
18-500 Final Project Report: 05/08/2019

1

Abstract—This report details the conception and design of an

autonomous robotic cameraman intended for social gatherings or
professional events. Hiring a photographer often involves
unavailability, unreliability, bias, and even latency in delivery of
the photos. Our solution offers an automated robot that’s always
available, reliable, and unbiased. In addition, it ensures ample
margins around faces and delivers photos instantly. Our robot
does this efficiently with software algorithms, requiring lower
power and less storage space than other implementations such as
one that deletes subject-less photos after an event, and
demonstrates the capabilities and advancements of electrical and
computer engineering.

Index Terms—Arduino, autonomous, camera, design, face
detection, GPIO, iRobot, infrared, LCD, motor, OpenCV,
PyCreate2, robot, Raspberry Pi, Roomba, sensors, thermal

I. INTRODUCTION
IN this day and age, recording social and professional events

through photographs is a common occurrence. However,
cameramen often have high rates as well as busy schedules and
may sometimes be biased when taking photos. Our project was
inspired by a problem presented to us by the Robotics Club at
CMU. This club organizes several events throughout the year
and they always have trouble booking a photographer because
of the challenges detailed in the abstract. It is for these reasons
that student volunteers are typically sought out. As the number
of volunteers has been steadily declining, we came up with the
solution of designing a robot that could take on the duties of a
photographer.

Camerazzi aims to be an unbiased, available, and reliable
alternative to the typical cameraman that would be booked for
an event. Our project provides a solution particularly suitable
for recurring events due to reduction in costs and the constant
availability. While other implementations like taking numerous
snapshots randomly at an event are also viable, our robot uses
the integration of software and hardware to efficiently take
photos of the important subjects, the people, at an event. This
way, we reduce the power consumption required, save storage
space, and eliminate the need for post-analysis.

II. DESIGN REQUIREMENTS
In order to measure success for our robot and the pictures that

it takes, we have defined the following requirements.
As an overarching requirement, we expect our robot to

capture a minimum number of photos, with a given room size,
number of people in the room, speed of the Roomba, and

duration of time the Roomba is active. By researching standing
crowd density [7] we have set an ideal crowd density of 1
people per 4 square meters (1/4 person per square meter). This
will allow enough room for our robot to roam and capture
photos at ideal distances.

To illustrate, we have here a sample space for the robot to
roam of 2 meters by 4 meters.

Fig. 1. Sample 2m x 4m space

Based on room density of 1 person per 4 square meters, there
should be a maximum of 2 people in this space with our robot.
To traverse the entire room in the shortest time, assuming that
the people are at the farthest distance away from each other, the
path is from point p1 to point p2.

𝑥" = √(2' + 4') = 4.472135955 (Eq. 1)

The robot will move at a speed of 0.05 m/s, the fastest it can

go without jitter with a structure on top of it.

𝑡𝑖𝑚𝑒	𝑡𝑜	𝑔𝑒𝑡	𝑓𝑟𝑜𝑚	𝑝"𝑡𝑜	𝑝' =

;.;<'"=>?>>	@
A.A>	@/C

= 89.442719	𝑠
(Eq. 2)

𝑐𝑎𝑚𝑒𝑟𝑎	𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡	𝑠𝑙𝑎𝑐𝑘	𝑡𝑖𝑚𝑒 = 8	𝑠

𝐿𝐶𝐷	𝑠𝑐𝑟𝑒𝑒𝑛	𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛	𝑡𝑖𝑚𝑒 = 4	𝑠

𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒	𝑓𝑜𝑟	𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑠𝑙𝑎𝑐𝑘	𝑡𝑖𝑚𝑒
(𝑖. 𝑒. 𝑡𝑢𝑟𝑛𝑖𝑛𝑔,𝑚𝑜𝑣𝑖𝑛𝑔	𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠, 𝑒𝑡𝑐) = 5	𝑠

Camerazzi

Author: Mimi Niou, Cornelia Chow, Adriel Mendoza

Electrical and Computer Engineering, Carnegie Mellon University

18-500 Final Project Report: 05/08/2019

2

𝑡𝑖𝑚𝑒	𝑒𝑙𝑎𝑝𝑠𝑒𝑑	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	2	𝑝ℎ𝑜𝑡𝑜𝑠
= 𝑡𝑖𝑚𝑒	𝑡𝑜	𝑔𝑒𝑡	𝑓𝑟𝑜𝑚	𝑝"𝑡𝑜	𝑝'
+ 𝑐𝑎𝑚𝑒𝑟𝑎	𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡	𝑠𝑙𝑎𝑐𝑘	𝑡𝑖𝑚𝑒
+ 𝐿𝐶𝐷	𝑠𝑐𝑟𝑒𝑒𝑛	𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛	𝑡𝑖𝑚𝑒
+ 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑠𝑙𝑎𝑐𝑘	𝑡𝑖𝑚𝑒
= 89.442719	𝑠 + 8	𝑠 + 4	𝑠 + 5	𝑠
= 106.442719	𝑠
(Eq. 3)

1	𝑝ℎ𝑜𝑡𝑜
106.44	𝑠 =

𝑧
3600	𝑠

(Eq. 4)

𝑧 = 33.82	𝑝ℎ𝑜𝑡𝑜𝑠 (Eq. 5)

Therefore, at least 33 photos should be attempted per hour if

the room density is 1/4 person per square meter. Not all of these
photos need to be uploaded to the cloud - only those that satisfy
other low-level requirements. We simply want our robot to stop
at least 33 times per hour and attempt to capture photos (which
we will be able to determine based on print statements).

