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Abstract— This report details the conception and design of 

an autonomous robotic cameraman intended for social 
gatherings and/or professional events. Hiring a photographer 
often involves unavailability, unreliability, intrusiveness, bias, 
and even latency in delivery of the photos. 

 Our solution offers an automated robot that’s always 
available, reliable, nonintrusive, and unbiased. In addition, it 
ensures ample margins around faces and delivers photos 
instantly. Our robot does this efficiently with software 
algorithms, requiring lower power and less storage space than 
other implementations such as one that deletes subject-less 
photos after an event, demonstrating the capabilities and 
advancements of electrical and computer engineering.   
 

Index Terms— autonomous, camera, design, face detection, 
iRobot, OpenCV, robot, Raspberry Pi, Roomba, sensors 
 

I. INTRODUCTION 
In this day and age, recording social and professional events 

through photographs is a common occurrence. However, 
cameramen often have busy schedules and sometimes are not 
only intrusive but also biased when taking photos. Our project 
was inspired by a problem presented to us by the Robotics Club 
at CMU. This club organizes several events throughout the year 
and they always have trouble booking a photographer because 
of the challenges detailed in the abstract. It is for these reasons 
that student volunteers are typically sought out. As the number 
of volunteers has been steadily declining, we came up with the 
solution of designing a robot that could take on the duties of a 
photographer.  

Camerazzi aims to be a nonintrusive, unbiased, available, and 
reliable alternative to the typical cameraman that would be 
booked for an event. Our project provides a solution 
particularly suitable for recurring events due to reduction in 
costs and the constant availability. While other 
implementations like taking numerous snapshots randomly at 
an event are also viable, our robot uses the integration of 
software and hardware to efficiently take photos of the 
important subjects, the people, at an event. This way, we reduce 
the power consumption required, save storage space, and 
eliminates the need for post-analysis. To achieve this, we want 
to always have photos to deliver to the user. Our robot must take 
at least 1 photo per person in the room per hour if there are less 
than 20 people in the room. If there are more than 20 people in 
the room, there is a minimum requirement of 20 photos per hour 

no matter how many people there are. The details of these goals 
will be outlined below. 

II. DESIGN REQUIREMENTS 
In order to measure success for our robot and the pictures that 

it takes, we have defined the following requirements. 
As an overarching requirement, we expect our robot to 

capture a minimum number of photos, with a given room size, 
number of people in the room, speed of the Roomba, and 
duration of time the Roomba is active. By researching standing 
crowd density [7] we have set an ideal crowd density of 1/4 
people per square meter. This will allow enough room for our 
robot to roam and capture photos at ideal distances.  

Therefore, given l, the length of the room in meters, w, the 
width of the room in meters, n, the number of people in the 
room, and t, the duration of the event in hours, the minimum 
number of photos we expect is calculated using the following 
equations and testing constraints. We assume here that it will 
take approximately 3 minutes to find a face, adjust robot 
position, and capture a photo, so in an hour, 20 shots is the 
maximum number of photos that could be taken.  

 

 
In other words, we want to have at least as many photos as 

attendees in the room taken every hour. This requirement is 
imperative to the success of our project, as the main function of 
our robot is the ability to take photos at an event, so photos 
captured act as a key success factor of our project. 

Our first low-level requirement is that the robot must be at 
least 3 feet away from humans in front of it and behind it. We 
set this requirement because academic papers such as Mumm 
& Mutlu’s Human-Robot Proxemics [6] describe a comfortable 
distance between robots and humans as being approximately 3 
feet. This also helps us achieve the nonintrusive aspect we 
wanted for our robot. We will evaluate this requirement by 
laying out a measuring tape in front a stationary person, setting 
the robot to move towards the person, and checking to see how 
far the robot stops from the person. 

Another requirement we’ve established is that robot stopping 
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latency must be less than 1 second. We set this as our maximum 
latency because we want our robot to move at a speed of .5 feet 
per second. In our software, we will be detecting when the robot 
is 3.5 feet away from a human, and so a latency of 1 second will 
account for the extra .5 feet between the distance we want to 
stop as dictated by the software and the distance we want to stop 
based on our requirements. We will evaluate this requirement 
by recording the time that a stop command is sent to the robot, 
and the time that the robot actually stops.  

