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Abstract—This report details the conception and design of an 

autonomous robotic cameraman intended for social gatherings or 
professional events. Hiring a photographer often involves 
unavailability, unreliability, bias, and even latency in delivery of 
the photos. Our solution offers an automated robot that’s always 
available, reliable, and unbiased. In addition, it ensures ample 
margins around faces and delivers photos instantly. Our robot 
does this efficiently with software algorithms, requiring lower 
power and less storage space than other implementations such as 
one that deletes subject-less photos after an event, and 
demonstrates the capabilities and advancements of electrical and 
computer engineering. 
 

Index Terms—Arduino, autonomous, camera, design, face 
detection, GPIO, iRobot, infrared, LCD, motor, OpenCV, 
PyCreate2, robot, Raspberry Pi, Roomba, sensors, thermal 

 

I. INTRODUCTION 
IN this day and age, recording social and professional events 

through photographs is a common occurrence. However, 
cameramen often have high rates as well as busy schedules and 
may sometimes be biased when taking photos. Our project was 
inspired by a problem presented to us by the Robotics Club at 
CMU. This club organizes several events throughout the year 
and they always have trouble booking a photographer because 
of the challenges detailed in the abstract. It is for these reasons 
that student volunteers are typically sought out. As the number 
of volunteers has been steadily declining, we came up with the 
solution of designing a robot that could take on the duties of a 
photographer.  

Camerazzi aims to be an unbiased, available, and reliable 
alternative to the typical cameraman that would be booked for 
an event. Our project provides a solution particularly suitable 
for recurring events due to reduction in costs and the constant 
availability. While other implementations like taking numerous 
snapshots randomly at an event are also viable, our robot uses 
the integration of software and hardware to efficiently take 
photos of the important subjects, the people, at an event. This 
way, we reduce the power consumption required, save storage 
space, and eliminate the need for post-analysis. 
 

II. DESIGN REQUIREMENTS 
In order to measure success for our robot and the pictures that 

it takes, we have defined the following requirements. 
As an overarching requirement, we expect our robot to 

capture a minimum number of photos, with a given room size, 
number of people in the room, speed of the Roomba, and 

duration of time the Roomba is active. By researching standing 
crowd density [7] we have set an ideal crowd density of 1 
people per 4 square meters (1/4 person per square meter). This 
will allow enough room for our robot to roam and capture 
photos at ideal distances. 

To illustrate, we have here a sample space for the robot to 
roam of 2 meters by 4 meters. 

 

 
 
Fig. 1. Sample 2m x 4m space 

Based on room density of 1 person per 4 square meters, there 
should be a maximum of 2 people in this space with our robot. 
To traverse the entire room in the shortest time, assuming that 
the people are at the farthest distance away from each other, the 
path is from point p1 to point p2. 

 
𝑥" = √(2' + 4') = 4.472135955   (Eq. 1) 

 
The robot will move at a speed of 0.05 m/s, the fastest it can 

go without jitter with a structure on top of it. 
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= 89.442719	𝑠 
(Eq. 2) 
 

𝑐𝑎𝑚𝑒𝑟𝑎	𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡	𝑠𝑙𝑎𝑐𝑘	𝑡𝑖𝑚𝑒 = 8	𝑠 
 

𝐿𝐶𝐷	𝑠𝑐𝑟𝑒𝑒𝑛	𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛	𝑡𝑖𝑚𝑒 = 4	𝑠 
 

𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒	𝑓𝑜𝑟	𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑠𝑙𝑎𝑐𝑘	𝑡𝑖𝑚𝑒 
(𝑖. 𝑒. 𝑡𝑢𝑟𝑛𝑖𝑛𝑔,𝑚𝑜𝑣𝑖𝑛𝑔	𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠, 𝑒𝑡𝑐) = 5	𝑠 
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𝑡𝑖𝑚𝑒	𝑒𝑙𝑎𝑝𝑠𝑒𝑑	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	2	𝑝ℎ𝑜𝑡𝑜𝑠
= 𝑡𝑖𝑚𝑒	𝑡𝑜	𝑔𝑒𝑡	𝑓𝑟𝑜𝑚	𝑝"𝑡𝑜	𝑝'
+ 𝑐𝑎𝑚𝑒𝑟𝑎	𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡	𝑠𝑙𝑎𝑐𝑘	𝑡𝑖𝑚𝑒
+ 𝐿𝐶𝐷	𝑠𝑐𝑟𝑒𝑒𝑛	𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛	𝑡𝑖𝑚𝑒
+ 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑠𝑙𝑎𝑐𝑘	𝑡𝑖𝑚𝑒
= 89.442719	𝑠 + 8	𝑠 + 4	𝑠 + 5	𝑠
= 106.442719	𝑠 
(Eq. 3) 

 
 

1	𝑝ℎ𝑜𝑡𝑜
106.44	𝑠 =

𝑧
3600	𝑠 

 
(Eq. 4) 

  
 

𝑧 = 33.82	𝑝ℎ𝑜𝑡𝑜𝑠  (Eq. 5) 
 
Therefore, at least 33 photos should be attempted per hour if 

the room density is 1/4 person per square meter. Not all of these 
photos need to be uploaded to the cloud - only those that satisfy 
other low-level requirements. We simply want our robot to stop 
at least 33 times per hour and attempt to capture photos (which 
we will be able to determine based on print statements). 