This requirement is imperative to the success of our project,
as the main function of our robot is the ability to take photos at
an event, so photos captured act as a key success factor of our
project.

Our first low-level requirement is that the robot must be at
least 3 feet away from humans in front of it. We set this
requirement because academic papers such as Mumm &
Mutlu’s Human-Robot Proxemics [6] describe a comfortable
distance between robots and humans as being approximately 3
feet. We will evaluate this requirement by laying out a
measuring tape in front a stationary person, setting the robot to
move towards the person, and checking to see how far the robot
stops from the person.

Another requirement we’ve established is that robot stopping
latency must be less than 1 second. We set this as our maximum
latency because we want our robot to move at a speed of 50 mm
per second. In our software, we will be detecting when the robot
is 3 feet away from a human. If it moves 50mm within the 1
second latency, it is a negligible amount and the robot is still
approximately 3 feet away. We will evaluate this requirement
by recording the time that a stop command is sent to the robot,
and the time that the robot actually stops.

The next requirement we’ve set is that the robot must be able
to detect 90% of human faces in real time. We’ve set it to this
value because we have found that using this algorithm on still
images typically achieves a 95% success rate. But since we’re
using this algorithm on continuous video, we’ve slightly
lowered the success rate to 90%. We will evaluate this
measurement by manually counting the number of faces our
algorithm detects at points in time during the demo, and
dividing it by the number of faces that were actually present in
the frames.

Another requirement we’ve set is that 100% of the photos
taken must include a human. We have set this requirement
because we don’t want our robot to take extraneous photos

when it should be spending its time taking useful photos. This
is consistent with our decision to use this implementation, as
opposed to one where take many photos and delete the ones that
are not usable. We will evaluate this requirement by examining
every picture taken at the demo and confirming that there is a
human in the photo.

Our next requirement is that every photo must have a 5%
margin between the borders of the face and the borders of the
image. This is to ensure that no heads get cut off when the
picture is taken. We will evaluate this requirement similarly to
the previous requirement by examining every picture taken at
the demo and confirming that there is a 5% margin between the
face borders and the image borders.

The next requirement is that the width of each face in the
image must be at least 10% of the width of the image. We came
up with this figure because after examining many photos, a face
width that is 10% of the image is characteristic of a decent
picture. Any less than this would mean that the person’s face is
out of focus in the shot, and it will appear as though we have
taken a random picture. This requirement, in addition to our
margin requirement, contributes toward the consistency aspect
we wanted for our project. We will evaluate this requirement by
examining every picture taken at the demo and confirming that
the face width is at least 10% the width of the image.

Another requirement we’ve established is that 100% of the
photos taken should be sent to the cloud folder over WiFi.
We’ve set this requirement to ensure that our users received all
the photos that were taken. This also helps us achieve the instant
access to photos aspect we wanted for our robot. We will
evaluate this requirement by recording the number of photos
taken at the demo, and comparing it to the number of photos
sent to the cloud folder. Originally we were attempting to use
Google Drive, however, Dropbox is another platform with
equivalent services that had easier integration, so we pivoted
our solution towards using Dropbox instead.

Our final product’s success values are discussed in the final
section of this report called Summary.

18-500 Final Project Report: 05/08/2019

3

III. ARCHITECTURE AND PRINCIPLE OF OPERATION
Below are diagrams of our system.

(a)

(b)

(c)

Fig. 2. System picture. (a) overall system. (b) zoom-in of top tower. (c) bird’s-
eye view of the tower’s 2 platforms

For our mobile robot, the iRobot Create 2 Programmable
Robot acts as the moving base, using its 6 built-in IR sensors to
detect walls.

Our software-related system architecture revolves around the
use of a Raspberry Pi, which is the controlling computer for the
entirety of our software components. Hosted on the Raspberry
Pi, are our motion control, image optimization, and collision
detection software algorithms. Specifically, we used the
PyCreate2 library to program the movement of the roomba. For
photo optimization, we used OpenCV datasets on frames from

a continuous video stream at 30fps to detect faces and ran our
custom algorithm to determine when and where to capture
photos. In addition, we used three Arduino UNOs to receive and
process the thermal camera sensor and IR sensor signals over
GPIO pins which relayed the data to the Raspberry Pi.

For photo capture, we used the Raspberry Pi Camera Module,
which easily integrates onto the Raspberry Pi and is able to
capture 8MP photos.

For collision detection, we originally intended to use 2
thermal cameras (1 facing the front, 1 facing the back) and 18
IR sensors. Since the design report, we pivoted to only using 1
thermal camera sensor and 12 IR sensors to detect when people
or objects are in close proximity, so that our robot can stop
moving and avoid collisions. We reduced the number of sensors
because stacking them were getting to be too unstable. In
addition, we realized we didn’t need the back-facing thermal
camera anymore - if our robot attempts to move back to adjust
for margins, it only needs to know if something is there, human
or not. In our final product, 6 IR sensors face forward and 6 IR
sensors face backwards to detect objects when the robot moves
forwards and backwards, and the single thermal camera sensor
sits at the front of the robot just under the center IR sensors to
determine when a human is in front of the robot.