The next requirement we’ve set is that the robot must be able 
to detect 90% of human faces in real time. We’ve set it to this 
value because we have found that using this algorithm on still 
images typically achieves a 95% success rate. But since we’re 
using this algorithm on continuous video, we’ve slightly 
lowered the success rate to 90%. We will evaluate this 
measurement by manually counting the number of faces our 
algorithm detects at points in time during the demo, and 
dividing it by the number of faces that were actually present in 
the frames. 

Another requirement we’ve set is that 100% of the photos 
taken must include a human. We have set this requirement 
because we don’t want our robot to take extraneous photos 
when it should be spending its time taking useful photos. This 
is consistent with our decision to use this implementation, as 
opposed to one where take many photos and delete the ones that 
are not usable. We will evaluate this requirement by examining 
every picture taken at the demo and confirming that there is a 
human in the photo.  

Our next requirement is that every photo must have a 5% 
margin between the borders of the face and the borders of the 
image. This is to ensure that no heads get cut off when the 
picture is taken. We will evaluate this requirement similarly to 
the previous requirement by examining every picture taken at 
the demo and confirming that there is a 5% margin between the 
face borders and the image borders.  

The next requirement is that the width of each face in the 
image must be at least 10% of the width of the image. We came 
up with this figure because after examining many photos, a face 
width that is 10% of the image is characteristic of a decent 
picture. Any less than this would mean that the person’s face is 
out of focus in the shot, and it will appear as though we have 
taken a random picture. This requirement, in addition to our 
margin requirement, contributes toward the consistency aspect 
we wanted for our project. We will evaluate this requirement by 
examining every picture taken at the demo and confirming that 
the face width is at least 10% the width of the image. 

Another requirement we’ve established is that 100% of the 
photos taken should be sent to the Google Drive folder over Wi-
Fi. We’ve set this requirement to ensure that our users received 
all the photos that were taken. This also helps us achieve the 
instant access to photos aspect we wanted for our robot. We will 
evaluate this requirement by recording the number of photos 
taken at the demo, and comparing it to the number of photos 
sent to the Google Drive folder. 

 
 

 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
For our mobile robot, the iRobot Create Programmable 

Robot will act as the moving base, upon which additional 
hardware components will be mounted. 

Our software-related system architecture revolves around the 
use of a Raspberry Pi, which will act as the computer for the 
entirety of our software components. Hosted on the Raspberry 
Pi, will be our motion control, image optimization, and collision 
detection software. Specifically, we will be using the PyCreate2 
library to program the movement of the Roomba. For photo 
optimization, we will be using OpenCV datasets to detect faces 
and determine when and where to capture photos. Lastly, we 
will be using SciPy to process and interpolate the thermal 
camera sensor and IR sensor data for detecting collisions. In 
addition, we will be using three Arduino Uno’s to simply 
retrieve the thermal camera sensor and IR sensor data, and relay 
the data to the raspberry pi. 

For photo capture, we will be using the Raspberry Pi Camera 
Module, which is easily integrated onto the Raspberry Pi and is 
able to capture 8MP photos.  

For collision detection, we will be using 2 thermal camera 
sensors and 18 IR sensors to detect when people/objects are in 
close proximity, so that our robot can stop moving and avoid 
collisions. We will use bicubic interpolation through SciPy to 
construct greater datasets and expand the limited output from 
the thermal camera sensors. 

For further control over image capabilities, we plan to use a 
motorized stick which will move up or down as specified by our 
image optimization algorithm. We will integrate the motorized 
stick into our system using a Bluetooth connection with our 
raspberry pi. 

Lastly, we will be using an LCD screen, connected to the 
raspberry pi, to display simple prompts to users to indicate 
when a photo will be captured. 

