
18-500 Team B4 Design Review Report: Mar. 4, 2019 1/11

2D Autonomous Mapping

Amukta Nayak Tiffany Chiang Kanupriyaa
18-500 ECE Design Experience, Team B4

Electrical and Computer Engineering, Carnegie Mellon University
{apnayak, tchiang, knosurna}@andrew.cmu.edu

Abstract—The goal of this project is to create a small
ground vehicle that autonomously and simultaneously
localizes and maps the 2D maze it is placed in. The maze
will have smooth, straight walls and a smooth ground. This
is an educational demonstration of an autonomous vehicle
that may be used for search and rescue or scientific
exploration.

Keywords—Mapping, 2D, Autonomous, Visualization,
Localization, SLAM, Maze,

I. INTRODUCTION

Autonomous vehicles are often used to explore difficult to
reach or dangerous places for situations like search and rescue,
and scientific exploration in general. This project aims to
create a low cost, educational demonstration of autonomous
mapping and navigation by building a vehicle that explored a
simulated environment. Mechanical design challenges will be
largely eliminated by reducing a real, textured environment to
a static environment with smooth ground and flat walls. The
ground vehicle will be capable of producing a 2D map of the
maze it is placed in by traversing through it and updating live
changes. It should use simultaneous localization and mapping
(SLAM) to do this efficiently, and a user should be able to
start and stop the vehicle through a web app.

II. REQUIREMENTS

The ground vehicle shall:

 be capable of exploring an area with smooth surfaces.

 traverse the area above a minimum decided speed

 have a battery life of at least two hours

 track map coverage

 be able to simultaneously localize itself and map the
area

 travel efficiently without hitting any walls

The user must be able to:

 see the map being updated as the vehicle moves

 start and stop the vehicle through a web appplication

18-500 Team B4 Design Review Report: Mar. 4, 2019 2/11

III. ARCHITECTURE

A. Summary

This system is divided into five subsystems: sensor,
SLAM, path planning, motion, and map visualization. The
sensor subsystem consists of the lidar, encoder, any other
sensors we may add later to boost performance, as well as I/O
and preprocessing software. This subsystem will consist
entirely of off the shelf components. For the lidar (RPLidar)
we will use the included SDK and ROS package to read data
points. For the encoder we are writing a custom ROS node to
parse the encoder digital signal. The SLAM subsystem will
receive sensor data, and compute the estimated occupancy grid
map and robot position on the map. This subsystem will
handle ICP frame transformations, pose estimation, mapping,
and graph optimization. The path planning subsystem will read
the resulting map and position from the SLAM subsystem, and
direct the robot on a path to build a complete map of the maze
autonomously. This subsystem includes creating a waypoint
based graph representation of the maze, building a search path
to explore the maze, and computing the motor velocity
commands necessary to traverse the maze. The SLAM and
path planning subsystems will both be implemented entirely
by our team, with the exception of message
transmitting/receiving libraries for the ROS framework. The
motion subsystem consists of the motor driver software, motor
controller and motor. The motor velocity commands are
communicated from the path planning subsystem to the motor
driver, which is responsible for creating the PWM signal
needed to run the motor at the desired velocity. This subsystem
uses off the shelf motors, motor controller, and the included
motor driver library with a custom wrapper. The robot’s
motion will change the robot’s perception of the maze, thus
changing the sensor inputs and restarting this cycle. Lastly, the
map visualization subsystem is a web application that also
receives and displays the most recent occupancy grid map and
robot position. The overall web application will be custom
designed for this application, however we will utilize the
React.js library to create the map visualization.

Fig. 1. Subsystem Interaction Diagram

B. SLAM Subsystem

Many robotics problems have already solved the problem
of localization when the environment around the robot or
ground vehicle is known. Similarly, the problem of mapping

when the position of robot is known in the environment has
also been solved. The issue we are trying to address in this
project in Simultaneous Localization and Mapping in the
robotics space where neither the position of the robot nor the
map of the environment is previously known.