For further control over image capabilities, we used a stepper
motor and a custom-built wooden track for our camera to move
up and down as specified by our image optimization algorithm.
Our Raspberry Pi communicates with the stepper motor using
the Arduino and GPIO pins as its communication channel. Our
design report initially stated we would be using a telescoping or
scissor-lift mechanism to move our camera up, however, this
proved to be difficult and expensive to obtain. We created our
own custom motorized camera track instead.

Lastly, we used an LCD screen, connected to the Raspberry
Pi, to display a countdown prompt to indicate when a photo is
about to be captured.

The block diagram on the next page (Fig. 3) demonstrates all
of the above described components, as well as how they
communicate and how information flows in our system.

18-500 Final Project Report: 05/08/2019

4

Fig. 3. Block Diagram with key

18-500 Final Project Report: 05/08/2019

5

IV. DESIGN TRADE STUDIES
We decided to use the Sharp GP2Y0A02YK0F IR proximity

sensor for obstacle detection because it was advertised as
reliably providing data between a range of .5 feet to 5 feet. Since
we are looking for obstacles within 3 feet, this sensor shows a
clear advantage over other IR proximity sensors such as the
UNCL4010 proximity sensor, which can only accurately detect
collisions up to 7.5 inches away. We also found that this
sensor’s ability to bounce reflective light off the clothes of a
human make it better than ultrasonic sensors. We put 2 IR
proximity sensors on 6 different positions along our robot. We
kept track of each last value reported by each sensor, and
utilized a voting system between the 2 sensors in each position.
We only acknowledged an IR trigger signal if it was high for 2
iterations of the sensor processing loop, and if both IR sensors
in the same position were triggered. Doing this allowed us to
reduce the chance of encountering outlier data coming from a
sporadic sensor that occasionally exhibits erratic behavior. We
decided on 6 IR sensor positions because we needed 2 facing
front on the left, center, and right; and 2 facing back on the left,
center and right. Since the robot would only need to move
forward or backwards, we reasoned that we would only need to
account for these 2 directions. The left, center, and right
placements are meant to account for collisions that would
happen either directly in front of/behind the robot, or at the
edges of the robot. So with the 2 sensors per position, and 6
position on the robot, we needed 12 IR sensors.

In addition to the IR proximity sensor, we will be using the
Adafruit AMG8833 8x8 Thermal Camera Sensor. We selected
this particular sensor because it is able to detect heat signatures
a far distance away (ie. up to 23 feet) and it has a fairly decent
field of view (ie. 60°). This sensor was used in conjunction with
our IR sensors to distinguish inanimate obstacles (eg. wall)
from humans. For our collision detection mechanism, we need
the IR proximity to detect for collisions, and we need the
thermal camera sensor to determine whether that collision is a
human or an object. We decided that we only needed one
thermal camera sensor because only need to detect for humans
in front of our robot. With the 60° field of view, we can capture
what is seen by the 6 IR proximity sensors facing forward.

 This diagram (Fig. 4) describes how we planned for the
sensors to be positioned (red rectangles are the thermal camera
sensors while yellow squares are the IR sensors). Refer to Fig.
2b and Fig. 2c for our final placement of sensors.

Fig. 4. Old sensor placement.

The distance between the intersection of the thermal camera
sensor’s field of view and the IR proximity sensor’s field of
view must be less 29.5” (36” - 6.5”). This is to ensure that the
thermal camera will detect anything that is 36” away from the
left or right IR proximity sensors. Our original design had our
thermal camera sensor closer to the center of the robot, but even
if we move our sensor to the front edge of the robot, we can
meet this distance requirement. We know the angle between the
right IR proximity sensor and the right side of the thermal
camera’s field of vision is 60°, and that distance between the IR
sensor and the thermal camera sensor is 6.5”, we can determine
that the intersection point is 11.2583” away, which is less than
29.5”. Thus we can conclude, that we only need one thermal
camera sensor per direction.

a = 13” (Eq. 6)
b = 11.2583” (Eq. 7)

We had enough slack such that even after we pivoted the

number of thermal sensors and moved the placement to the
front instead of the center of the platform, the thermal camera
and side IR sensors still intersect when a person is 3 ft away
from the robot.

We decided to use 3 Arduino UNOs: 2 for IR sensor signal
processing, and 1 for thermal camera signal processing, camera
motor control, and LCD screen control. By putting signal
processing on the Arduinos we are able to free up the Raspberry
Pi’s computational power for image processing which needs to
be as fast as possible. The Arduino UNO has 6 pins for
transmitting analog data, and since we are using 12 IR
proximity sensors for collision detection, we need 2 Arduinos
for that. Since LCD screen control and thermal camera signal
communication happens over I2C, the final Arduino has enough
pins for thermal camera signal processing, camera motor
control, and LCD screen control.

We decided to use the Raspberry Pi 3 Model B, because it is
WiFi and Bluetooth capability. By having WiFi capability, we
are able to easily debug our code by simply powering the
Raspberry Pi on campus and being on the CMU-DEVICE
network. By having Bluetooth capability, we can pair our
motorized stick with our Raspberry Pi, in order to move the
camera up and down. This model also has a CSI port which
allows us to seamlessly integrate our Camera module. Lastly,
this model has the most USB ports (ie. 4), which works
perfectly because we will need 4 ports to connect to the 3
Arduinos and the Roomba.