Our block diagram (Fig. 1) demonstrates all of the above 
described components, as well as how they will communicate 
and how information will flow in our system. 
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IV. DESIGN TRADE STUDIES 
We decided to use the Sharp GP2Y0A02YK0F IR proximity 

sensor, because it is better at reliably providing data between a 
range of .5 feet to 5 feet. Since we are detecting for a distance 
of 3.5 feet, this sensor shows a clear advantage over other IR 
proximity sensors such as the UNCL4010 proximity sensor, 
which can only accurately detect collisions up to 7.5 inches 
away. We also found that this sensor’s ability to bounce 
reflective light off the clothes of a human make it better than 
ultrasonic sensors. We wanted there to be 3 IR proximity 
sensors tacked on top of each for each required position on the 
Roomba. Using 3 sensors allows us to eliminate outlier data that 
comes from a sensor that occasionally sends bad data. 
Additionally, we wanted for there to be 6 positions on the robot 
for the IR sensors. 3 facing front on the left, center, and right; 
and 3 facing back on the left, center and right. The robot will 
only be moving either forward or backwards, so we reasoned 
that we would only need to account for those 2 directions. The 
left, center, and right placements are meant to account for 
collisions that would happen either directly in front of/behind 
the robot, or at the edges of the robot. So with the 3 sensors per 
position, and 6 position on the robot, we need to purchase 18 IR 
proximity sensors. 

In addition to the IR proximity sensor, we will be using the 
Adafruit AMG8833 8x8 Thermal Camera Sensor. Our initial 
reason for using this sensor was because it was able to detect 
heat signatures a far distance away (ie. up to 23 feet) and it had 
a fairly decent field of view (ie. 60°). We were going to use this 
sensor to detect humans so that our robot can maintain the 3 feet 
requirement of buffer space. We quickly realized that this 
sensor could not accurately determine depth, so we plan on 
using it conjunction with our IR proximity sensor. Thus, for our 
collision detection mechanism, we need the IR proximity to 
detect for collisions, and we need the thermal camera sensor to 
determine whether that collision is a human or an object. We 
decided that we only need two thermal camera sensors (one in 
front, and one in back) because with the 60° field of view, we 
can capture what is seen by the 9 IR proximity sensors that face 
the same direction. 

This diagram describes how the sensors will be placed on the 
robot.  

 
 

The distance between the IR proximity sensor and the 
intersection of the thermal camera sensor’s field of view and the 
IR proximity sensor’s field of view must be less 42.5”. This is 
to ensure that the thermal camera will also detect anything 
detected by the left and right IR proximity sensors. Since we 
know the angle between the right IR proximity sensor and the 
right side of the thermal camera’s field of vision is 60°, and that 
distance between the IR sensor and the thermal camera sensor 
is 6.5”, we can determine that the intersection point is 11.2583”, 
which is less than 42.5”. Thus we can conclude, that we only 
need one thermal camera sensor per direction. 

  

 
a = 13” 
b = 11.2583” 
 
We decided to use 3 Arduino UNOs for some of the signal 

processing. This is because we wanted to free up the Raspberry 
Pi’s computational power for image processing which needs to 
be as fast as possible. The Arduino UNO has 6 pins for 
transmitting analog data, and since we are using 18 IR 
proximity sensors for collision detection, we need 3 Arduinos. 

We decided to use the Raspberry Pi 3 Model B+, because it 
is Wi-Fi and Bluetooth capability. By having Wi-Fi capability, 
we are able to easily debug our code by simply powering the 
Raspberry Pi on campus and being on the CMU-DEVICE 
network. By having Bluetooth capability, we can pair our 
motorized stick with our Raspberry Pi, in order to move the 
camera up and down. This model also has a CSI port which 
allows us to seamlessly integrate our Camera module. Lastly, 
this model has the most USB ports (ie. 4), which works 
perfectly because we will need 4 ports to connect to the 3 
Arduinos and the Roomba.  

We decided to use the Raspberry Pi Camera Module V2 
because of its ability to take 8 MP pictures, which we deemed 
sufficient for our purpose. 
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V. SYSTEM DESCRIPTION 

A. Flow 
Although there are many different scenarios we have 

considered to be potential contexts for our robot, the behavior 
will follow a general pattern of roaming, sensing for humans, 
adjusting, and capturing a photo (Fig. 2). More specifically, 
Camerazzi will begin roaming in a straight path until it either 
senses a human or collides with a wall or other object, using its 
thermal and IR sensors. In the case that Camerazzi senses a 
human, it will begin using OpenCV and the raspberry pi camera 
to scan for faces in view. If faces are not detected within the 
frame, the robot will continue roaming. 