In our approach we have decided to use an ICP based pose-
graph SLAM algorithm which is described below. In our
approach we solve the problem in two stages. The first stage
includes building the pose graph using the ICP algorithm to
find subsequent poses (Graph Construction). The second stage
consists of using pose graph optimization to find the best pose
data that best satisfies the constraints between the nodes in the
graph (Graph Optimization). Finally, we discuss the ICP
algorithm used to determine the poses used in the graph.

Fig. 2. Overall Software Architecture Diagram

The first stage consists of building a graph where the poses
of the robot are modeled by the nodes in the graph. Each pose
in the graph contains the scan taken at that point as well as the
x,y and z component from the starting point which is
considered ground zero. The edge between two nodes
represents the spatial constraint relating the two robot poses.
This means that it is modeled by a posterior distribution over
the relative transformation between the two poses. These
transformations are either odometry measurements between
sequential robot positions or are determined by aligning the
observations acquired at the two robot locations (ICP).

18-500 Team B4 Design Review Report: Mar. 4, 2019 3/11

Fig. 3. SLAM Graph

To explain this is detail we will go through the steps required
to construct two nodes and an edge in the graph. Let us
imagine the first node we are looking at is X1. To get the
second node X2 we use the two scans taken at both of these
nodes and put them through an ICP algorithm (described
below). This algorithm returns what it believes is the position
(x2,y2,z2) of pose X2 by matching both of these scans.
Now we can model the edge between the two poses as a
posterior distribution and add the second pose to the map.

Since we are using the ICP algorithm we can find the pose of
loop closures using the same ICP algorithm we use to build the
entire map.
The ICP algorithm works by comparing two scans taken a
small distance apart where a significant amount of the scan are
of the same area and hence overlap.
Data Matching is being done using point-to-plane algorithm.
In this algorithm a Matcher module links the points in the
reference scan to the points in the reading scan. When this
metric is used, we minimize the sum off the squared distance
between each reading point and the tangent plane at its
corresponding reference point. The reading point projects
along the normal and the intersection at the reference scan is
taken as the corresponding point match. This structure is
slightly better for smooth structures and worse for noisy
structures.
Outliers remove some of the links between points in the
reading and their matched points in the reference. This is done
so irregularities can be decreased while we are running the
convergence iteration later. We are removing all matches that
are further away than the mean distance between points plus
0.01 inches.
Data Association is for storing the matching points in a data
structure. We will be using a kd-tree to store these values for
optimization and faster runtime.
Convergence Test is used for iteration over all point pair
matches. If the function converges under certain conditions
such as 150 maximum iterations and error falls below 1 cm
and 0.01 radian the test has succeeded, and we are returned the

transformation. We will be using the point-to-plane error
function.
Transformation module takes the transformation given by the
ICP algorithm and applies it to the previous pose to give the
current pose that we were searching.

Once the graph is constructed we seek to find the
configuration of the robot poses that best satisfies the
constraints. Thus, in graph-based SLAM the problem is
decoupled in two tasks: constructing the graph from the raw
measurements (graph construction), determining the most
likely configuration of the poses given the edges of the graph
(graph optimization).

Now to get the posterior distribution, we find the probability
of getting X2 given the odometry data, the previous pose, the
map up till now and the scan at pose 2.

Fig. 4. SLAM Graph

Thus the probability is a function of the motion model P(X2 |
X1, U) and the perceptual (observation) model P(Z | X2 , M).
Throughout this paper, we will assume the probabilistic
motion model to be as shown in the figure below. As can be
seen, the shape of this conditional density resembles that of a
banana. This distribution is obtained by the kinematic
equations assuming that the robot is noisy along its rotational
and translational axis.

Fig. 5. SLAM Graph

Now we have to compute the Gaussian approximation of
the posterior over the robot trajectory. This would include
computing the mean of the Gaussian as configuration of nodes

18-500 Team B4 Design Review Report: Mar. 4, 2019 4/11

that maximizes the likelihood of the observations. We can find
this by characterizing the problem as a constraint optimization
problem. The algorithm for the optimization is taken from
another paper.

Fig. 6. SLAM Algorithnm

C. Path Planning Subsystem

After the SLAM subsystem calculates an estimated
occupancy grid map and robot pose, the path planning
subsystem is responsible for using this information to instruct
the robot how to traverse through the maze without hitting
obstacles, and how to autonomously build a complete map.
The path planning subsystem consists of three parts: the local
planner, global planner, and graph builder.