This requirement is imperative to the success of our project, 
as the main function of our robot is the ability to take photos at 
an event, so photos captured act as a key success factor of our 
project. 

Our first low-level requirement is that the robot must be at 
least 3 feet away from humans in front of it. We set this 
requirement because academic papers such as Mumm & 
Mutlu’s Human-Robot Proxemics [6] describe a comfortable 
distance between robots and humans as being approximately 3 
feet. We will evaluate this requirement by laying out a 
measuring tape in front a stationary person, setting the robot to 
move towards the person, and checking to see how far the robot 
stops from the person. 

Another requirement we’ve established is that robot stopping 
latency must be less than 1 second. We set this as our maximum 
latency because we want our robot to move at a speed of 50 mm 
per second. In our software, we will be detecting when the robot 
is 3 feet away from a human. If it moves 50mm within the 1 
second latency, it is a negligible amount and the robot is still 
approximately 3 feet away. We will evaluate this requirement 
by recording the time that a stop command is sent to the robot, 
and the time that the robot actually stops. 

The next requirement we’ve set is that the robot must be able 
to detect 90% of human faces in real time. We’ve set it to this 
value because we have found that using this algorithm on still 
images typically achieves a 95% success rate. But since we’re 
using this algorithm on continuous video, we’ve slightly 
lowered the success rate to 90%. We will evaluate this 
measurement by manually counting the number of faces our 
algorithm detects at points in time during the demo, and 
dividing it by the number of faces that were actually present in 
the frames. 

Another requirement we’ve set is that 100% of the photos 
taken must include a human. We have set this requirement 
because we don’t want our robot to take extraneous photos 

when it should be spending its time taking useful photos. This 
is consistent with our decision to use this implementation, as 
opposed to one where take many photos and delete the ones that 
are not usable. We will evaluate this requirement by examining 
every picture taken at the demo and confirming that there is a 
human in the photo.  

Our next requirement is that every photo must have a 5% 
margin between the borders of the face and the borders of the 
image. This is to ensure that no heads get cut off when the 
picture is taken. We will evaluate this requirement similarly to 
the previous requirement by examining every picture taken at 
the demo and confirming that there is a 5% margin between the 
face borders and the image borders.  

The next requirement is that the width of each face in the 
image must be at least 10% of the width of the image. We came 
up with this figure because after examining many photos, a face 
width that is 10% of the image is characteristic of a decent 
picture. Any less than this would mean that the person’s face is 
out of focus in the shot, and it will appear as though we have 
taken a random picture. This requirement, in addition to our 
margin requirement, contributes toward the consistency aspect 
we wanted for our project. We will evaluate this requirement by 
examining every picture taken at the demo and confirming that 
the face width is at least 10% the width of the image. 

Another requirement we’ve established is that 100% of the 
photos taken should be sent to the cloud folder over WiFi. 
We’ve set this requirement to ensure that our users received all 
the photos that were taken. This also helps us achieve the instant 
access to photos aspect we wanted for our robot. We will 
evaluate this requirement by recording the number of photos 
taken at the demo, and comparing it to the number of photos 
sent to the cloud folder. Originally we were attempting to use 
Google Drive, however, Dropbox is another platform with 
equivalent services that had easier integration, so we pivoted 
our solution towards using Dropbox instead. 

Our final product’s success values are discussed in the final 
section of this report called Summary. 
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III. ARCHITECTURE AND PRINCIPLE OF OPERATION 
Below are diagrams of our system. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 2. System picture. (a) overall system. (b) zoom-in of top tower. (c) bird’s-
eye view of the tower’s 2 platforms 

For our mobile robot, the iRobot Create 2 Programmable 
Robot acts as the moving base, using its 6 built-in IR sensors to 
detect walls. 

Our software-related system architecture revolves around the 
use of a Raspberry Pi, which is the controlling computer for the 
entirety of our software components. Hosted on the Raspberry 
Pi, are our motion control, image optimization, and collision 
detection software algorithms. Specifically, we used the 
PyCreate2 library to program the movement of the roomba. For 
photo optimization, we used OpenCV datasets on frames from 

a continuous video stream at 30fps to detect faces and ran our 
custom algorithm to determine when and where to capture 
photos. In addition, we used three Arduino UNOs to receive and 
process the thermal camera sensor and IR sensor signals over 
GPIO pins which relayed the data to the Raspberry Pi. 

For photo capture, we used the Raspberry Pi Camera Module, 
which easily integrates onto the Raspberry Pi and is able to 
capture 8MP photos. 

For collision detection, we originally intended to use 2 
thermal cameras (1 facing the front, 1 facing the back) and 18 
IR sensors. Since the design report, we pivoted to only using 1 
thermal camera sensor and 12 IR sensors to detect when people 
or objects are in close proximity, so that our robot can stop 
moving and avoid collisions. We reduced the number of sensors 
because stacking them were getting to be too unstable. In 
addition, we realized we didn’t need the back-facing thermal 
camera anymore - if our robot attempts to move back to adjust 
for margins, it only needs to know if something is there, human 
or not. In our final product, 6 IR sensors face forward and 6 IR 
sensors face backwards to detect objects when the robot moves 
forwards and backwards, and the single thermal camera sensor 
sits at the front of the robot just under the center IR sensors to 
determine when a human is in front of the robot. 