If one or more faces are detected, our algorithm will run a 
series of calculations to determine if the photo should be taken 
and how the robot should adjust its position and camera height. 
The details of this algorithm are detailed in Section B where we 
describe our photo optimization subsystem. Before photo 
capture, we will display an output of “3...2...1” onto an LCD 
screen mounted on the front of our robot to inform the subjects 
of the photo that a photo will be taken. In the case that 
Camerazzi collides with a wall or other object, it will rotate by 
increments of 60 degrees to the right until it senses a heat 
source, after which it will and continue moving towards the 
detected heat source. Lastly, recent photos will be transferred 
to a Google Drive folder every 5 minutes. 

To guarantee a certain number of photos in order to fulfill our 
high level requirements, Camerazzi will have a limit of how 
long it will roam, td, without capturing a photo. Once the robot 
has travelled for x seconds, where x is the maximum dimension 
of the room divided by the speed of the robot, Camerazzi will 
interrupt its normal pattern of behavior, because this signifies 
that it has travelled at least as far as one length of the room 
without detecting a face. At this point, Camerazzi will move 
straight until it hits a wall, turn away from the wall, and capture 
a photo regardless of face detection. 

 

Below we dive deeper into the specifics of each subsystem 
which will allow us to achieve this overall behavior. 

 
B. Roomba Movement 

 Our robot will be moving via the Roomba as its base, 
communicating with the Raspberry Pi over Mini Din. In doing 
so, we must account for collisions with any object or wall and 
redirect the robot after contact. For collisions, the Roomba has 
built-in sensors we are utilizing. The following table displays 
the sensors we will primarily be interacting with and the range 
of their values that we will receive. 

 
 
 
 
 
 
 

Sensor Range Index 

bumps_wheeldrops [0-15] 0 

angle [-32768-
32767] 

12 

light_bumper [0-127] 35 

light_bumper_left [0-4095] 36 

light_bumper_front_left [0-4095] 37 

light_bumper_center_left [0-4095] 38 

light_bumper_center_right [0-4095] 39 

light_bumper_front_right [0-4095] 40 

light_bumper_right [0-4095] 41 

 
Using these values, our robot can detect a wall or object, such 

as the leg of a chair or table, before it bumps into it. To avoid 
any force that may shake our robot structure, we want the robot 
to stop at least 1 cm away from any obstacle, including walls 
and objects such as the legs of chairs and tables. In addition, the 
robot must be rerouted by turning and moving forward after 
detecting a wall or object and avoiding collision. 

The bumps_wheeldrops sensor’s 0th and 1st bits are binary 
indicators for the state of the left and right bumpers. These 
should remain 0 throughout our robot’s operation to avoid 
actually hitting a wall or object and shaking the robot. The angle 
sensor gives us the angle in degrees that Roomba has turned 
since the angle was last requested as a signed 16-bit value. 
Counter-clockwise angles are positive and clockwise angles are 
negative. The value returned must be divided by 0.324056 to 
get degrees according to iRobot documentation due to a known 
flaw in the angle returned from the Create 2 sensor. The 
light_bumper value gives a binary indicator of each of the light 
bumpers with its different bits. The 0th bit is “Light Bump Left 
Signal”, the 1st bit is “Light Bump Front Left Signal”, the 2nd 
bit is “Light Bump Center Left Signal”, the 3rd bit is “Light 
Bump Center Right Signal”, the 4th bit is “Light Bump Front 
Right Signal”, and the 5th bit is “Light Bump Right Signal”. 
From this binary, we can efficiently retrieve the actual strength 
of each bump by only polling for those that have a hot bit in the 
light_bumper value. Each of these bump signals uses IR to 
retrieve the distance between it and the object it’s detecting. 

In accordance with the flow of Camerazzi, our robot will use 
the IR light bumper sensor values to stop the robot. Then, it will 
turn to try a new path. Since the thermal camera sensors have a 
60° field of view, the robot will turn right 60° to get a new view 
without overlap of the old view in order to scan for high human-
like thermal signals. In essence, the robot will attempt to avoid 
detecting the same humans and taking their photos over and 
over. The robot should attempt to move towards a thermal 
signal to take photos of humans. If it repeatedly senses a wall, 
it will continue to turn to the right 60° at a time until it no longer 
senses a wall or object, and/or senses a human through thermal 
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readings, and has a clear path to move forward. It is not turning 
180° and simply moving away from the wall or obstacle 
because this may result in the robot bouncing back and forth 
along the same vertical path in the room if its path just so 
happens to be unobstructed. 