Given the robot’s current pose, and the global goal pose,
the local planner will compute the motor velocity trajectory
needed for the robot to travel to the goal pose. First, a value
function of the surrounding space is generated. This is
represented as a grid map containing the Manhattan distances
from each pixel to the global path leading to the goal position.
If the global goal position is not in the surrounding space, the
closest pixel to the goal will be treated as the local goal. Then,
potential trajectories (motor velocities) are simulated, and a
weighted score is computed using factors such as whether or
not the trajectory hits an obstacle, duration, distance of the
resulting position to the local goal, and standard deviation of
normal distance from the simulated path to the desired global
path. The trajectory with the lowest score (fastest, closes to the
desired global path, doesn’t hit any obstacles) will be sent to
the motion subsystem as motor velocity commands. We will
be taking the base_local_planner ROS package and
customizing the cost function to exclude pixels the robot
cannot traverse to, and to use the dynamic window approach
(DWA) instead of the default trajectory rollout algorithm.

The trajectory rollout algorithm samples trajectories from a
much larger sample space the the the DWA algorithm, because
it simulates velocity samples for each simulation step from the
current time until the robot reaches the goal position, whereas
the DWA algorithm tests outcomes of the velocity samples for
the next immediate simulation step. The trajectory rollout
algorithm may produce trajectories that are closer to the
desired global path, but DWA is a much more efficient
algorithm (fewer steps to simulate). Since our application has
a simplified environment, with all waypoints on the global
path only 1 maze segment and in direct view of the previous
waypoint, the DWA will be sufficient.

The global planner is responsible for searching for
unexplored frontiers through the graph representation of the
maze generated by the graph builder. This will be
implemented with the depth first search algorithm. Due to the
design of the maze, all linked nodes are guaranteed to have a
straight line path connecting the two in the physical maze, so
the global path will simply be set to the straight line path
between each node.

The graph builder will receive the most updated grid map,
and build a graph representation of the maze. First, it will
generate waypoints at intervals of 1ft (or the dimension of
each maze segment) to create a 36 node graph for a 6x6 maze,
or a 16 node graph for a 4x4 maze. The grid map coordinates
of each waypoint will be stored as well. Then, for each node it
will search in the direction its 8 neighboring pixels in the grid,
and continue scanning away from the starting waypoint until it
either reaches a wall, a neighboring node, or unexplored pixels
of the grid map. If an explored neighboring node is found on
the path, the two known nodes will be linked and the link will
be marked as explored. If an unexplored pixel is found, the
unexplored node closest to the unexplored pixel, will be linked
with the starting node, and the link will be placed on a queue
to be explored. This unknown link can be referred to as a
frontier for autonomous mapping. After all the paths have been
explored, we will have a graph representation of the known
portion of the map.

D. Map Visualization Subsystem

The map representation of the maze will be an occupancy
grid map, which is a 2D array where a filled in cell represents
a wall and a blank cell represents a traversable hallway. The
robot will asynchronously broadcast newly discovered wall
coordinates to a Node.js web server through POST requests.
Every 50 packets, the entire map’s data will be broadcasted, to
make up for dropped/lost packets or drift. The web
application’s UI will be built on the React.js library, with the
React D3 graphing library to graph the map representation.
Upon the server receiving new coordinate information, the
graph will be updated and served to clients. There will be a
button on the web app to start (when the robot isn’t mapping
and traversing) or stop (when it is currently mapping and
traversing). This will send a request to the robot’s Raspberry
Pi, so that the user can start/stop the robot easily.

E. Motion Subsystem

We are using a 12V, 350 rpm DC motor kit, which has an
encoder, wheel and motor mount. The max speed of the wheel
is 229 ft / min, which is more than enough for our
requirement. We will be using the Adafruit Raspberry Pi
Motor Hat, which can power up to 12V motors and 1 A of

18-500 Team B4 Design Review Report: Mar. 4, 2019 5/11

current, which is enough for the stall current for the motor.
This motor controller also includes a python library that we
will use to control the motor duty cycle.

