
18-500 Design Report: 03/04/2019

1

Abstract— This report details the conception and design of

an autonomous robotic cameraman intended for social
gatherings and/or professional events. Hiring a photographer
often involves unavailability, unreliability, intrusiveness, bias,
and even latency in delivery of the photos.

 Our solution offers an automated robot that’s always
available, reliable, nonintrusive, and unbiased. In addition, it
ensures ample margins around faces and delivers photos
instantly. Our robot does this efficiently with software
algorithms, requiring lower power and less storage space than
other implementations such as one that deletes subject-less
photos after an event, demonstrating the capabilities and
advancements of electrical and computer engineering.

Index Terms— autonomous, camera, design, face detection,
iRobot, OpenCV, robot, Raspberry Pi, Roomba, sensors

I. INTRODUCTION
In this day and age, recording social and professional events

through photographs is a common occurrence. However,
cameramen often have busy schedules and sometimes are not
only intrusive but also biased when taking photos. Our project
was inspired by a problem presented to us by the Robotics Club
at CMU. This club organizes several events throughout the year
and they always have trouble booking a photographer because
of the challenges detailed in the abstract. It is for these reasons
that student volunteers are typically sought out. As the number
of volunteers has been steadily declining, we came up with the
solution of designing a robot that could take on the duties of a
photographer.

Camerazzi aims to be a nonintrusive, unbiased, available, and
reliable alternative to the typical cameraman that would be
booked for an event. Our project provides a solution
particularly suitable for recurring events due to reduction in
costs and the constant availability. While other
implementations like taking numerous snapshots randomly at
an event are also viable, our robot uses the integration of
software and hardware to efficiently take photos of the
important subjects, the people, at an event. This way, we reduce
the power consumption required, save storage space, and
eliminates the need for post-analysis. To achieve this, we want
to always have photos to deliver to the user. Our robot must take
at least 1 photo per person in the room per hour if there are less
than 20 people in the room. If there are more than 20 people in
the room, there is a minimum requirement of 20 photos per hour

no matter how many people there are. The details of these goals
will be outlined below.

II. DESIGN REQUIREMENTS
In order to measure success for our robot and the pictures that

it takes, we have defined the following requirements.
As an overarching requirement, we expect our robot to

capture a minimum number of photos, with a given room size,
number of people in the room, speed of the Roomba, and
duration of time the Roomba is active. By researching standing
crowd density [7] we have set an ideal crowd density of 1/4
people per square meter. This will allow enough room for our
robot to roam and capture photos at ideal distances.

Therefore, given l, the length of the room in meters, w, the
width of the room in meters, n, the number of people in the
room, and t, the duration of the event in hours, the minimum
number of photos we expect is calculated using the following
equations and testing constraints. We assume here that it will
take approximately 3 minutes to find a face, adjust robot
position, and capture a photo, so in an hour, 20 shots is the
maximum number of photos that could be taken.

In other words, we want to have at least as many photos as

attendees in the room taken every hour. This requirement is
imperative to the success of our project, as the main function of
our robot is the ability to take photos at an event, so photos
captured act as a key success factor of our project.

Our first low-level requirement is that the robot must be at
least 3 feet away from humans in front of it and behind it. We
set this requirement because academic papers such as Mumm
& Mutlu’s Human-Robot Proxemics [6] describe a comfortable
distance between robots and humans as being approximately 3
feet. This also helps us achieve the nonintrusive aspect we
wanted for our robot. We will evaluate this requirement by
laying out a measuring tape in front a stationary person, setting
the robot to move towards the person, and checking to see how
far the robot stops from the person.

Another requirement we’ve established is that robot stopping

Camerazzi

Author: Mimi Niou, Cornelia Chow, Adriel Mendoza:

Electrical and Computer Engineering, Carnegie Mellon University

18-500 Design Report: 03/04/2019

2

latency must be less than 1 second. We set this as our maximum
latency because we want our robot to move at a speed of .5 feet
per second. In our software, we will be detecting when the robot
is 3.5 feet away from a human, and so a latency of 1 second will
account for the extra .5 feet between the distance we want to
stop as dictated by the software and the distance we want to stop
based on our requirements. We will evaluate this requirement
by recording the time that a stop command is sent to the robot,
and the time that the robot actually stops.

