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Abstract—The goal of this project is to create a small
ground  vehicle  that  autonomously  and  simultaneously
localizes and maps the 2D maze it is placed in. The maze
will have smooth, straight walls and a smooth ground. This
is an educational demonstration of an autonomous vehicle
that  may  be  used  for  search  and  rescue  or  scientific
exploration.
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I. INTRODUCTION

Autonomous vehicles are often used to explore difficult to
reach or dangerous places for situations like search and rescue,
and  scientific  exploration  in  general.  This  project  aims  to
create a low cost,  educational  demonstration of autonomous
mapping and navigation by building a vehicle that explored a
simulated environment. Mechanical design challenges will be
largely eliminated by reducing a real, textured environment to
a static environment with smooth ground and flat walls. The
ground vehicle will be capable of producing a 2D map of the
maze it is placed in by traversing through it and updating live
changes. It should use simultaneous localization and mapping
(SLAM) to do this efficiently, and a user should be able to
start and stop the vehicle through a web app.

II. REQUIREMENTS

The ground vehicle shall:

 be capable of exploring an area with smooth surfaces. 

 traverse the area above a minimum decided speed

 have a battery life of at least two hours

 track map coverage

 be able to simultaneously localize itself and map the
area

 travel efficiently without hitting any walls

The user must be able to:

 see the map being updated as the vehicle moves

 start and stop the vehicle through a web appplication
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III. ARCHITECTURE

A. Summary

This  system  is  divided  into  five  subsystems:  sensor,
SLAM,  path  planning,  motion,  and  map  visualization.  The
sensor  subsystem  consists  of  the  lidar,  encoder,  any  other
sensors we may add later to boost performance, as well as I/O
and  preprocessing  software.  This  subsystem  will  consist
entirely of off the shelf components. For the lidar (RPLidar)
we will use the included SDK and ROS package to read data
points. For the encoder we are writing a custom ROS node to
parse the encoder digital  signal.  The SLAM subsystem will
receive sensor data, and compute the estimated occupancy grid
map  and  robot  position  on  the  map.  This  subsystem  will
handle ICP frame transformations, pose estimation, mapping,
and graph optimization. The path planning subsystem will read
the resulting map and position from the SLAM subsystem, and
direct the robot on a path to build a complete map of the maze
autonomously.  This  subsystem includes  creating a waypoint
based graph representation of the maze, building a search path
to  explore  the  maze,  and  computing  the  motor  velocity
commands  necessary  to  traverse  the  maze.  The SLAM and
path planning subsystems will both be implemented entirely
by  our  team,  with  the  exception  of  message
transmitting/receiving libraries for  the ROS framework.  The
motion subsystem consists of the motor driver software, motor
controller  and  motor.  The  motor  velocity  commands  are
communicated from the path planning subsystem to the motor
driver,  which  is  responsible  for  creating  the  PWM  signal
needed to run the motor at the desired velocity. This subsystem
uses off the shelf motors, motor controller, and the included
motor  driver  library  with  a  custom  wrapper.  The  robot’s
motion will change the robot’s perception of the maze, thus
changing the sensor inputs and restarting this cycle. Lastly, the
map  visualization  subsystem is  a  web  application  that  also
receives and displays the most recent occupancy grid map and
robot  position.  The  overall  web  application  will  be  custom
designed  for  this  application,  however  we  will  utilize  the
React.js library to create the map visualization.

Fig. 1. Subsystem Interaction Diagram

B. SLAM Subsystem

Many robotics problems have already solved the problem
of  localization  when  the  environment  around  the  robot  or
ground vehicle is known. Similarly, the problem of mapping

when the position of robot is known in the environment has
also been solved. The issue we are trying to address in this
project  in  Simultaneous  Localization  and  Mapping  in  the
robotics space where neither the position of the robot nor the
map of the environment is previously known.

In our approach we have decided to use an ICP based pose-
graph  SLAM  algorithm  which  is  described  below.  In  our
approach we solve the problem in two stages. The first stage
includes building the pose graph using the ICP algorithm to
find subsequent poses (Graph Construction). The second stage
consists of using pose graph optimization to find the best pose
data that best satisfies the constraints between the nodes in the
graph  (Graph  Optimization).  Finally,  we  discuss  the  ICP
algorithm used to determine the poses used in the graph.