We decided to use the Raspberry Pi Camera Module V2
because of its ability to take 8 MP pictures, which we deemed
sufficient for our purpose.

V. SYSTEM DESCRIPTION

A. Flow
Although there are many different scenarios we have

considered to be potential contexts for our robot, the behavior
follows a general pattern of roaming, sensing for humans,
adjusting, and capturing a photo. More specifically, Camerazzi
begins roaming in a straight path until it either senses a human

18-500 Final Project Report: 05/08/2019

6

or collides with a wall or other object, using its thermal and ir
sensors. In the case that Camerazzi senses a human, it uses
OpenCV and the Raspberry Pi camera to scan for faces in view,
moving the camera up and down. If faces are not detected, the
robot will turn and continue roaming.

If one or more faces are detected, our algorithm runs a series
of calculations to determine if the photo should be taken and
how the robot should adjust its position and camera height. The
details of this algorithm are detailed in Section C where we
describe our photo optimization subsystem. Before photo
capture, we display an output of “3...2...1… Smile! =)” onto an
LCD screen mounted on the front of our robot to inform the
subjects of the photo that a photo will be taken. In the case that
Camerazzi collides with a wall or other object, it rotates by
increments of 60º to the opposite direction and continues
moving. Lastly, photos are immediately transferred to a
Dropbox folder after they’re captured.

Below we dive deeper into the specifics of each subsystem
which allow us to achieve this overall behavior.

B. Susbsytem – Roomba Movement
Our robot moves via the Roomba as its base, communicating

with the Raspberry Pi controller over Mini Din. In doing so, we
must account for collisions with any object or wall and redirect
the robot before contact. For collisions, the Roomba has built-
in sensors we are utilizing. The table (Table I) below displays
the sensors we interacted with and the range of their values that
the sensor is able to provide.

TABLE I. RELEVEANT ROOMBA SENSORS

Sensor Range Index

bumps_wheeldrops [0-15] 0

light_bumper_left [0-4095] 36

light_bumper_front_left [0-4095] 37

light_bumper_center_left [0-4095] 38

light_bumper_center_right [0-4095] 39

light_bumper_front_right [0-4095] 40

light_bumper_right [0-4095] 41

Using these sensors, our robot can detect a wall or floor

barrier before it bumps into it. In order to avoid forces that may
shake our robot structure upon collision, we wanted the robot
to stop at least 1 cm away from walls. In addition, the robot
should be rerouted by turning and moving forward away from
the wall it just detected, thus avoiding contact and continuing
its mission of taking photos.

The bumps_wheeldrops sensor’s 0th and 1st bits are binary
indicators for the state of the left and right bumpers. These
should remain 0 throughout our robot’s operation to avoid
actually hitting a wall or object and shaking the robot. Because
IR sensors are unreliable against certain materials as well as

while the object in front of it is moving, the Roomba is
sometimes unable to detect feet that are walking near it. This
means that our robot has the potential to bump into people,
especially on the sides where no IR sensors at the top of the
robot are detecting obstacles. In this scenario, any time
bumps_wheeldrops returns anything that is not a 0, meaning
that the bumper was pressed and contact has been made, the
robot pivots 180º and moves directly away.

There is a series of light_bumper values that returns data for
each of the six sensors built into the Roomba, facing the front.
Each of these sensors uses IR to retrieve the distance between
it and the object it’s detecting. The sensors are orientated in this
way:

Fig. 5. Roomba sensor locations.

Setting 0º as directly center forward, the leftmost sensor is at
-40º. Moving from left to right, the next sensor is at -20º, and
the next sensor is at -7º. To the right of center, the next sensor
is at 16º, then there is another sensor at 32º, and the last
rightmost sensor is at 66º. Our goal in knowing the precise
locations of these sensors is to turn 60º away from the sensor
that gets triggered. More specifically, if it’s any of the 3 sensors
on the left that is triggered, the robot will turn 60º to the right
from that sensor. If it’s any of the 3 sensors on the right that is
triggered, the robot will turn 60º to the left from the sensor.
After turning away, it drives straight. This angle choice was to
keep in accordance with the human collision detection
algorithm as well as allow the robot enough angle to move
forward without sensing or hitting the same wall (unless the
robot is in a corner, then it might have to turn more times to
move out of the corner).

18-500 Final Project Report: 05/08/2019

7

In accordance with the flow of Camerazzi, our robot will use
the IR light bumper sensor values to turn and try a new path.
Since the thermal camera sensors have a 60° field of view, the
robot will turn right 60° to get a new view without overlap of
the old view in order to scan for high human-like thermal
signals. In essence, the robot will attempt to avoid detecting the
same humans and taking their photos over and over. The robot
should attempt to move towards a thermal signal to take photos
of humans. If it repeatedly senses a wall, it will continue to turn
to the right 60° at a time until it no longer senses a wall or
object, and/or senses a human through thermal readings, and
has a clear path to move forward. It is not turning 180° and
simply moving away from the wall or obstacle because this may
result in the robot bouncing back and forth along the same
straight path in the room if its path just so happens to be
unobstructed.

A major portion of our robot is detecting humans, for both
taking photos of and avoiding collisions between our robot and
humans. This section will outline the avoidance of collisions.
(Refer to Photo Optimization Subsystem for description of
detecting humans for purposes of taking photos.)