The next requirement we’ve set is that the robot must be able
to detect 90% of human faces in real time. We’ve set it to this
value because we have found that using this algorithm on still
images typically achieves a 95% success rate. But since we’re
using this algorithm on continuous video, we’ve slightly
lowered the success rate to 90%. We will evaluate this
measurement by manually counting the number of faces our
algorithm detects at points in time during the demo, and
dividing it by the number of faces that were actually present in
the frames.

Another requirement we’ve set is that 100% of the photos
taken must include a human. We have set this requirement
because we don’t want our robot to take extraneous photos
when it should be spending its time taking useful photos. This
is consistent with our decision to use this implementation, as
opposed to one where take many photos and delete the ones that
are not usable. We will evaluate this requirement by examining
every picture taken at the demo and confirming that there is a
human in the photo.

Our next requirement is that every photo must have a 5%
margin between the borders of the face and the borders of the
image. This is to ensure that no heads get cut off when the
picture is taken. We will evaluate this requirement similarly to
the previous requirement by examining every picture taken at
the demo and confirming that there is a 5% margin between the
face borders and the image borders.

The next requirement is that the width of each face in the
image must be at least 10% of the width of the image. We came
up with this figure because after examining many photos, a face
width that is 10% of the image is characteristic of a decent
picture. Any less than this would mean that the person’s face is
out of focus in the shot, and it will appear as though we have
taken a random picture. This requirement, in addition to our
margin requirement, contributes toward the consistency aspect
we wanted for our project. We will evaluate this requirement by
examining every picture taken at the demo and confirming that
the face width is at least 10% the width of the image.

Another requirement we’ve established is that 100% of the
photos taken should be sent to the Google Drive folder over Wi-
Fi. We’ve set this requirement to ensure that our users received
all the photos that were taken. This also helps us achieve the
instant access to photos aspect we wanted for our robot. We will
evaluate this requirement by recording the number of photos
taken at the demo, and comparing it to the number of photos
sent to the Google Drive folder.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
For our mobile robot, the iRobot Create Programmable

Robot will act as the moving base, upon which additional
hardware components will be mounted.

Our software-related system architecture revolves around the
use of a Raspberry Pi, which will act as the computer for the
entirety of our software components. Hosted on the Raspberry
Pi, will be our motion control, image optimization, and collision
detection software. Specifically, we will be using the PyCreate2
library to program the movement of the Roomba. For photo
optimization, we will be using OpenCV datasets to detect faces
and determine when and where to capture photos. Lastly, we
will be using SciPy to process and interpolate the thermal
camera sensor and IR sensor data for detecting collisions. In
addition, we will be using three Arduino Uno’s to simply
retrieve the thermal camera sensor and IR sensor data, and relay
the data to the raspberry pi.

For photo capture, we will be using the Raspberry Pi Camera
Module, which is easily integrated onto the Raspberry Pi and is
able to capture 8MP photos.

For collision detection, we will be using 2 thermal camera
sensors and 18 IR sensors to detect when people/objects are in
close proximity, so that our robot can stop moving and avoid
collisions. We will use bicubic interpolation through SciPy to
construct greater datasets and expand the limited output from
the thermal camera sensors.

For further control over image capabilities, we plan to use a
motorized stick which will move up or down as specified by our
image optimization algorithm. We will integrate the motorized
stick into our system using a Bluetooth connection with our
raspberry pi.

Lastly, we will be using an LCD screen, connected to the
raspberry pi, to display simple prompts to users to indicate
when a photo will be captured.

Our block diagram (Fig. 1) demonstrates all of the above
described components, as well as how they will communicate
and how information will flow in our system.

18-500 Design Report: 03/04/2019

3

IV. DESIGN TRADE STUDIES
We decided to use the Sharp GP2Y0A02YK0F IR proximity

sensor, because it is better at reliably providing data between a
range of .5 feet to 5 feet. Since we are detecting for a distance
of 3.5 feet, this sensor shows a clear advantage over other IR
proximity sensors such as the UNCL4010 proximity sensor,
which can only accurately detect collisions up to 7.5 inches
away. We also found that this sensor’s ability to bounce
reflective light off the clothes of a human make it better than
ultrasonic sensors. We wanted there to be 3 IR proximity
sensors tacked on top of each for each required position on the
Roomba. Using 3 sensors allows us to eliminate outlier data that
comes from a sensor that occasionally sends bad data.
Additionally, we wanted for there to be 6 positions on the robot
for the IR sensors. 3 facing front on the left, center, and right;
and 3 facing back on the left, center and right. The robot will
only be moving either forward or backwards, so we reasoned
that we would only need to account for those 2 directions. The
left, center, and right placements are meant to account for
collisions that would happen either directly in front of/behind
the robot, or at the edges of the robot. So with the 3 sensors per
position, and 6 position on the robot, we need to purchase 18 IR
proximity sensors.