Fig. 2. Overall Software Architecture Diagram

The first stage consists of building a graph where the poses
of the robot are modeled by the nodes in the graph. Each pose
in the graph contains the scan taken at that point as well as the
x,y  and  z  component  from  the  starting  point  which  is
considered  ground  zero.  The  edge  between  two  nodes
represents the spatial constraint relating the two robot poses.
This means that it is modeled by a posterior distribution over
the  relative  transformation  between  the  two  poses.  These
transformations  are  either  odometry  measurements  between
sequential  robot positions or are determined by aligning the
observations acquired at the two robot locations (ICP).
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Fig. 3. SLAM Graph

To explain this is detail we will go through the steps required 
to construct two nodes and an edge in the graph. Let us 
imagine the first node we are looking at is X1. To get the 
second node X2  we use the two scans taken at both of these 
nodes and put them through an ICP algorithm (described 
below). This algorithm returns what it believes is the position 
(x2,y2,z2) of pose X2  by matching both of these scans.
Now we can model the edge between the two poses as a 
posterior distribution and add the second pose to the map.

Since we are using the ICP algorithm we can find the pose of 
loop closures using the same ICP algorithm we use to build the
entire map.
The ICP algorithm works by comparing two scans taken a 
small distance apart where a significant amount of the scan are
of the same area and hence overlap.
Data Matching is being done using point-to-plane algorithm. 
In this algorithm a Matcher module links the points in the 
reference scan to the points in the reading scan. When this 
metric is used, we minimize the sum off the squared distance 
between each reading point and the tangent plane at its 
corresponding reference point. The reading point projects 
along the normal and the intersection at the reference scan is 
taken as the corresponding point match. This structure is 
slightly better for smooth structures and worse for noisy 
structures.
Outliers remove some of the links between points in the 
reading and their matched points in the reference. This is done 
so irregularities can be decreased while we are running the 
convergence iteration later. We are removing all matches that 
are further away than the mean distance between points plus 
0.01 inches.
Data Association is for storing the matching points in a data 
structure. We will be using a kd-tree to store these values for 
optimization and faster runtime.
Convergence Test is used for iteration over all point pair 
matches. If the function converges under certain conditions 
such as 150 maximum iterations and error falls below 1 cm 
and 0.01 radian the test has succeeded, and we are returned the

transformation. We will be using the point-to-plane error 
function.
Transformation module takes the transformation given by the 
ICP algorithm and applies it to the previous pose to give the 
current pose that we were searching.

Once the graph is constructed we seek to find the 
configuration of the robot poses that best satisfies the 
constraints. Thus, in graph-based SLAM the problem is 
decoupled in two tasks: constructing the graph from the raw 
measurements (graph construction), determining the most 
likely configuration of the poses given the edges of the graph 
(graph optimization).

Now to get the posterior distribution, we find the probability 
of getting X2 given the odometry data, the previous pose, the 
map up till now and the scan at pose 2.

Fig. 4. SLAM Graph

Thus the probability is a function of the motion model P(X2 | 
X1, U) and the perceptual (observation) model P(Z | X2 , M). 
Throughout this paper, we will assume the probabilistic 
motion model to be as shown in the figure below. As can be 
seen, the shape of this conditional density resembles that of a 
banana. This distribution is obtained by the kinematic 
equations assuming that the robot is noisy along its rotational 
and translational axis.

Fig. 5. SLAM Graph

Now we have to compute the Gaussian approximation of
the  posterior  over  the  robot  trajectory.  This  would  include
computing the mean of the Gaussian as configuration of nodes
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that maximizes the likelihood of the observations. We can find
this by characterizing the problem as a constraint optimization
problem.  The  algorithm for  the  optimization  is  taken  from
another paper.

Fig. 6. SLAM Algorithnm

C. Path Planning Subsystem

After  the  SLAM  subsystem  calculates  an  estimated
occupancy  grid  map  and  robot  pose,  the  path  planning
subsystem is responsible for using this information to instruct
the robot  how to traverse through the maze without  hitting
obstacles,  and how to autonomously build a  complete map.
The path planning subsystem consists of three parts: the local
planner, global planner, and graph builder.