A major portion of our robot is detecting humans, for both 
taking photos of and avoiding collisions between our robot and 
humans. This section will outline the avoidance of collisions. 
(Refer to Photo Optimization Subsystem for description of 
detecting humans for purposes of taking photos.) 

The robot uses both IR and thermal camera sensors for 
human detection, with the IR sensors’ output pin connecting to 
an analog pin on the Arduino (GPIO) and the thermal camera 
sensors communicating over I2C with the Raspberry Pi. There 
are 3 sets of sensors facing the front of the robot and 3 sets of 
sensors facing the back of the robot (more details about number 
of sensors in Trade Design section). With the 13-inch diameter 
of the Roomba, having one set of sensors on the left-most side, 
one set in the middle, and one set on the right-most side will be 
able to detect any human that is standing in front of or behind 
the Roomba, even if the human is sideways. After detecting 
something is in front of the Roomba, the values we get from the 
IR sensors tell us the distance the human is away. The goal is to 
stop at least 3 feet away from any human (refer to Design 
Requirements section). Knowing that these voltages correspond 
with these output values from the IR sensors through the 
Arduino, 

 

Voltage Output from IR sensor through Arduino 

0 V 0 

5 V 1023 

 
then 1 V corresponds to a value of 204.6 form the IR sensor 

through the Arduino. The Roomba should attempt to stop when 
it detects a human 3.5 feet away, to allow for 1 second of 
latency at 0.5 ft/sec, and still stop at least 3 feet away from the 
human. 

 
3.5 feet = 106.68 cm 
 

From the IR sensors’ specifications, we know that the voltage 
is 0.4 V at 150 cm and 2.5 V at 20 cm. 

  
So once we get an output value of 353 from any of the IR 

sensors, the thermal camera sensor will then assist in 
determining if it’s actually a human or if it’s just a wall. If the 
data from the thermal camera tells us there’s heat signature, the 
robot will stop and take a photo based on the Photo 
Optimization subsystem description. The camera has a 62.2° 

field of view, so after it takes a photo, the goal is for it to 
discover a whole new view in order to detect and take photos of 
new subjects. Thus, after it takes a photo, it will rotate 62.2° to 
start with a new field of view. The robot will alternate turning 
left and right 62.2° in order to avoid going in circles if no bodies 
are detected. 

After a human is detected and the camera feed is analyzed, 
adjust according to instructions from photo optimization 
algorithm (see Photo Optimization Subsystem for details). 
 
C. Photo Optimization 

Another main subsystem of Camerazzi is the photo 
optimization algorithm which will determine when and where 
photos are captured. Specifically, our photo optimization 
algorithm will use data from the camera, thermal camera sensor, 
and IR sensors to determine whether it is in the right position to 
take a photo at a given time. As a result of the data, the robot 
will move forward or back, and the camera will move up and 
down using our motorized stick, in order to satisfy our 
requirements for ideal photos. The thermal and IR sensors will 
be used to identify when we believe there is a human in view of 
the robot. As specified in the section above, we will detect 
humans and stop, then activating our face detection algorithm 
to begin searching for faces. Using live video data from the 
camera, our photo optimization algorithm will use OpenCV 
Haar Cascades to identify if and where there are faces in view.  

If faces are detected, our photo optimization algorithm will 
check multiple parameters to determine how to adjust and 
capture the photo. First, we will check if all faces are above the 
minimum width requirement of 10% image width. As a second 
check, we will determine whether or not there is enough margin 
(5% image width) around all faces. If either of these 
requirements are not met, we will adjust the position of the 
Roomba to attempt to satisfy them. For example, the Roomba 
will move forward if a given face width is too small, and 
backwards if the face width is too large. Similarly, if there is 
too little margin around a face to the left or right, the Roomba 
will move backwards, and if there is too much margin, the 
Roomba will move forwards. Lastly, if there is too little margin 
above or below a face, the motorized stick will move up or 
down accordingly. Due to the fact that adjusting to one 
constraint will affect the value of the other variables, we have 
come up with a protocol that will help us determine how the 
robot will move, or if it should continue moving because the 
requirements cannot be satisfied. In the order of vertical margin, 
face width, and horizontal margin, Camerazzi will adjust its 
position or camera height slowly until the requirement is 
satisfied. After the given requirement is satisfied, we will check 
if earlier requirements were made invalid due to the following 
adjustments. In that case, the ideal photo is not possible by our 
requirements, so Camerazzi will continue roaming. This 
protocol for adjusting the robot for ideal image capture provides 
a straightforward approach to handling edge cases and 
determining whether photos should be taken or not. 
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D. LCD Screen and Motorized Stick 
Other components in our system include the LCD display and 