The robot uses both IR and thermal camera sensors for
human detection, with the IR sensors’ output pin connecting to
analog pins on the Arduino (GPIO) and the thermal camera
sensors communicating over I2C with the Raspberry Pi. There
are 3 sets of sensors facing the front of the robot and 3 sets of
sensors facing the back of the robot (more details about number
of sensors in Trade Design section). With the 13-inch diameter
of the Roomba, having one set of sensors on the left-most side,
one set in the middle, and one set on the right-most side will be
able to detect any human that is standing in front of or behind
the Roomba, even if the human is positioned perpendicular to
the sensors. After detecting something is in front of the
Roomba, the values we get from the IR sensors tell us the
distance the human is away. The goal was to stop at least 3 feet
away from any human (refer to Design Requirements section).
Knowing that these voltages correspond with these output
values from the IR sensors through the Arduino:

TABLE II. IR SENSOR VOLTAGE CORRELATION

then 1 V corresponds to a value of 204.6 form the IR sensor
through the Arduino.

3	feet	 = 	91.44	cm (Eq. 8)

2.5	𝑉 − 0.4	𝑉
150	𝑐𝑚 − 20	𝑐𝑚 =

21	𝑉
130	𝑐𝑚 = 0.01615385	𝑉/𝑐𝑚

(Eq. 9)

0.01615385
𝑉
𝑐𝑚 × 91.44	𝑐𝑚 = 1.47710804	𝑉

(Eq. 10)

1.47710804	𝑉	 × 	204.6 = 302.216304	 ≈ 302
(Eq. 11)

So once we get an output value of 302 from any of the IR

sensors, the thermal camera sensor will then assist in
determining if it’s actually a human or if it’s just a wall. If the
data from the thermal camera tells us there’s heat signature, the
robot will stop and take a photo based on the Photo
Optimization subsystem description. The camera has about a
60° field of view, so after it takes a photo, the goal is for it to
discover a whole new view in order to detect and take photos of
new subjects. Thus, after it takes a photo, it will rotate 60° to
start with a new field of view. The robot will alternate turning
left and right 60° in order to avoid going in circles if no bodies
are detected.
 Unfortunately, our IR sensors ended up only being able to
detect around 18-20 inches, which is a lot lower than their
documentation reported.

After a human is detected and the camera feed is analyzed,
adjust according to instructions from photo optimization
algorithm (see Photo Optimization Subsystem for details).

C. Subsystem – Photo Optimization Algorithm
Another main subsystem of Camerazzi is the photo

optimization algorithm which determines when and where
photos are captured. Specifically, our photo optimization
algorithm uses data from the camera, thermal camera sensor,
and IR sensors to determine whether it is in the right position to
take a photo at a given time. As a result of the data, the robot
moves forward or back, and the camera moves up and down on
our motorized track, in order to satisfy our requirements for
ideal photos. The thermal and IR sensors are used to identify
when we believe there is a human in view of the robot. When a
human is detected, the roomba stops and our face detection
algorithm begins searching for faces using live video data from
the camera.

If faces are detected, our photo optimization algorithm
checks multiple parameters to determine how to adjust and
capture the photo. First, we check if all faces are above the
minimum width requirement of 10% image width. As a second
check, we determine whether or not there is enough margin
(10% image width) around all faces. If either of these
requirements are not met, we adjust the position of the Roomba
to attempt to satisfy them. For example, the Roomba moves
forward if a given face width is too small, and backwards if the
face width is too large. Similarly, if there is too little margin
around a face to the left or right, the Roomba moves backwards,
and if there is too much margin, the Roomba moves forwards.
Lastly, if there is too little margin above or below a face, the
motorized stick moves up or down accordingly. Due to the fact
that adjusting to one constraint affects the value of the other
variables, we have come up with a protocol that allows us to
determine how the robot adjusts, or if it should turn and
continue moving because the requirements cannot be satisfied.
In the order of face width, horizontal margin, then vertical
margin, Camerazzi adjusts its position or camera height slowly
until the requirement is satisfied. After the given requirement is

Voltage output from IR sensor through Arduino

0 V 0

5 V 1023

18-500 Final Project Report: 05/08/2019

8

satisfied, we check if earlier requirements were made invalid
due to the following adjustments. In that case, the ideal photo is
not possible by our requirements, so Camerazzi turns and
continues roaming. This protocol for adjusting the robot for
ideal image capture provides a straightforward approach to
handling edge cases and determining whether photos should be
taken or not.

D. LCD Screen and Motorized Camera Track
Other components in our system include the LCD display and

the motorized stick.
The LCD display is the robot’s way of communicating to the

people in front of it that it is going to take a picture. It is
connected to an Arduino over the I2C interface and will go
through the following sequence: “3!”, wait 1 second, “2!”, wait
1 second, “1!”, wait 1 second, “SMILE!” By providing this
feedback to the human, the human will know when the photo
has been taken.

The motorized camera track is a motor pulling on a string
attached to the Raspberry Pi camera and will be used to adjust
the camera’s position to 3 different positions. These different
positions assist in meeting the 5%+ margin requirement on the
top and bottom of the image. If the bottom margin does not meet
the 5% requirement, the Raspberry Pi will send a signal to the
Arduino instructing the motor to pull up on the camera.
Likewise, if the top margin does not meet the 5% requirement,
the Raspberry Pi will send a signal to the Arduino instructing
the motor to push the camera down. The camera will slide along
a track on top of our robot to ensure that the camera doesn’t
wiggle from side to side.