For further control over image capabilities, we used a stepper 
motor and a custom-built wooden track for our camera to move 
up and down as specified by our image optimization algorithm. 
Our Raspberry Pi communicates with the stepper motor using 
the Arduino and GPIO pins as its communication channel. Our 
design report initially stated we would be using a telescoping or 
scissor-lift mechanism to move our camera up, however, this 
proved to be difficult and expensive to obtain. We created our 
own custom motorized camera track instead. 

Lastly, we used an LCD screen, connected to the Raspberry 
Pi, to display a countdown prompt to indicate when a photo is 
about to be captured. 

The block diagram on the next page (Fig. 3) demonstrates all 
of the above described components, as well as how they 
communicate and how information flows in our system. 
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Fig. 3. Block Diagram with key 

  



18-500 Final Project Report: 05/08/2019 
 

5 

IV. DESIGN TRADE STUDIES 
We decided to use the Sharp GP2Y0A02YK0F IR proximity 

sensor for obstacle detection because it was advertised as 
reliably providing data between a range of .5 feet to 5 feet. Since 
we are looking for obstacles within 3 feet, this sensor shows a 
clear advantage over other IR proximity sensors such as the 
UNCL4010 proximity sensor, which can only accurately detect 
collisions up to 7.5 inches away. We also found that this 
sensor’s ability to bounce reflective light off the clothes of a 
human make it better than ultrasonic sensors. We put 2 IR 
proximity sensors on 6 different positions along our robot. We 
kept track of each last value reported by each sensor, and 
utilized a voting system between the 2 sensors in each position. 
We only acknowledged an IR trigger signal if it was high for 2 
iterations of the sensor processing loop, and if both IR sensors 
in the same position were triggered. Doing this allowed us to 
reduce the chance of encountering outlier data coming from a 
sporadic sensor that occasionally exhibits erratic behavior. We 
decided on 6 IR sensor positions because we needed 2 facing 
front on the left, center, and right; and 2 facing back on the left, 
center and right. Since the robot would only need to move 
forward or backwards, we reasoned that we would only need to 
account for these 2 directions. The left, center, and right 
placements are meant to account for collisions that would 
happen either directly in front of/behind the robot, or at the 
edges of the robot. So with the 2 sensors per position, and 6 
position on the robot, we needed 12 IR sensors.  

In addition to the IR proximity sensor, we will be using the 
Adafruit AMG8833 8x8 Thermal Camera Sensor. We selected 
this particular sensor because it is able to detect heat signatures 
a far distance away (ie. up to 23 feet) and it has a fairly decent 
field of view (ie. 60°). This sensor was used in conjunction with 
our IR sensors to distinguish inanimate obstacles (eg. wall) 
from humans. For our collision detection mechanism, we need 
the IR proximity to detect for collisions, and we need the 
thermal camera sensor to determine whether that collision is a 
human or an object. We decided that we only needed one 
thermal camera sensor because only need to detect for humans 
in front of our robot. With the 60° field of view, we can capture 
what is seen by the 6 IR proximity sensors facing forward. 

 This diagram (Fig. 4) describes how we planned for the 
sensors to be positioned (red rectangles are the thermal camera 
sensors while yellow squares are the IR sensors). Refer to Fig. 
2b and Fig. 2c for our final placement of sensors. 

 
Fig. 4. Old sensor placement. 

The distance between the intersection of the thermal camera 
sensor’s field of view and the IR proximity sensor’s field of 
view must be less 29.5” (36” - 6.5”). This is to ensure that the 
thermal camera will detect anything that is 36” away from the 
left or right IR proximity sensors. Our original design had our 
thermal camera sensor closer to the center of the robot, but even 
if we move our sensor to the front edge of the robot, we can 
meet this distance requirement. We know the angle between the 
right IR proximity sensor and the right side of the thermal 
camera’s field of vision is 60°, and that distance between the IR 
sensor and the thermal camera sensor is 6.5”, we can determine 
that the intersection point is 11.2583” away, which is less than 
29.5”. Thus we can conclude, that we only need one thermal 
camera sensor per direction. 

 
a = 13”    (Eq. 6) 
b = 11.2583” (Eq. 7) 
 
We had enough slack such that even after we pivoted the 

number of thermal sensors and moved the placement to the 
front instead of the center of the platform, the thermal camera 
and side IR sensors still intersect when a person is 3 ft away 
from the robot. 

We decided to use 3 Arduino UNOs: 2 for IR sensor signal 
processing, and 1 for thermal camera signal processing, camera 
motor control, and LCD screen control. By putting signal 
processing on the Arduinos we are able to free up the Raspberry 
Pi’s computational power for image processing which needs to 
be as fast as possible. The Arduino UNO has 6 pins for 
transmitting analog data, and since we are using 12 IR 
proximity sensors for collision detection, we need 2 Arduinos 
for that. Since LCD screen control and thermal camera signal 
communication happens over I2C, the final Arduino has enough 
pins for thermal camera signal processing, camera motor 
control, and LCD screen control.  

We decided to use the Raspberry Pi 3 Model B, because it is 
WiFi and Bluetooth capability. By having WiFi capability, we 
are able to easily debug our code by simply powering the 
Raspberry Pi on campus and being on the CMU-DEVICE 
network. By having Bluetooth capability, we can pair our 
motorized stick with our Raspberry Pi, in order to move the 
camera up and down. This model also has a CSI port which 
allows us to seamlessly integrate our Camera module. Lastly, 
this model has the most USB ports (ie. 4), which works 
perfectly because we will need 4 ports to connect to the 3 
Arduinos and the Roomba.  