F. Sensor Subsystem

We will be using the A1M8 RPLidar due to its affordable
cost, and convenient SDK. This module has also been used by
previous capstone teams. It reads 360 points per rotation at 1
degree resolution, and rotates 5.5 times per second, resulting
in 1980 points per second.

18-500 Team B4 Design Review Report: Mar. 4, 2019 6/11

IV. TESTING

A. Performance Metrics

As mentioned in the design requirements, we will be using
the following performance metrics:

Fig. 7. Performance Mentrics

The map coverage and localization accuracy metrics are
based on the resolution of the RPLidar. The vehicle speed,
efficiency (time to complete maze), and battery metrics are
based on the following calculation. Assuming our maze is 6ft
x 6ft, with hallways around 1x1ft wide, we can have a max of
36 (x2 for horizontal and vertical direction hallways) ft or 24
(x2 for horizontal and vertical direction hallways) ft of
hallways. Depending on how hallways are connected, the
robot may need to travel through the same hallway a few times
(let’s say 2 times for the whole maze) to explore the whole
map, in which the worse case scenario would be 144 (72x2) ft.
Therefore 20 ft / min will allow us to cover 100 ft in 5 mins,
which should comfortably allow the robot some mistakes.

B. Validation Plan

We will be building a modular maze to test the robot
against the aforementioned performance metrics. The maze
will be modular, easily configurable, and multiple types of
junctions in order to ensure that the robot dynamically
localizes itself and maps the area it is in. The maze will have 1
ft wide hallways and the following modular combinable 1x1x1
ft section types.

Validation will have two phases. In Phase 1, we will build
a small maze with 4-6 sections to test basic navigation without
autonomous mapping. In Phase 2, we will expand the maze to
a 6x6 grid, which will be the size of the final demo grid. We
will be testing the map coverage on various configurations,
and concurrently test the map algorithm with software
simulations.

Fig. 8. Maze components and a sample 3x3 maze

The validation timeline will be discussed further in the
Project Management section.

18-500 Team B4 Design Review Report: Mar. 4, 2019 7/11

V. PROJECT MANAGEMENT

A. Schedule and Risk Management

Fig. 9. Simplified Gantt Chart

Fig. 10. Risk Management Chart

B. Member Responsibilities

Amukta will be focusing on webapp functionality/
visualization, Raspberry Pi/ ROS/ VM setup, lidar data input/
processing, ICP setup and implementation of the first half of
ICP.

Kanupriyaa will focus on SLAM calculations/ overall
algorithm, ICP setup, implementation of the second half of
ICP, mapping, graph optimization and sending the map
representation to web UI.

Tiffany will be researching and ordering parts, finalizing
the ROS navigation stack, drawing electrical schematics,
hardware/chassis design, encoder and motor controllers, and
planning (both local and global).

Everyone will be working on software architecture design,
writing reports, building the maze, and doing Phase 1 and 2
testing.

C. Budget

The three most expensive components of the robot are the
RPLidar, the Raspberry Pi, and the two motors. We assumed
that low-cost scavengable parts like wires and acrylic pieces
for the chassis were nearly free and therefore did need to be
added to the budget. Assuming the RPLidar is sufficient and

none of the foreseeable risks occur (see Risk Management),
the total cost of the robot is about $250 dollars. If all the
foreseeable risks occur, we would need to buy an additional
RPLidar and an ultrasonic sensor, resulting in a total cost of
about $370 dollars. Either way, we are well under the $600
limit. Refer to the Bill of Materials (Appendix 1).

18-500 Team B4 Design Review Report: Mar. 4, 2019 8/11

VI. SUMMARY

Autonomous vehicles have a variety of important
applications, including search and rescue, and scientific
exploration. We aim to create an educational demo of a ground
vehicle that performs simultaneous localization and mapping
in a simplified environment. We intend to create a demo that is
configurable and user-friendly, through the use of a modular
2D maze and a web application for controlling the vehicle and
visualization.

A. Future Work

This project’s scope has been limited to eliminate
mechanical and environmental challenges. There are many
ways to extend the functionality to real-world scenarios like:
low light/ dark areas, bumpy/rocky/grassy grounds, curved/
bumpy walls of various heights, sudden cliffs/ steep inclines.

Modifying the robot to be compatible with these situations
would make it more useful for search and rescue, and
scientific exploration applications.