Given the robot’s current pose, and the global goal pose,
the local  planner will compute the motor velocity trajectory
needed for the robot to travel to the goal pose. First, a value
function  of  the  surrounding  space  is  generated.  This  is
represented as a grid map containing the Manhattan distances
from each pixel to the global path leading to the goal position.
If the global goal position is not in the surrounding space, the
closest pixel to the goal will be treated as the local goal. Then,
potential  trajectories  (motor  velocities)  are simulated,  and a
weighted score is computed using factors such as whether or
not  the trajectory hits  an obstacle,  duration,  distance  of  the
resulting position to the local goal, and standard deviation of
normal distance from the simulated path to the desired global
path. The trajectory with the lowest score (fastest, closes to the
desired global path, doesn’t hit any obstacles) will be sent to
the motion subsystem as motor velocity commands. We will
be  taking  the  base_local_planner  ROS  package  and
customizing  the  cost  function  to  exclude  pixels  the  robot
cannot traverse to, and to use the dynamic window approach
(DWA) instead of the default trajectory rollout algorithm.

The trajectory rollout algorithm samples trajectories from a
much larger sample space the the the DWA algorithm, because
it simulates velocity samples for each simulation step from the
current time until the robot reaches the goal position, whereas
the DWA algorithm tests outcomes of the velocity samples for
the  next  immediate  simulation  step.  The  trajectory  rollout
algorithm  may  produce  trajectories  that  are  closer  to  the
desired  global  path,  but  DWA  is  a  much  more  efficient
algorithm (fewer steps to simulate). Since our application has
a  simplified  environment,  with  all  waypoints  on  the  global
path only 1 maze segment and in direct view of the previous
waypoint, the DWA will be sufficient.

The  global  planner  is  responsible  for  searching  for
unexplored frontiers  through the graph representation of the
maze  generated  by  the  graph  builder.  This  will  be
implemented with the depth first search algorithm. Due to the
design of the maze, all linked nodes are guaranteed to have a
straight line path connecting the two in the physical maze, so
the  global  path  will  simply  be  set  to  the  straight  line  path
between each node.

The graph builder will receive the most updated grid map,
and build  a  graph  representation  of  the  maze.  First,  it  will
generate  waypoints  at  intervals  of  1ft  (or  the  dimension  of
each maze segment) to create a 36 node graph for a 6x6 maze,
or a 16 node graph for a 4x4 maze. The grid map coordinates
of each waypoint will be stored as well. Then, for each node it
will search in the direction its 8 neighboring pixels in the grid,
and continue scanning away from the starting waypoint until it
either reaches a wall, a neighboring node, or unexplored pixels
of the grid map. If an explored neighboring node is found on
the path, the two known nodes will be linked and the link will
be marked as explored. If an unexplored pixel is found, the
unexplored node closest to the unexplored pixel, will be linked
with the starting node, and the link will be placed on a queue
to  be  explored.  This  unknown link  can  be  referred  to  as  a
frontier for autonomous mapping. After all the paths have been
explored, we will have a graph representation of the known
portion of the map.

D. Map Visualization Subsystem

The map representation of the maze will be an occupancy
grid map, which is a 2D array where a filled in cell represents
a wall and a blank cell represents a traversable hallway. The
robot  will  asynchronously  broadcast  newly  discovered  wall
coordinates to a Node.js web server through POST requests.
Every 50 packets, the entire map’s data will be broadcasted, to
make  up  for  dropped/lost  packets  or  drift.  The  web
application’s UI will be built on the React.js library, with the
React  D3 graphing library  to  graph the map representation.
Upon  the  server  receiving  new  coordinate  information,  the
graph will be updated and served to clients. There will be a
button on the web app to start (when the robot isn’t mapping
and  traversing)  or  stop  (when  it  is  currently  mapping  and
traversing). This will send a request to the robot’s Raspberry
Pi, so that the user can start/stop the robot easily.

E. Motion  Subsystem

We are using a 12V, 350 rpm DC motor kit, which has an
encoder, wheel and motor mount. The max speed of the wheel
is  229  ft  /  min,  which  is  more  than  enough  for  our
requirement.  We  will  be  using  the  Adafruit  Raspberry  Pi
Motor Hat,  which can power up to 12V motors and 1 A of
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current,  which is enough for the stall  current for the motor.
This motor controller also includes a python library that  we
will use to control the motor duty cycle.