We decided to use the Raspberry Pi Camera Module V2 
because of its ability to take 8 MP pictures, which we deemed 
sufficient for our purpose. 

 

V. SYSTEM DESCRIPTION 

A. Flow 
Although there are many different scenarios we have 

considered to be potential contexts for our robot, the behavior 
follows a general pattern of roaming, sensing for humans, 
adjusting, and capturing a photo. More specifically, Camerazzi 
begins roaming in a straight path until it either senses a human 
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or collides with a wall or other object, using its thermal and ir 
sensors. In the case that Camerazzi senses a human, it uses 
OpenCV and the Raspberry Pi camera to scan for faces in view, 
moving the camera up and down. If faces are not detected, the 
robot will turn and continue roaming. 

If one or more faces are detected, our algorithm runs a series 
of calculations to determine if the photo should be taken and 
how the robot should adjust its position and camera height. The 
details of this algorithm are detailed in Section C where we 
describe our photo optimization subsystem. Before photo 
capture, we display an output of “3...2...1… Smile! =)” onto an 
LCD screen mounted on the front of our robot to inform the 
subjects of the photo that a photo will be taken. In the case that 
Camerazzi collides with a wall or other object, it rotates by 
increments of 60º to the opposite direction and continues 
moving. Lastly, photos are immediately transferred to a 
Dropbox folder after they’re captured. 

Below we dive deeper into the specifics of each subsystem 
which allow us to achieve this overall behavior. 

B. Susbsytem – Roomba Movement 
Our robot moves via the Roomba as its base, communicating 

with the Raspberry Pi controller over Mini Din. In doing so, we 
must account for collisions with any object or wall and redirect 
the robot before contact. For collisions, the Roomba has built-
in sensors we are utilizing. The table (Table I) below displays 
the sensors we interacted with and the range of their values that 
the sensor is able to provide. 

TABLE I.  RELEVEANT ROOMBA SENSORS 

Sensor Range Index 

bumps_wheeldrops [0-15] 0 

light_bumper_left [0-4095] 36 

light_bumper_front_left [0-4095] 37 

light_bumper_center_left [0-4095] 38 

light_bumper_center_right [0-4095] 39 

light_bumper_front_right [0-4095] 40 

light_bumper_right [0-4095] 41 

 
Using these sensors, our robot can detect a wall or floor 

barrier before it bumps into it. In order to avoid forces that may 
shake our robot structure upon collision, we wanted the robot 
to stop at least 1 cm away from walls. In addition, the robot 
should be rerouted by turning and moving forward away from 
the wall it just detected, thus avoiding contact and continuing 
its mission of taking photos. 

The bumps_wheeldrops sensor’s 0th and 1st bits are binary 
indicators for the state of the left and right bumpers. These 
should remain 0 throughout our robot’s operation to avoid 
actually hitting a wall or object and shaking the robot. Because 
IR sensors are unreliable against certain materials as well as 

while the object in front of it is moving, the Roomba is 
sometimes unable to detect feet that are walking near it. This 
means that our robot has the potential to bump into people, 
especially on the sides where no IR sensors at the top of the 
robot are detecting obstacles. In this scenario, any time 
bumps_wheeldrops returns anything that is not a 0, meaning 
that the bumper was pressed and contact has been made, the 
robot pivots 180º and moves directly away. 

There is a series of light_bumper values that returns data for 
each of the six sensors built into the Roomba, facing the front. 
Each of these sensors uses IR to retrieve the distance between 
it and the object it’s detecting. The sensors are orientated in this 
way: 

 

 
Fig. 5. Roomba sensor locations. 

Setting 0º as directly center forward, the leftmost sensor is at 
-40º. Moving from left to right, the next sensor is at -20º, and 
the next sensor is at -7º. To the right of center, the next sensor 
is at 16º, then there is another sensor at 32º, and the last 
rightmost sensor is at 66º. Our goal in knowing the precise 
locations of these sensors is to turn 60º away from the sensor 
that gets triggered. More specifically, if it’s any of the 3 sensors 
on the left that is triggered, the robot will turn 60º to the right 
from that sensor. If it’s any of the 3 sensors on the right that is 
triggered, the robot will turn 60º to the left from the sensor. 
After turning away, it drives straight. This angle choice was to 
keep in accordance with the human collision detection 
algorithm as well as allow the robot enough angle to move 
forward without sensing or hitting the same wall (unless the 
robot is in a corner, then it might have to turn more times to 
move out of the corner). 



18-500 Final Project Report: 05/08/2019 
 

7 

In accordance with the flow of Camerazzi, our robot will use 
the IR light bumper sensor values to turn and try a new path. 
Since the thermal camera sensors have a 60° field of view, the 
robot will turn right 60° to get a new view without overlap of 
the old view in order to scan for high human-like thermal 
signals. In essence, the robot will attempt to avoid detecting the 
same humans and taking their photos over and over. The robot 
should attempt to move towards a thermal signal to take photos 
of humans. If it repeatedly senses a wall, it will continue to turn 
to the right 60° at a time until it no longer senses a wall or 
object, and/or senses a human through thermal readings, and 
has a clear path to move forward. It is not turning 180° and 
simply moving away from the wall or obstacle because this may 
result in the robot bouncing back and forth along the same 
straight path in the room if its path just so happens to be 
unobstructed. 