18-500 Team B4 Design Review Report: Mar. 4, 2019 9/11

REFERENCES

[1] Ellon Mendes, Pierrick Koch, Simon Lacroix. ICP-based pose-graph
SLAM. International Symposium on Safety, Security and Rescue
Robotics (SSRR), Oct 2016, Lausanne, Switzerland. International
Symposium on Safety, Security and Rescue Robotics, pp.195 - 200,
2016, <10.1109/SSRR.2016.7784298>. <hal-01522248>

[2] Borrmann, Dorit, et al. “Globally Consistent 3D Mapping with Scan
Matching.” Robotics and Autonomous Systems, vol. 56, no. 2, 2008, pp.
130–142., doi:10.1016/j.robot.2007.07.002.

[3] Censi, Andrea. “An Accurate Closed-Form Estimate of ICPs
Covariance.” Proceedings 2007 IEEE International Conference on
Robotics and Automation, 2007, doi:10.1109/robot.2007.363961.

[4] Grisetti, G, et al. “A Tutorial on Graph-Based SLAM.” IEEE Intelligent
Transportation Systems Magazine, vol. 2, no. 4, 2010, pp. 31–43.,
doi:10.1109/mits.2010.939925.

[5] Kohlbrecher, Stefan, et al. “Hector Open Source Modules for
Autonomous Mapping and Navigation with Rescue Robots.” Applied
Cryptography and Network Security Lecture Notes in Computer
Science, 2014, pp. 624–631., doi:10.1007/978-3-662-44468-9_58.

[6] Lu, Feng, and Milios. “Robot Pose Estimation in Unknown
Environments by Matching 2D Range Scans.” Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition CVPR-94,
1994, doi:10.1109/cvpr.1994.323928.

[7] López, Elena, et al. “A Multi-Sensorial Simultaneous Localization and
Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-
Denied Environments.” Sensors, vol. 17, no. 4, 2017, p. 802.,
doi:10.3390/s17040802.

[8] Olson, E.b. “Real-Time Correlative Scan Matching.” 2009 IEEE
International Conference on Robotics and Automation, 2009,
doi:10.1109/robot.2009.5152375.

[9] Pomerleau, François, et al. “Relative Motion Threshold for Rejection in
ICP Registration.” Springer Tracts in Advanced Robotics Field and
Service Robotics, 2010, pp. 229–238., doi:10.1007/978-3-642-13408-
1_21.

[10] Pomerleau, François, et al. “Comparing ICP Variants on Real-World
Data Sets.” Autonomous Robots, vol. 34, no. 3, 2013, pp. 133–148.,
doi:10.1007/s10514-013-9327-2.

[11] Thrun, S., et al. “A Real-Time Algorithm for Mobile Robot Mapping
with Applications to Multi-Robot and 3D Mapping.” Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),
doi:10.1109/robot.2000.844077.

[12] Choset, Howie., et al. “Robotic Motion Planning: Sample-Based Motion
Planning” Robotic Motion Planning, Ch. 7

18-500 Team B4 Design Review Report: Mar. 4, 2019 10/11

Appendix A: Bill of Materials

18-500 Team B4 Design Review Report: Mar. 4, 2019 11/11

Appendix B: Gantt Chart

https://prod.teamgantt.com/gantt/schedule/?ids=1461709&public_keys=7bto8Suui8dg&zoom=w110&font_size=&estimated_hours=0&assigned_resources=0&percent_complete=0&documents=0&comments=0&col_width=255&hide_header_tabs=0&menu_view=0&resource_filter=1&name_in_bar=0&name_next_to_bar=0&resource_names=1#user=&company=&custom=&date_filter=&hide_completed=false&color_filter=

	I. Introduction
	II. Requirements
	III. Architecture
	A. Summary
	B. SLAM Subsystem
	C. Path Planning Subsystem
	D. Map Visualization Subsystem
	E. Motion Subsystem
	F. Sensor Subsystem

	IV. Testing
	A. Performance Metrics
	B. Validation Plan

	V. Project Management
	A. Schedule and Risk Management
	B. Member Responsibilities
	C. Budget

	VI. Summary
	A. Future Work
	References