the motorized stick. 
The LCD display is the robot’s way of communicating to the 

people in front of it that it is going to take a picture. It will be 
connected to the Raspberry Pi over the I2C interface and will go 
through the following sequence: “3!”, wait 1 second, “2!”, wait 
1 second, “1!”, wait 1 second, “SMILE!” By providing this 
feedback to the human, the human knows how long it should 
stay still for the picture.  

The motorized stick will be used to adjust the camera’s 
position to meet the 5% margin requirement on the top and 
bottom of the image. It will be attached to the bottom of the 
enclosure containing the Raspberry Pi camera and push it up 
when the bottom margin does not meet the 5% requirement. 
Likewise, it will pull the enclosure down when the top margin 
does not meet the 5% requirement. The Raspberry Pi will 
control the motorized stick over Bluetooth.  

 
E. Power 

The iRobot Create 2 will be powered by its accompanying 
battery, which has a battery life of 3.5 hours. 

The Raspberry Pi will be supplying power to the sensors, the 
cameras, and the Arduinos. The Raspberry Pi itself will be 
powered by a 10000 mA/h battery. With the Raspberry Pi and 
camera module with Wi-Fi and Bluetooth on using 550 mA, the 
2 thermal sensors using 100 mA each, the 3 Arduinos using 50 
mA each, and the 18 IR proximity sensors using 33 mA each, 
we find total consumption to be 1494 mA. With an ideal version 
of the battery, we can provide power for a little bit over 6.5 
hours. With a version that is 50% efficient, we will still be able 
to power our devices over 3 hours which is sufficient for our 
purposes.  

Provide one or more overall system and subsystem figures. 
This should drop into more specific detail compared to the 
functional diagram described in section III. Specific chips, 
sensors, interconnects, etc. should be described in this section.  

Concisely describe and, if appropriate, depict each major 
subsystem.  

 
 
 
 
 
 
 
 
 
 
 
 
 

VI. PROJECT MANAGEMENT 

A. Schedule 
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B. Team Member Responsibilities 
Mimi 

As a software engineer, Mimi is responsible for the face 
detection portion of this project using OpenCV and NumPy on 
the Raspberry Pi. She will also do image analysis to determine 
the margins of the current frame and send that data to Cornelia 
to move the base of the robot for adjustments. After 
movement, Mimi will again check the margins and then 
ultimately capture the photo. Then, Mimi is responsible for 
transmitting the photo to a Google Drive folder over Wi-Fi. 

 
Cornelia 

As a software engineer, Cornelia is responsible for the 
Roomba movement portion of this project. Using PyCreate2, 
an iRobot Roomba opcode library, she is programming the 
Roomba’s initial movement, processing thermal and IR sensor 
data for human collision detection in order to stop, and 
processing face detection/margin data from Mimi to adjust the 
Roomba’s position. 

 
Adriel 

As a hardware engineer, Adriel is responsible for setting up 
the Raspberry Pi and Arduinos. More importantly, he is 
responsible for all the interconnects between the components 
of this project. He will also be working on building and 
assembling the physical structure of the robot, including the 
camera and LCD display enclosure, the attachments between 
the Roomba and the robot’s top, and the extending limb 
holding the camera. This will also involve coding the stick to 
move up and down. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Budget 

Part Source # $ Total $ Purchas
ed? 