A major portion of our robot is detecting humans, for both 
taking photos of and avoiding collisions between our robot and 
humans. This section will outline the avoidance of collisions. 
(Refer to Photo Optimization Subsystem for description of 
detecting humans for purposes of taking photos.) 

The robot uses both IR and thermal camera sensors for 
human detection, with the IR sensors’ output pin connecting to 
analog pins on the Arduino (GPIO) and the thermal camera 
sensors communicating over I2C with the Raspberry Pi. There 
are 3 sets of sensors facing the front of the robot and 3 sets of 
sensors facing the back of the robot (more details about number 
of sensors in Trade Design section). With the 13-inch diameter 
of the Roomba, having one set of sensors on the left-most side, 
one set in the middle, and one set on the right-most side will be 
able to detect any human that is standing in front of or behind 
the Roomba, even if the human is positioned perpendicular to 
the sensors. After detecting something is in front of the 
Roomba, the values we get from the IR sensors tell us the 
distance the human is away. The goal was to stop at least 3 feet 
away from any human (refer to Design Requirements section). 
Knowing that these voltages correspond with these output 
values from the IR sensors through the Arduino: 

TABLE II.  IR SENSOR VOLTAGE CORRELATION 

 

 

 
 

 
then 1 V corresponds to a value of 204.6 form the IR sensor 
through the Arduino. 
 

3	feet	 = 	91.44	cm  (Eq. 8) 
 

2.5	𝑉 − 0.4	𝑉
150	𝑐𝑚 − 20	𝑐𝑚 =

21	𝑉
130	𝑐𝑚 = 0.01615385	𝑉/𝑐𝑚 

 
(Eq. 9) 
 

0.01615385
𝑉
𝑐𝑚 × 91.44	𝑐𝑚 = 1.47710804	𝑉 

(Eq. 10) 
 

1.47710804	𝑉	 × 	204.6 = 302.216304	 ≈ 302 
(Eq. 11) 

 
So once we get an output value of 302 from any of the IR 

sensors, the thermal camera sensor will then assist in 
determining if it’s actually a human or if it’s just a wall. If the 
data from the thermal camera tells us there’s heat signature, the 
robot will stop and take a photo based on the Photo 
Optimization subsystem description. The camera has about a 
60° field of view, so after it takes a photo, the goal is for it to 
discover a whole new view in order to detect and take photos of 
new subjects. Thus, after it takes a photo, it will rotate 60° to 
start with a new field of view. The robot will alternate turning 
left and right 60° in order to avoid going in circles if no bodies 
are detected. 
 Unfortunately, our IR sensors ended up only being able to 
detect around 18-20 inches, which is a lot lower than their 
documentation reported. 

After a human is detected and the camera feed is analyzed, 
adjust according to instructions from photo optimization 
algorithm (see Photo Optimization Subsystem for details). 

C. Subsystem – Photo Optimization Algorithm 
Another main subsystem of Camerazzi is the photo 

optimization algorithm which determines when and where 
photos are captured. Specifically, our photo optimization 
algorithm uses data from the camera, thermal camera sensor, 
and IR sensors to determine whether it is in the right position to 
take a photo at a given time. As a result of the data, the robot 
moves forward or back, and the camera moves up and down on 
our motorized track, in order to satisfy our requirements for 
ideal photos. The thermal and IR sensors are used to identify 
when we believe there is a human in view of the robot. When a 
human is detected, the roomba stops and our face detection 
algorithm begins searching for faces using live video data from 
the camera.  

If faces are detected, our photo optimization algorithm 
checks multiple parameters to determine how to adjust and 
capture the photo. First, we check if all faces are above the 
minimum width requirement of 10% image width. As a second 
check, we determine whether or not there is enough margin 
(10% image width) around all faces. If either of these 
requirements are not met, we adjust the position of the Roomba 
to attempt to satisfy them. For example, the Roomba moves 
forward if a given face width is too small, and backwards if the 
face width is too large. Similarly, if there is too little margin 
around a face to the left or right, the Roomba moves backwards, 
and if there is too much margin, the Roomba moves forwards. 
Lastly, if there is too little margin above or below a face, the 
motorized stick moves up or down accordingly. Due to the fact 
that adjusting to one constraint affects the value of the other 
variables, we have come up with a protocol that allows us to 
determine how the robot adjusts, or if it should turn and 
continue moving because the requirements cannot be satisfied. 
In the order of face width, horizontal margin, then vertical 
margin, Camerazzi adjusts its position or camera height slowly 
until the requirement is satisfied. After the given requirement is 

Voltage output from IR sensor through Arduino 

0 V 0 

5 V 1023 
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satisfied, we check if earlier requirements were made invalid 
due to the following adjustments. In that case, the ideal photo is 
not possible by our requirements, so Camerazzi turns and 
continues roaming. This protocol for adjusting the robot for 
ideal image capture provides a straightforward approach to 
handling edge cases and determining whether photos should be 
taken or not. 

D. LCD Screen and Motorized Camera Track 
Other components in our system include the LCD display and 

the motorized stick. 
The LCD display is the robot’s way of communicating to the 

people in front of it that it is going to take a picture. It is 
connected to an Arduino over the I2C interface and will go 
through the following sequence: “3!”, wait 1 second, “2!”, wait 
1 second, “1!”, wait 1 second, “SMILE!” By providing this 
feedback to the human, the human will know when the photo 
has been taken.  

