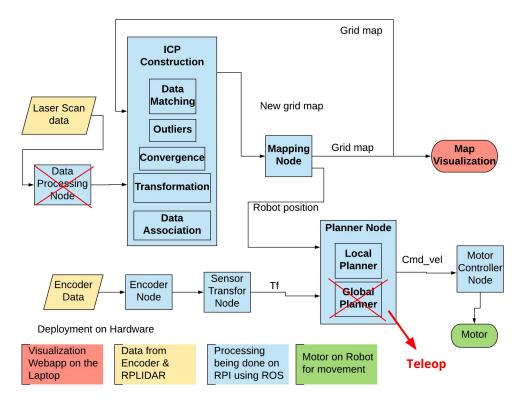


Design Concept

- **Need** Autonomous vehicles are often used to explore difficult to reach places (i.e. Search and Rescue, Scientific Exploration).
- **Solution** This project aims to create a low cost, educational demonstration of **autonomous mapping and navigation** by building a vehicle that explores a simulated environment.
- Scope Eliminate mechanical design challenges by reducing a real, textured environment to a static environment with smooth ground and flat walls. We will build a ground vehicle capable of producing a 2D map of the maze, traversing through it, and updating live changes to the maze
- **ECE Areas**: Software and Signals

System Specifications

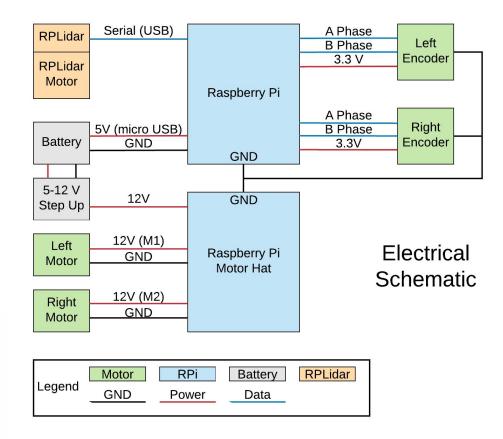

- 1. Small wheeled vehicle capable of exploring an area with smooth surface.
- 2. Vehicle needs to traverse area above a minimum decided speed.
- 3. Must have a battery life of at least 2 hours.
- 4. Vehicle should keep track of map coverage (previously decided).
- 5. Software should be able to simultaneously do localization and mapping of the area.
- 6. Vehicle should travel efficiently without hitting any walls.
- 7. User must be able to start the vehicle from a webapp on a laptop.
- 8. User must be able to see the map being updated as vehicle moves.

SLAM Solution:

SLAM (Simultaneous Localization and Mapping) built from ground up with these components:

- Mapping: Occupancy Grid Maps; Use graph-based search to mark explored nodes
- **Sensing**: Single Point Lidar (RPLidar A1 ~\$150)
- Sensor mode: Raw data aka 2D point cloud
- Kinetics: Previous commands given + odometry data
- Loop closure: Using kinetics data

System Architecture Diagram

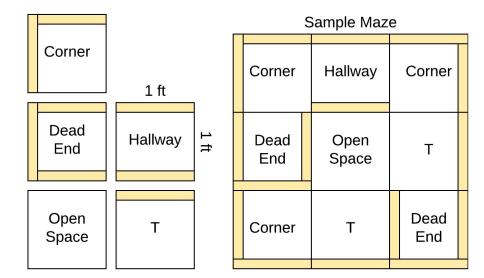


Electrical Schematic

- Lidar: RPLidar A1M8 (acquired)
 - 4 bytes per point (1 degree)
 - o 1980 points / sec
 - Serial port baud rate 115200
- Motor: 12V, 350 rpm DC motor + encoder
 229 ft / m
- Battery: Portable phone charger, 5V USB

Validation Plan

Maze Design:


- 1 ft wide hallways
- Modular 1x1x1 ft sections, combined to form different maze configurations

Phase 1 Testing:

• Build small maze with 4-6 sections to test basic navigation (without autonomous mapping function)

Phase 2 Testing:

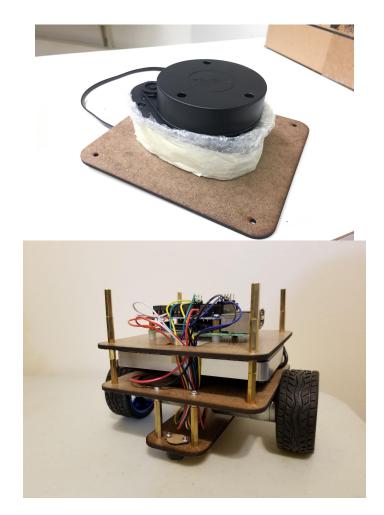
- Expand maze to 6x6 grid demo size
- Test map coverage on various configurations

Performance Metrics

Metric	Measurement Indicator	Target			
Vehicle Speed	Encoder, # map segments explored	> 20ft/min			
Map coverage	Grid map completeness (pixels)	> 95% of map explored			
Efficiency	# dead ends, # unnecessary paths revisited	< 0, 2 maze segments			
Efficiency	Time to complete maze mapping	< 5 mins			
Localization accuracy	Estimated to actual position distance	< 1 in			
Battery Life	Time passed with robot operating continuously	2 hours			

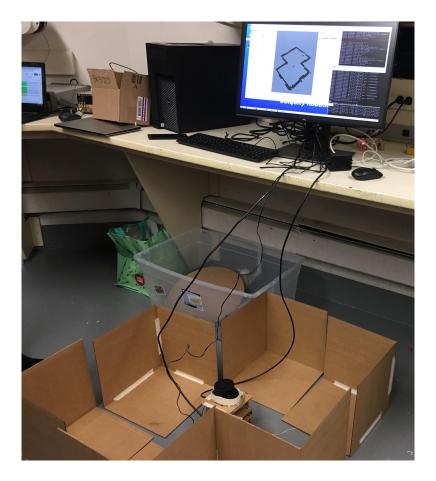
Performance

Metric	Results	Target			
Vehicle Speed	Max physical speed 234.5 ft/m Mapping speed 5.5"/sec -> 27.5 ft/min	> 20ft/min			
Map coverage	NA	> 95% of map explored			
Efficiency	NA	< 0, 2 maze segments			
Efficiency	< 5 mins	< 5 mins			
Localization accuracy	Accuracy under 1 inch, based on map resolution. Resolution can be higher but causes unnecessary use of memory.	< 1 in			
Battery Life	> 4 hours motors + rviz running	2 hours			


Project Management

Architecture and Dev Tools	Build Maze	Integ	Integration		Testing	Phase 2 Testing
ROS and RPLidar	Implement I	Visualization		Op	Optimization	
Research SLAM	Implement IC	Mapping			Optimization	
Purchase Parts Encoders	Odometry	Planner	Assemble Rob		mble Robot Optimiz	

-									
		= 1 v	Proposal	Design Doc	Spring Break	MVP Demo	Demo	Final Presentaion	Public Demo
	All	Amukta	Kanupriyaa	Tiffany					


Final Solution

- 6x6 ft configurable maze
 - 11 3-sided "corner" segments
 - 25 2-sided "T" segments
- Modular, compact design
- Completely wireless
- Live map visualization
 - Rviz
 - Custom web application
- Wireless teleoperated vehicle control

Lessons Learned

- Order parts ASAP
- Start integrating sooner
- PID motor control and calibrating odometry is hard