E. Power
The iRobot Create 2 will be powered by its accompanying

battery, which has a battery life of 3.5 hours.
Originally, we were going to have the Raspberry Pi supply

power to the motor, the LCD screen, the sensors, the camera,
and the Arduinos. Instead, we used a 3 10000 mA/h batteries to
power everything. The battery powering our Raspberry
Pi, camera module, one Arduino, the motor, the thermal sensor,
and LCD screen dissipated power most quickly. With the
Raspberry Pi and camera module with Wifi and Bluetooth on
using 550 mA, the motor using 350 mA, the LCD screen using
120 mA, the thermal sensor using 50 mA, and an Arduino using
50 mA, we find maximum consumption was to be 1120 mA.
With an ideal version of the batteries, we could provide power
for a little bit over 9 hours. With a version that is 50% efficient,
we will still be able to power our devices over 4.5 hours which
is sufficient for our purposes.

VI. PROJECT MANAGEMENT

A. Schedule
Leading up to the mid semester demo, our schedule followed

our initial Gantt chart very closely. The only task we had to add
was doing some assembly of our robot before the demo, which
we hadn’t initially accounted for. In addition, it took a little
longer than expected for the LCD screen integration, Roomba
movement, and collision detection, however we were able to

finish all of the tasks before the mid semester demo. As a result
of those extended tasks, we had to push back our task for
adjusting based on image margins until after the mid semester
demo. We were able to catch up on this task by working
together in the following week. Lastly, due to structure
redesigns, we had to spend a significant amount of time
rebuilding the base of our robot structure leading up to the final
demo, which left us less time for testing. We also had to add
tasks for our demo barriers and final preparation before our
public demo.

A simplified version of our Gantt chart is on the next page
(Fig. 6).

B. Team Member Responsibilities
Mimi

As a software engineer, Mimi was responsible for the face
detection portion of this project using OpenCV and NumPy on
the Raspberry Pi. She also did image analysis to determine the
margins of the current frame and send that data to Cornelia to
move the base of the robot for adjustments. After movement,
Mimi checked the margins again and then ultimately captured
the photo. Then, she transmitted the photo to a Dropbox folder
over wifi. Due to the complexity and scale of the physical
structure of the robot, Mimi ended up doing a lot of construction
as well - from cutting wood to fitting pieces together to
soldering and wiring IR sensors to assembling the entire
structure.

Cornelia

As a software engineer, Cornelia was responsible for the
Roomba movement portion of this project as well as overall
integration of sensor data and the photo optimization algorithm.
Using PyCreate2, an iRobot Roomba opcode library, she
programmed the Roomba’s initial movement, processing
thermal and IR sensor data for human collision detection in
order to stop, and processing face detection/margin data from
Mimi to adjust the Roomba’s position. Due to the complexity
and scale of the physical structure of the robot, Cornelia ended
up helping with soldering, construction, and assembly as well.

Adriel

As a hardware engineer, Adriel was responsible for setting
up the Raspberry Pi and Arduinos. He programmed the
Arduinos to receive sensor data and send GPIO signals to the
Raspberry Pi. More importantly, he was responsible for all the
interconnects between the components of this project - the
wiring of the Arduinos’ GPIO pins to the Raspberry Pi which
involved using logic-level shifters. He also worked on building
and assembling the physical structure of the robot, including the
motorized camera track, LCD display enclosure, soldering of
IR sensors, laser-cutting the attachments between the Roomba
and the robot’s top.

18-500 Final Project Report: 05/08/2019

9

Fig. 6. Gantt chart

C. Budget
Our budget spreadsheet is located at the end of this report

(Table III). Parts that we acquired without purchased is also
located at the end of this report (Table IV).

Notable tools we used to accomplish our project include
soldering iron, laser-cutter, band saw, wood filers, Visual
Studio Code, and Arduino IDE.

D. Risk Management
There were a few major design risks that arose throughout

the semester, relating to proximity sensing, robot stability, and
photo quality. One of the most challenging elements of our
project was finding a way to get accurate and reliable proximity
sensor data. Throughout the semester, we had to mitigate the
risk of our robot not being able to detect collisions with objects
and people by finding the right proximity sensors and
continually doing testing and improving our software. Some
specific ways we mitigated against this risk included having
backup ways to sense proximity (ultrasonic, IR, OpenCV),
removing outlying data, and comparing sensor values in time
and physical proximity to get more reliable data. We also
soldered our IR sensor wires to a soldering protoboard before
transporting our robot to ensure that connections would remain
intact.

Another significant risk we faced was the stability of our
robot. After testing with our initial design approach of a tripod
base, we determined that the tripod would be too unstable to
support our hardware components on the top of the robot. As a
result, we had to redesign our structure to mitigate the risk of
our robot falling over during activity. We did so by using wood,
which is thicker and more sturdy than the thin plastic tripod
legs, to construct a base with increased surface area on top and
bottom. We also introduced padding and used hot glue to secure
any loose or wobbly areas.

Lastly, photo quality was a risk that arose during testing as
we came across blurry, crooked, and dark photos. To mitigate
the risk of such photos being captured, we tried to address each
of the source problems including poor lighting, camera
position, and robot stability. First, we tested in our demo space
to ensure there would be appropriate lighting. We also
introduced pauses in our program to allow our camera time to
focus on subjects. Lastly, as stated above, we improved our
robot’s stability to avoid blurriness of photos.