In addition to the IR proximity sensor, we will be using the
Adafruit AMG8833 8x8 Thermal Camera Sensor. Our initial
reason for using this sensor was because it was able to detect
heat signatures a far distance away (ie. up to 23 feet) and it had
a fairly decent field of view (ie. 60°). We were going to use this
sensor to detect humans so that our robot can maintain the 3 feet
requirement of buffer space. We quickly realized that this
sensor could not accurately determine depth, so we plan on
using it conjunction with our IR proximity sensor. Thus, for our
collision detection mechanism, we need the IR proximity to
detect for collisions, and we need the thermal camera sensor to
determine whether that collision is a human or an object. We
decided that we only need two thermal camera sensors (one in
front, and one in back) because with the 60° field of view, we
can capture what is seen by the 9 IR proximity sensors that face
the same direction.

This diagram describes how the sensors will be placed on the
robot.

The distance between the IR proximity sensor and the
intersection of the thermal camera sensor’s field of view and the
IR proximity sensor’s field of view must be less 42.5”. This is
to ensure that the thermal camera will also detect anything
detected by the left and right IR proximity sensors. Since we
know the angle between the right IR proximity sensor and the
right side of the thermal camera’s field of vision is 60°, and that
distance between the IR sensor and the thermal camera sensor
is 6.5”, we can determine that the intersection point is 11.2583”,
which is less than 42.5”. Thus we can conclude, that we only
need one thermal camera sensor per direction.

a = 13”
b = 11.2583”

We decided to use 3 Arduino UNOs for some of the signal

processing. This is because we wanted to free up the Raspberry
Pi’s computational power for image processing which needs to
be as fast as possible. The Arduino UNO has 6 pins for
transmitting analog data, and since we are using 18 IR
proximity sensors for collision detection, we need 3 Arduinos.

We decided to use the Raspberry Pi 3 Model B+, because it
is Wi-Fi and Bluetooth capability. By having Wi-Fi capability,
we are able to easily debug our code by simply powering the
Raspberry Pi on campus and being on the CMU-DEVICE
network. By having Bluetooth capability, we can pair our
motorized stick with our Raspberry Pi, in order to move the
camera up and down. This model also has a CSI port which
allows us to seamlessly integrate our Camera module. Lastly,
this model has the most USB ports (ie. 4), which works
perfectly because we will need 4 ports to connect to the 3
Arduinos and the Roomba.

We decided to use the Raspberry Pi Camera Module V2
because of its ability to take 8 MP pictures, which we deemed
sufficient for our purpose.

18-500 Design Report: 03/04/2019

4

V. SYSTEM DESCRIPTION

A. Flow
Although there are many different scenarios we have

considered to be potential contexts for our robot, the behavior
will follow a general pattern of roaming, sensing for humans,
adjusting, and capturing a photo (Fig. 2). More specifically,
Camerazzi will begin roaming in a straight path until it either
senses a human or collides with a wall or other object, using its
thermal and IR sensors. In the case that Camerazzi senses a
human, it will begin using OpenCV and the raspberry pi camera
to scan for faces in view. If faces are not detected within the
frame, the robot will continue roaming.

If one or more faces are detected, our algorithm will run a
series of calculations to determine if the photo should be taken
and how the robot should adjust its position and camera height.
The details of this algorithm are detailed in Section B where we
describe our photo optimization subsystem. Before photo
capture, we will display an output of “3...2...1” onto an LCD
screen mounted on the front of our robot to inform the subjects
of the photo that a photo will be taken. In the case that
Camerazzi collides with a wall or other object, it will rotate by
increments of 60 degrees to the right until it senses a heat
source, after which it will and continue moving towards the
detected heat source. Lastly, recent photos will be transferred
to a Google Drive folder every 5 minutes.