F. Sensor  Subsystem

We will be using the A1M8 RPLidar due to its affordable
cost, and convenient SDK. This module has also been used by
previous capstone teams. It reads 360 points per rotation at 1
degree resolution, and rotates 5.5 times per second, resulting
in 1980 points per second.
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IV. TESTING

A. Performance Metrics

As mentioned in the design requirements, we will be using
the following performance metrics:

Fig. 7. Performance Mentrics

The map coverage and localization accuracy metrics  are
based  on  the  resolution  of  the  RPLidar.  The vehicle  speed,
efficiency (time to complete  maze),  and battery  metrics  are
based on the following calculation. Assuming our maze is 6ft
x 6ft, with hallways around 1x1ft wide, we can have a max of
36 (x2 for horizontal and vertical direction hallways) ft or 24
(x2  for  horizontal  and  vertical  direction  hallways)  ft  of
hallways.  Depending  on  how  hallways  are  connected,  the
robot may need to travel through the same hallway a few times
(let’s say 2 times for the whole maze) to explore the whole
map, in which the worse case scenario would be 144 (72x2) ft.
Therefore 20 ft / min will allow us to cover 100 ft in 5 mins,
which should comfortably allow the robot some mistakes.

B. Validation Plan

We  will  be  building  a  modular  maze  to  test  the  robot
against  the  aforementioned  performance  metrics.  The  maze
will  be  modular,  easily  configurable,  and  multiple  types  of
junctions  in  order  to  ensure  that  the  robot  dynamically
localizes itself and maps the area it is in. The maze will have 1
ft wide hallways and the following modular combinable 1x1x1
ft section types.

Validation will have two phases. In Phase 1, we will build
a small maze with 4-6 sections to test basic navigation without
autonomous mapping. In Phase 2, we will expand the maze to
a 6x6 grid, which will be the size of the final demo grid. We
will  be testing the map coverage on various configurations,
and  concurrently  test  the  map  algorithm  with  software
simulations.

Fig. 8. Maze components and a sample 3x3 maze

The  validation  timeline  will  be  discussed  further  in  the
Project Management section.
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V. PROJECT MANAGEMENT

A. Schedule and Risk Management

Fig. 9. Simplified Gantt Chart

Fig. 10. Risk Management Chart

B. Member Responsibilities

Amukta  will  be  focusing  on  webapp  functionality/
visualization, Raspberry Pi/ ROS/ VM setup, lidar data input/
processing, ICP setup and implementation of the first half of
ICP.

Kanupriyaa  will  focus  on  SLAM  calculations/  overall
algorithm,  ICP setup,  implementation  of  the  second half  of
ICP,  mapping,  graph  optimization  and  sending  the  map
representation to web UI.

Tiffany will be researching and ordering parts, finalizing
the  ROS  navigation  stack,  drawing  electrical  schematics,
hardware/chassis design, encoder and motor controllers,  and
planning (both local and global).

Everyone will be working on software architecture design,
writing reports, building the maze, and doing Phase 1 and 2
testing.

C. Budget

The three most expensive components of the robot are the
RPLidar, the Raspberry Pi, and the two motors. We assumed
that low-cost scavengable parts like wires and acrylic pieces
for the chassis were nearly free and therefore did need to be
added to the budget. Assuming the RPLidar is sufficient and

none of the foreseeable risks occur (see Risk Management),
the  total  cost  of  the  robot  is  about  $250 dollars.  If  all  the
foreseeable risks occur, we would need to buy an additional
RPLidar and an ultrasonic sensor, resulting in a total cost of
about $370 dollars. Either way, we are well under the $600
limit. Refer to the Bill of Materials (Appendix 1).
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VI. SUMMARY

Autonomous  vehicles  have  a  variety  of  important
applications,  including  search  and  rescue,  and  scientific
exploration. We aim to create an educational demo of a ground
vehicle that performs simultaneous localization and mapping
in a simplified environment. We intend to create a demo that is
configurable and user-friendly, through the use of a modular
2D maze and a web application for controlling the vehicle and
visualization.

A. Future Work

This  project’s  scope  has  been  limited  to  eliminate
mechanical  and  environmental  challenges.  There  are  many
ways to extend the functionality to real-world scenarios like:
low light/  dark  areas,  bumpy/rocky/grassy  grounds,  curved/
bumpy walls of various heights, sudden cliffs/ steep inclines.

Modifying the robot to be compatible with these situations
would  make  it  more  useful  for  search  and  rescue,  and
scientific exploration applications.
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Appendix A: Bill of Materials
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Appendix B: Gantt Chart

https://prod.teamgantt.com/gantt/schedule/?ids=1461709&public_keys=7bto8Suui8dg&zoom=w110&font_size=&estimated_hours=0&assigned_resources=0&percent_complete=0&documents=0&comments=0&col_width=255&hide_header_tabs=0&menu_view=0&resource_filter=1&name_in_bar=0&name_next_to_bar=0&resource_names=1#user=&company=&custom=&date_filter=&hide_completed=false&color_filter=
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