Raspberry 
Pi 3 
Model B+ 

Amazon 1 42.99 42.99 Y 

Raspberry 
Pi Camera 
Module 
V2 

Amazon 1 24.68 24.68 Y 

Arduino 
UNO 

Amazon 2 11.86 26 N 

Sharp 
GP2Y0A0
2YK0F IR 
proximity 
sensor 

Robot 
Shop 

17 13.02 221.34 N 

Adafruit 
AMG8833 
Thermal 
Camera 
Sensor 

Amazon 2 43.99 87.98 Y 

Micro SD 
Card 

Amazon 1 11.39 11.39 Y 

Tripod Amazon 1 14.99 14.99 N 

Wood Woodcra
ft Supply 

1 10 10 N 

Motorized 
Stick 

Amazon 1 21.99 21.99 N 

 
Parts that were acquired without purchase: 

 
 

Part Quantity Contributor 

iRobot Create 2 
w/ USB serial 
cable 

1 Robo Club 

Arduino UNO 1 18220 

Sharp 
GP2Y0A02YK0F 
IR proximity 
sensor 

1 Ideate Room 
 

Power bank   1 Adriel 
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 Tools we will be using to accomplish our project: 
• Soldering iron 
• Laser Cutter 
• Sublime 
• Visual Studio Code 

 

D. Risk Management 
A major design risk for our project from this point forward is 

the accuracy of face detection using OpenCV. Because the 
detection requires that the face is facing straight on with the 
camera, we may have problems with too few faces detected, 
resulting in too few images being taken. We have a plan to 
mitigate this using a high-level requirement of the minimum 
threshold of the number of photos being taken at an event based 
on the number of people in the room, length of duration of 
event, and length and width of the event space. We can also 
mitigate this risk by using additional OpenCV datasets, but this 
may reduce the speed of the video analysis and photo capture 
processes. 

Another design risk is tables and chairs in the room that may 
be obstacles for our robot but above the height that the Roomba 
can detect it as such. In this case, we may need to place IR 
sensors up and down along the legs of the tripod to detect 
obstacles at all heights. With a durable robot structure above, 
however, we may be able to mitigate this issue by bumping into 
the table or chair and detecting the base using the Roomba’s 
built-in light bumper sensors. Another design risk is the up and 
down moving mechanism for our camera enclosure to adjust for 
top and bottom margins in the photos being taken. The current 
implementation uses a motorized selfie stick that communicates 
with the Raspberry Pi over Bluetooth, however, because this 
piece is so mechanical and unique to our project in that we need 
it to be able to support our camera and Raspberry Pi enclosure, 
we may need to consult peers and professors in other 
departments to design something custom. 

Schedule has been tight because we received our parts pretty 
late. Many things came up that delayed some of our progress 
such as the first iRobot Create 2 we borrowed from Robo Club 
was faulty and would not charge, the SD card that came with 
our Raspberry Pi was too small for OpenCV to be installed so 
we had to reorder it, and we discovered that just using thermal 
sensors would not give us the depth data that we needed so we 
had to reconsider our design and add IR sensors to our 
implementation. However, we are still on track with our Gantt 
Chart. 

We have no problems with our budget and still have leeway 
if we need more sensors. In terms of personnel, we have just the 
right amount of software and hardware specialists to complete 
the tasks this project requires. 

 
 
 
 
 

VII. RELATED WORK 
 
A similar project we found when doing research for our 

project is called the “Roomberry Surveillance Robot,” which 
uses a Roomba, and Raspberry Pi Zero, and a camera, to send 
video through a web interface [1]. This project has many 
similarities to our project in terms of the hardware components 
it uses, and the functionalities it achieves such as a movable 
camera, saving photos, and serving up photos through Wi-Fi. 
However, this project lacks a lot of the more complex features 
we hope to include, such as optimizing photos and the Roomba 
position for human faces, and taking care of collision detection.  

A similar product we found on the market is the “Double 
Robotics Double 2 Telepresence Robot,” which is used for 
virtual interaction with remote individuals [2]. This robot is 
similar to our robot in shape and size, as well as the capability 
to take photos with a 5MP camera. However, this telepresence 
robot varies drastically in terms of cost and movement, as it is 
priced over $3000, and must be remote controlled for 
movement. 

A product with a similar use case to our project is called the 
“Polycam Player,” which was developed by Nikon company 
MRMC, and is designed to take the place of cameramen who 
specifically capture action shots in sports settings [3] [4]. The 
system uses face and limb detection to track players and get 
close up action shots and video of game play. This project 
shares many similarities with our system in terms of using 
feature detection to capture quality photos of humans. 

Lastly, an article that we found, called “Autonomous Mobile 
Robotics Research for Daily-Life Environment,” details the 
research of a university team that experimented with multiple 
types of robots in different environments [5]. This article was 
informative to us, due to its explanation of key functions and 
behaviors of indoor, autonomous, mobile robots. 
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