy, matplotlib, cvxpy and pandas to process data.

● The Python Imaging Library will be used to generate the final png for the
map.

Solution: Hardware
Sensor Type Approx.

Cost
Data

Single Point
Lidar

$50 - $150 2D point cloud

Ranged Lidar $450+ 3D point cloud

Camera $25 - $50 2D images

Depth Camera
(Intel Realsense)

$200 2D images, depth information (0-8)

Solution: Hardware

● Processor: Raspberry Pi

● Lidar: Single point lidar is
sufficient for 2D mapping

● Encoder: used as a benchmark
to compare against feature
based localization

Verification & Validation
Approach: build configurable maze to test various paths

1. Time trials of vehicle exploring maze, must complete within 5 min
○ Measure vehicle speed in straight line test, >20ft/min
○ Measure duration of one lidar/camera 360 degree scan and max distance vehicle can

travel for next scan to collect overlapping image, verify vehicle can map at >20 ft/min
○ Maze must contain loops, hallways of varying width, and every type of 90 deg intersection
○ Vehicle must identify when it travels in a loop and recognize starting point
○ vehicle must keep track of map coverage, verified with coverage matrix, and return to

intersections if it hasn't explored other paths. It must be able to minimize overlapping
travel distance.

2. Visualization shows environment and location of vehicle in environment,
and measured error for wall or vehicle placement must be < threshold

Work Breakdown Structure
Lidar Camera Path planning Visualization Vehicle

Configurations to
receive lidar points

Configurations to
receive camera
input

execute wall
following and turns
without collisions

Build web app and
set up protocol to
receive map info
packets

Purchase or build
suitable 2 wheeled
chassis

Implement SLAM
pipeline

Implement feature
recognition

Minimize repeated
routes when
traveling to
unexplored paths

Build visualization
UI (with libraries)

Encoder and motor
control IO with RPi

Implement loop
closure

Testing Implement map
coverage matrix

Add vehicle live
location, map
coverage features

Implement
benchmark
localization with
encoder data

Testing Testing Testing Testing

Red = Amukta
Blue = Kanu
Yellow = Tiff

Gantt Chart