The design risks mentioned above introduced some schedule
related risks, as we had to adjust our tasks and catch up on work
as we updated our design. To mitigate any risks of not meeting
the deadlines we’d set for ourselves in our Gantt chart, we
worked outside of class each week to catch up on additional
tasks that had yet to be completed. We also worked as a team
and helped each other accomplish any tasks that were taking
longer than expected. In addition, we updated our Gantt chart
weekly to accurately demonstrate our completed and scheduled
work so that we could stay on track and plan for the future more
precisely. Fortunately, we had no major risks related to our
budget, as we were able to borrow many resources from around
campus.

18-500 Final Project Report: 05/08/2019

10

VII. RELATED WORK
A similar project we found when doing research for our

project is called the “Roomberry Surveillance Robot,” which
uses a Roomba, and Raspberry Pi Zero, and a camera, to send
video through a web interface [1]. This project has many
similarities to our project in terms of the hardware components
it uses, and the functionalities it achieves such as a movable
camera, saving photos, and serving up photos through Wi-Fi.
However, this project lacks a lot of the more complex features
we hope to include, such as optimizing photos and the Roomba
position for human faces, and taking care of collision detection.

A similar product we found on the market is the “Double
Robotics Double 2 Telepresence Robot,” which is used for
virtual interaction with remote individuals [2]. This robot is
similar to our robot in shape and size, as well as the capability
to take photos with a 5MP camera. However, this telepresence
robot varies drastically in terms of cost and movement, as it is
priced over $3000, and must be remote controlled for
movement.

A product with a similar use case to our project is called the
“Polycam Player,” which was developed by Nikon company
MRMC, and is designed to take the place of cameramen who
specifically capture action shots in sports settings [3] [4]. The
system uses face and limb detection to track players and get
close up action shots and video of game play. This project
shares many similarities with our system in terms of using
feature detection to capture quality photos of humans.

Lastly, an article that we found, called “Autonomous Mobile
Robotics Research for Daily-Life Environment,” details the
research of a university team that experimented with multiple
types of robots in different environments [5]. This article was
informative to us, due to its explanation of key functions and
behaviors of indoor, autonomous, mobile robots.

VIII. SUMMARY
We achieved our high level requirement. Across multiple

testing sessions and our final public demo, our robot stopped to
attempt photo capture an average of 41 times per hour.

Table V at the end of this document describes our metrics
and validation from before the final demo.

In order to measure the collision detection mechanism of our
robot, we set it 6 feet away from a human. Then, we ran code
that would have the robot move forward and stop when IR
sensors and thermal sensors were triggered. The distance from
the torso of the human to our robot was measured in each trial.
We also let the robot approach the human from different angles.
We found the average value of our trials was ~18 inches. We
set the IR trigger value to be 18 inches, because even with no
obstacles in front of our robot, the IR sensors was only able to
report a value of 18-20 inches. Increasing our IR trigger value
would result in many more false positives and our robot would
never be able to take a picture. The IR sensors did not meet the
advertised sensing distance, and thus we were not able to satisfy
the success value we set for ourselves. If we had more time, we
would have liked to test different sensors.

In order to measure stopping latency, we allowed the robot
to run its algorithm in front of a human. We used a stopwatch
to measure the time between the program printing that it

detected a human and the robot actually halting. After 10 trials,
we found the average to be around 0.14 sec which is well below
our maximum latency requirement of 1 second.

In order to determine the face detection and photo capture
mechanisms, we allowed our robot to roam the testing
environment until 100 photos were taken. For testing, photos
were taken with a blue rectangle outlined around what OpenCV
identified as a face. The photos were analyzed after the 100
photos were taken, and the percentage of faces correctly
outlined was recorded (face detection) and the percentage of
photos with faces was recorded (photo capture). We found that
out of the 100 photos taken, 83.6% of the faces were correctly
outlined, and 92.7% of the photos had actual faces in them. Face
detection was testing OpenCV accuracy - online documentation
reported a 90-95% accuracy for still images, but since we’re
running it on frames from a continuous stream, we weren’t sure
if OpenCV would still result in the same accuracy. Even though
we lowered our success value, we still found that its accuracy
was lower than what we expected. This difference could be
attributed to poor lighting conditions, camera movement
causing blurriness, and low photo resolution which resulted in
false positives (windows being labeled as faces) and true
negatives (faces that did not get detected). The photo capture
metric was testing the overall robot accuracy, from detecting a
face, adjusting the robot’s position, to actually capturing the
photo. Due to humans moving between face detection and
photo capture, our tested value was lower than our ambitious
100% expected value.

For image margins, we compared the number of rectangles
outlining faces with enough margin (5%+ pixel-count) to the
number of rectangles without enough margins. Our photos have
a resolution of 1296px by 972px. 5% is about 65px for the left
and right margins and about 48px for the top and bottom
margins. We were able to meet our image margin requirement
on 100% of the faces that were accurately identified by
OpenCV.