The motorized camera track is a motor pulling on a string 
attached to the Raspberry Pi camera and will be used to adjust 
the camera’s position to 3 different positions. These different 
positions assist in meeting the 5%+ margin requirement on the 
top and bottom of the image. If the bottom margin does not meet 
the 5% requirement, the Raspberry Pi will send a signal to the 
Arduino instructing the motor to pull up on the camera. 
Likewise, if the top margin does not meet the 5% requirement, 
the Raspberry Pi will send a signal to the Arduino instructing 
the motor to push the camera down. The camera will slide along 
a track on top of our robot to ensure that the camera doesn’t 
wiggle from side to side.  

E. Power 
The iRobot Create 2 will be powered by its accompanying 

battery, which has a battery life of 3.5 hours. 
Originally, we were going to have the Raspberry Pi supply 

power to the motor, the LCD screen, the sensors, the camera, 
and the Arduinos. Instead, we used a 3 10000 mA/h batteries to 
power everything. The battery powering our Raspberry 
Pi,  camera module, one Arduino, the motor, the thermal sensor, 
and LCD screen dissipated power most quickly. With the 
Raspberry Pi and camera module with Wifi and Bluetooth on 
using 550 mA, the motor using 350 mA, the LCD screen using 
120 mA, the thermal sensor using 50 mA, and an Arduino using 
50 mA, we find maximum consumption was to be 1120 mA. 
With an ideal version of the batteries, we could provide power 
for a little bit over 9 hours. With a version that is 50% efficient, 
we will still be able to power our devices over 4.5 hours which 
is sufficient for our purposes. 

 

VI. PROJECT MANAGEMENT 

A. Schedule 
Leading up to the mid semester demo, our schedule followed 

our initial Gantt chart very closely. The only task we had to add 
was doing some assembly of our robot before the demo, which 
we hadn’t initially accounted for. In addition, it took a little 
longer than expected for the LCD screen integration, Roomba 
movement, and collision detection, however we were able to 

finish all of the tasks before the mid semester demo. As a result 
of those extended tasks, we had to push back our task for 
adjusting based on image margins until after the mid semester 
demo. We were able to catch up on this task by working 
together in the following week. Lastly, due to structure 
redesigns, we had to spend a significant amount of time 
rebuilding the base of our robot structure leading up to the final 
demo, which left us less time for testing. We also had to add 
tasks for our demo barriers and final preparation before our 
public demo. 

A simplified version of our Gantt chart is on the next page 
(Fig. 6). 

B. Team Member Responsibilities 
Mimi 

As a software engineer, Mimi was responsible for the face 
detection portion of this project using OpenCV and NumPy on 
the Raspberry Pi. She also did image analysis to determine the 
margins of the current frame and send that data to Cornelia to 
move the base of the robot for adjustments. After movement, 
Mimi checked the margins again and then ultimately captured 
the photo. Then, she transmitted the photo to a Dropbox folder 
over wifi. Due to the complexity and scale of the physical 
structure of the robot, Mimi ended up doing a lot of construction 
as well - from cutting wood to fitting pieces together to 
soldering and wiring IR sensors to assembling the entire 
structure. 

 
Cornelia 

As a software engineer, Cornelia was responsible for the 
Roomba movement portion of this project as well as overall 
integration of sensor data and the photo optimization algorithm. 
Using PyCreate2, an iRobot Roomba opcode library, she 
programmed the Roomba’s initial movement, processing 
thermal and IR sensor data for human collision detection in 
order to stop, and processing face detection/margin data from 
Mimi to adjust the Roomba’s position. Due to the complexity 
and scale of the physical structure of the robot, Cornelia ended 
up helping with soldering, construction, and assembly as well. 

 
Adriel 

As a hardware engineer, Adriel was responsible for setting 
up the Raspberry Pi and Arduinos. He programmed the 
Arduinos to receive sensor data and send GPIO signals to the 
Raspberry Pi. More importantly, he was responsible for all the 
interconnects between the components of this project - the 
wiring of the Arduinos’ GPIO pins to the Raspberry Pi which 
involved using logic-level shifters. He also worked on building 
and assembling the physical structure of the robot, including the 
motorized camera track, LCD display enclosure, soldering of 
IR sensors, laser-cutting the attachments between the Roomba 
and the robot’s top. 
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Fig. 6. Gantt chart 

C. Budget 
Our budget spreadsheet is located at the end of this report 

(Table III). Parts that we acquired without purchased is also 
located at the end of this report (Table IV). 

Notable tools we used to accomplish our project include 
soldering iron, laser-cutter, band saw, wood filers, Visual 
Studio Code, and Arduino IDE. 

D. Risk Management 
There were a few major design risks that arose throughout 

the semester, relating to proximity sensing, robot stability, and 
photo quality. One of the most challenging elements of our 
project was finding a way to get accurate and reliable proximity 
sensor data. Throughout the semester, we had to mitigate the 
risk of our robot not being able to detect collisions with objects 
and people by finding the right proximity sensors and 
continually doing testing and improving our software. Some 
specific ways we mitigated against this risk included having 
backup ways to sense proximity (ultrasonic, IR, OpenCV), 
removing outlying data, and comparing sensor values in time 
and physical proximity to get more reliable data. We also 
soldered our IR sensor wires to a soldering protoboard before 
transporting our robot to ensure that connections would remain 
intact. 

Another significant risk we faced was the stability of our 
robot. After testing with our initial design approach of a tripod 
base, we determined that the tripod would be too unstable to 
support our hardware components on the top of the robot. As a 
result, we had to redesign our structure to mitigate the risk of 
our robot falling over during activity. We did so by using wood, 
which is thicker and more sturdy than the thin plastic tripod 
legs, to construct a base with increased surface area on top and 
bottom. We also introduced padding and used hot glue to secure 
any loose or wobbly areas. 

Lastly, photo quality was a risk that arose during testing as 
we came across blurry, crooked, and dark photos. To mitigate 
the risk of such photos being captured, we tried to address each 
of the source problems including poor lighting, camera 
position, and robot stability. First, we tested in our demo space 
to ensure there would be appropriate lighting. We also 
introduced pauses in our program to allow our camera time to 
focus on subjects. Lastly, as stated above, we improved our 
robot’s stability to avoid blurriness of photos. 

The design risks mentioned above introduced some schedule 
related risks, as we had to adjust our tasks and catch up on work 
as we updated our design. To mitigate any risks of not meeting 
the deadlines we’d set for ourselves in our Gantt chart, we 
worked outside of class each week to catch up on additional 
tasks that had yet to be completed. We also worked as a team 
and helped each other accomplish any tasks that were taking 
longer than expected. In addition, we updated our Gantt chart 
weekly to accurately demonstrate our completed and scheduled 
work so that we could stay on track and plan for the future more 
precisely. Fortunately, we had no major risks related to our 
budget, as we were able to borrow many resources from around 
campus. 
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VII. RELATED WORK 
A similar project we found when doing research for our 

project is called the “Roomberry Surveillance Robot,” which 
uses a Roomba, and Raspberry Pi Zero, and a camera, to send 
video through a web interface [1]. This project has many 
similarities to our project in terms of the hardware components 
it uses, and the functionalities it achieves such as a movable 
camera, saving photos, and serving up photos through Wi-Fi. 
However, this project lacks a lot of the more complex features 
we hope to include, such as optimizing photos and the Roomba 
position for human faces, and taking care of collision detection.  

A similar product we found on the market is the “Double 
Robotics Double 2 Telepresence Robot,” which is used for 
virtual interaction with remote individuals [2]. This robot is 
similar to our robot in shape and size, as well as the capability 
to take photos with a 5MP camera. However, this telepresence 
robot varies drastically in terms of cost and movement, as it is 
priced over $3000, and must be remote controlled for 
movement. 

A product with a similar use case to our project is called the 
“Polycam Player,” which was developed by Nikon company 
MRMC, and is designed to take the place of cameramen who 
specifically capture action shots in sports settings [3] [4]. The 
system uses face and limb detection to track players and get 
close up action shots and video of game play. This project 
shares many similarities with our system in terms of using 
feature detection to capture quality photos of humans. 

Lastly, an article that we found, called “Autonomous Mobile 
Robotics Research for Daily-Life Environment,” details the 
research of a university team that experimented with multiple 
types of robots in different environments [5]. This article was 
informative to us, due to its explanation of key functions and 
behaviors of indoor, autonomous, mobile robots. 

VIII. SUMMARY 
We achieved our high level requirement. Across multiple 

testing sessions and our final public demo, our robot stopped to 
attempt photo capture an average of 41 times per hour. 

Table V at the end of this document describes our metrics 
and validation from before the final demo. 

In order to measure the collision detection mechanism of our 
robot, we set it 6 feet away from a human. Then, we ran code 
that would have the robot move forward and stop when IR 
sensors and thermal sensors were triggered. The distance from 
the torso of the human to our robot was measured in each trial. 
We also let the robot approach the human from different angles. 
We found the average value of our trials was ~18 inches. We 
set the IR trigger value to be 18 inches, because even with no 
obstacles in front of our robot, the IR sensors was only able to 
report a value of 18-20 inches. Increasing our IR trigger value 
would result in many more false positives and our robot would 
never be able to take a picture. The IR sensors did not meet the 
advertised sensing distance, and thus we were not able to satisfy 
the success value we set for ourselves. If we had more time, we 
would have liked to test different sensors. 

In order to measure stopping latency, we allowed the robot 
to run its algorithm in front of a human. We used a stopwatch 
to measure the time between the program printing that it 

detected a human and the robot actually halting. After 10 trials, 
we found the average to be around 0.14 sec which is well below 
our maximum latency requirement of 1 second. 

In order to determine the face detection and photo capture 
mechanisms, we allowed our robot to roam the testing 
environment until 100 photos were taken. For testing, photos 
were taken with a blue rectangle outlined around what OpenCV 
identified as a face. The photos were analyzed after the 100 
photos were taken, and the percentage of faces correctly 
outlined was recorded (face detection) and the percentage of 
photos with faces was recorded (photo capture). We found that 
out of the 100 photos taken, 83.6% of the faces were correctly 
outlined, and 92.7% of the photos had actual faces in them. Face 
detection was testing OpenCV accuracy - online documentation 
reported a 90-95% accuracy for still images, but since we’re 
running it on frames from a continuous stream, we weren’t sure 
if OpenCV would still result in the same accuracy. Even though 
we lowered our success value, we still found that its accuracy 
was lower than what we expected. This difference could be 
attributed to poor lighting conditions, camera movement 
causing blurriness, and low photo resolution which resulted in 
false positives (windows being labeled as faces) and true 
negatives (faces that did not get detected). The photo capture 
metric was testing the overall robot accuracy, from detecting a 
face, adjusting the robot’s position, to actually capturing the 
photo. Due to humans moving between face detection and 
photo capture, our tested value was lower than our ambitious 
100% expected value. 