The following are some of the photos our robot was able to
capture during testing (with the blue rectangles we used to
outline faces that OpenCV detected) and our final public demo:

(a)

18-500 Final Project Report: 05/08/2019

11

(b)

(c)

(d)

(e)

(f)

(g)

18-500 Final Project Report: 05/08/2019

12

(h)

Fig. 7. (a-d) in-lab testing with blue outlines. (e) testing without blue outlines,
multiple faces in 1 frame. (f-h) final public demo without blue outlnes.

Our robot consistently uploaded each photo it captured
which satisfied the margin requirements to a Dropbox folder,
reaching our 100% image upload requirement. As long as a
decent WiFi connection was established on the Raspberry Pi
(which was 100% of the time we were on CMU campus),
anytime our program said a photo was captured and uploaded,
it would appear in the cloud folder.

Apple sent 3 engineers to attend our final demo and was

kind enough to sponsor prizes to award the top teams. Our
team received an Honorable Mention. It was really nice to be
recognized for our hard work and be 1 of the 6 teams invited
to demo to engineers at Apple headquarters in Cupertino over
video-chat.

A. Future work
Given more time to work on Camerazzi, some improvements

we’d like to make include further strengthening of our robot
structure, integrating more reliable and far reaching IR sensors,
using a higher resolution camera, and adding a light ring to
ensure good lighting. In addition, we would like to fine tune our
algorithm to more efficiently adjust the robot’s position before
taking a picture, to reduce the time spent in front of a human,
and increase the number of photos that can be taken in a given
time span.

B. Lessons Learned
We learned a lot of valuable lessons over the past semester.

One that really helped us in terms of budget was scavenging the
parts we needed from other projects, classes, departments.
Having a clear understanding of how long each specific task
will take is also extremely useful to allow for more accurate
scheduling and reduce the risk of any bottlenecks. Because
parts orders are only placed every other day, even delaying the
form submission by a day can put you behind, so don’t
procrastinate on filling out order forms! This will ensure timely
delivery of materials you need and keep you on schedule. One
lesson that’s more specific to our project is to test the sensors
you’re considering before ordering them in bulk to ensure that
they meet your design requirements and to take into account the

method of connection needed for sensors. We had a lot of
problems soldering our sensors and getting good connections
from them and would’ve used other sensors had we known the
ones we ended up getting would be so hard to work with.

REFERENCES
[1] https://www.hackster.io/danimaciasperea/roomberry-surveillance-robot-
Roomba-pi-zero-camera-c056f9
[2] https://www.bhphotovideo.com/c/product/1296165-
REG/double_robotics_1012dr_universal_360_camera_mount.html
[3] https://www.technologyreview.com/the-download/610711/a-robotic-
camera-system-films-sports-like-a-human-does/
[4] https://www.techradar.com/news/nikons-robotic-cameras-are-designed-to-
give-sports-teams-the-competitive-edge
[5] https://www.sciencedirect.com/science/article/pii/S1474667017331099
[6] http://www.cs.cmu.edu/~illah/CLASSDOCS/p331-mumm.pdf
[7] http://www.gkstill.com/Support/crowd-density/CrowdDensity-1.html

18-500 Final Project Report: 05/08/2019

13

TABLE III. BUDGET SPREADSHEET

TABLE IV. PARTS ACQUIRED WITHOUT PURCHASE

Part Source Quantity Unit Price Total Price

Raspberry Pi 3 Model B+ Amazon 1 $42.99 $42.99

Raspberry Pi Camera Module V2 Amazon 1 $24.68 $24.68

Sharp GP2Y0A02YK0F IR proximity sensor RobotShop 17 $13.02 $221.34

Adafruit AMG8833 8x8 Thermal Camera Sensor Amazon 2 $43.99 $87.98

Micro SD Card Amazon 1 $11.39 $11.39

USB extension cord Amazon 1 $7.07 $7.07

Tripod Amazon 1 $14.99 $14.99

Balsa Wood Amazon 1 $12.75 $12.75

Stepper Motor NEMA-17 Adafruit 1 $19.95 $19.95

Motor Breakout Board Adafruit 1 $9.34 $9.34

Camera Ribbon Amazon 1 $7.95 $7.95

Barreljack-to-USB (3-pack) Amazon 1 $5.95 $5.95

PVC Pipe Home Depot 1 $3.93 $3.93

Plywood 12x12x.25 (2-pack) CMU Art Store 1 $9.89 $9.89

Plywood .75”x2’x4’ Home Depot 1 $22.49 $22.49

Part Quantity Contributor

Raspberry Pi 3 Model B 1 ECE Department

Logic-level shifter 2 Ideate Room

iRobot Create 2 w/ USB serial cable 1 Robo Club

Arduino UNO 3 Cornelia, ECE Department

Sharp GP2Y0A02YK0F IR proximity sensor 1 Ideate Room

Soldering protoboard 2 Makerspace

Power bank 3 Mimi, Cornelia, Adriel

18-500 Final Project Report: 05/08/2019

14

TABLE V. METRICS AND VALIDATION

Tested feature Metric Success Value Tested Value

Face detection Percentage of faces detected correctly
in real time

90%+ 83.60%

Photo capture Percentage of photos with faces 100% 92.70%

Image margins Moves to optimal position to ensure
image margins

5%+ margin all the
way around

5%+ margin all the
way around

Collision detection Distance from human when it’s
detected

At least 3 ft away 18 in away

Roomba stopping
latency

Time between human detection and
Roomba halting

< 1 sec < 1 sec

Image transfer Images wirelessly transferred to
designated folders

100% 100%