For image margins, we compared the number of rectangles 
outlining faces with enough margin (5%+ pixel-count) to the 
number of rectangles without enough margins. Our photos have 
a resolution of 1296px by 972px. 5% is about 65px for the left 
and right margins and about 48px for the top and bottom 
margins. We were able to meet our image margin requirement 
on 100% of the faces that were accurately identified by 
OpenCV. 

The following are some of the photos our robot was able to 
capture during testing (with the blue rectangles we used to 
outline faces that OpenCV detected) and our final public demo: 

 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 
 

 
(f) 
 

 
(g) 
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(h) 

Fig. 7. (a-d) in-lab testing with blue outlines. (e) testing without blue outlines, 
multiple faces in 1 frame. (f-h) final public demo without blue outlnes.  

Our robot consistently uploaded each photo it captured 
which satisfied the margin requirements to a Dropbox folder, 
reaching our 100% image upload requirement. As long as a 
decent WiFi connection was established on the Raspberry Pi 
(which was 100% of the time we were on CMU campus), 
anytime our program said a photo was captured and uploaded, 
it would appear in the cloud folder. 

 
Apple sent 3 engineers to attend our final demo and was 

kind enough to sponsor prizes to award the top teams. Our 
team received an Honorable Mention. It was really nice to be 
recognized for our hard work and be 1 of the 6 teams invited 
to demo to engineers at Apple headquarters in Cupertino over 
video-chat. 

A. Future work 
Given more time to work on Camerazzi, some improvements 

we’d like to make include further strengthening of our robot 
structure, integrating more reliable and far reaching IR sensors, 
using a higher resolution camera, and adding a light ring to 
ensure good lighting. In addition, we would like to fine tune our 
algorithm to more efficiently adjust the robot’s position before 
taking a picture, to reduce the time spent in front of a human, 
and increase the number of photos that can be taken in a given 
time span. 

B. Lessons Learned 
We learned a lot of valuable lessons over the past semester. 

One that really helped us in terms of budget was scavenging the 
parts we needed from other projects, classes, departments. 
Having a clear understanding of how long each specific task 
will take is also extremely useful to allow for more accurate 
scheduling and reduce the risk of any bottlenecks. Because 
parts orders are only placed every other day, even delaying the 
form submission by a day can put you behind, so don’t 
procrastinate on filling out order forms! This will ensure timely 
delivery of materials you need and keep you on schedule. One 
lesson that’s more specific to our project is to test the sensors 
you’re considering before ordering them in bulk to ensure that 
they meet your design requirements and to take into account the 

method of connection needed for sensors. We had a lot of 
problems soldering our sensors and getting good connections 
from them and would’ve used other sensors had we known the 
ones we ended up getting would be so hard to work with. 
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TABLE III.  BUDGET SPREADSHEET 

 

TABLE IV.  PARTS ACQUIRED WITHOUT PURCHASE 

 
  

Part Source Quantity Unit Price Total Price 

Raspberry Pi 3 Model B+ Amazon 1 $42.99 $42.99 

Raspberry Pi Camera Module V2 Amazon 1 $24.68 $24.68 

Sharp GP2Y0A02YK0F IR proximity sensor RobotShop 17 $13.02 $221.34 

Adafruit AMG8833 8x8 Thermal Camera Sensor Amazon 2 $43.99 $87.98 

Micro SD Card Amazon 1 $11.39 $11.39 

USB extension cord Amazon 1 $7.07 $7.07 

Tripod Amazon 1 $14.99 $14.99 

Balsa Wood Amazon 1 $12.75 $12.75 

Stepper Motor NEMA-17 Adafruit 1 $19.95 $19.95 

Motor Breakout Board Adafruit 1 $9.34 $9.34 

Camera Ribbon Amazon 1 $7.95 $7.95 

Barreljack-to-USB (3-pack) Amazon 1 $5.95 $5.95 

PVC Pipe Home Depot 1 $3.93 $3.93 

Plywood 12x12x.25 (2-pack) CMU Art Store 1 $9.89 $9.89 

Plywood .75”x2’x4’ Home Depot 1 $22.49 $22.49 

Part Quantity Contributor 

Raspberry Pi 3 Model B 1 ECE Department 

Logic-level shifter 2 Ideate Room 

iRobot Create 2 w/ USB serial cable 1 Robo Club 

Arduino UNO 3 Cornelia, ECE Department 

Sharp GP2Y0A02YK0F IR proximity sensor 1 Ideate Room  

Soldering protoboard 2 Makerspace 

Power bank 3 Mimi, Cornelia, Adriel 
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TABLE V.  METRICS AND VALIDATION 

 

 

 

 

Tested feature Metric Success Value Tested Value 

Face detection Percentage of faces detected correctly 
in real time 

90%+ 83.60% 

Photo capture Percentage of photos with faces 100% 92.70% 

Image margins  Moves to optimal position to ensure 
image margins 

5%+ margin all the 
way around 

5%+ margin all the 
way around 

Collision detection Distance from human when it’s 
detected 

At least 3 ft away 18 in away 

Roomba stopping 
latency 

Time between human detection and 
Roomba halting 

< 1 sec < 1 sec 
 

Image transfer Images wirelessly transferred to 
designated folders 

100% 100% 