To guarantee a certain number of photos in order to fulfill our
high level requirements, Camerazzi will have a limit of how
long it will roam, td, without capturing a photo. Once the robot
has travelled for x seconds, where x is the maximum dimension
of the room divided by the speed of the robot, Camerazzi will
interrupt its normal pattern of behavior, because this signifies
that it has travelled at least as far as one length of the room
without detecting a face. At this point, Camerazzi will move
straight until it hits a wall, turn away from the wall, and capture
a photo regardless of face detection.

Below we dive deeper into the specifics of each subsystem
which will allow us to achieve this overall behavior.

B. Roomba Movement

 Our robot will be moving via the Roomba as its base,
communicating with the Raspberry Pi over Mini Din. In doing
so, we must account for collisions with any object or wall and
redirect the robot after contact. For collisions, the Roomba has
built-in sensors we are utilizing. The following table displays
the sensors we will primarily be interacting with and the range
of their values that we will receive.

Sensor Range Index

bumps_wheeldrops [0-15] 0

angle [-32768-
32767]

12

light_bumper [0-127] 35

light_bumper_left [0-4095] 36

light_bumper_front_left [0-4095] 37

light_bumper_center_left [0-4095] 38

light_bumper_center_right [0-4095] 39

light_bumper_front_right [0-4095] 40

light_bumper_right [0-4095] 41

Using these values, our robot can detect a wall or object, such

as the leg of a chair or table, before it bumps into it. To avoid
any force that may shake our robot structure, we want the robot
to stop at least 1 cm away from any obstacle, including walls
and objects such as the legs of chairs and tables. In addition, the
robot must be rerouted by turning and moving forward after
detecting a wall or object and avoiding collision.

The bumps_wheeldrops sensor’s 0th and 1st bits are binary
indicators for the state of the left and right bumpers. These
should remain 0 throughout our robot’s operation to avoid
actually hitting a wall or object and shaking the robot. The angle
sensor gives us the angle in degrees that Roomba has turned
since the angle was last requested as a signed 16-bit value.
Counter-clockwise angles are positive and clockwise angles are
negative. The value returned must be divided by 0.324056 to
get degrees according to iRobot documentation due to a known
flaw in the angle returned from the Create 2 sensor. The
light_bumper value gives a binary indicator of each of the light
bumpers with its different bits. The 0th bit is “Light Bump Left
Signal”, the 1st bit is “Light Bump Front Left Signal”, the 2nd
bit is “Light Bump Center Left Signal”, the 3rd bit is “Light
Bump Center Right Signal”, the 4th bit is “Light Bump Front
Right Signal”, and the 5th bit is “Light Bump Right Signal”.
From this binary, we can efficiently retrieve the actual strength
of each bump by only polling for those that have a hot bit in the
light_bumper value. Each of these bump signals uses IR to
retrieve the distance between it and the object it’s detecting.

In accordance with the flow of Camerazzi, our robot will use
the IR light bumper sensor values to stop the robot. Then, it will
turn to try a new path. Since the thermal camera sensors have a
60° field of view, the robot will turn right 60° to get a new view
without overlap of the old view in order to scan for high human-
like thermal signals. In essence, the robot will attempt to avoid
detecting the same humans and taking their photos over and
over. The robot should attempt to move towards a thermal
signal to take photos of humans. If it repeatedly senses a wall,
it will continue to turn to the right 60° at a time until it no longer
senses a wall or object, and/or senses a human through thermal

18-500 Design Report: 03/04/2019

5

readings, and has a clear path to move forward. It is not turning
180° and simply moving away from the wall or obstacle
because this may result in the robot bouncing back and forth
along the same vertical path in the room if its path just so
happens to be unobstructed.

A major portion of our robot is detecting humans, for both
taking photos of and avoiding collisions between our robot and
humans. This section will outline the avoidance of collisions.
(Refer to Photo Optimization Subsystem for description of
detecting humans for purposes of taking photos.)

The robot uses both IR and thermal camera sensors for
human detection, with the IR sensors’ output pin connecting to
an analog pin on the Arduino (GPIO) and the thermal camera
sensors communicating over I2C with the Raspberry Pi. There
are 3 sets of sensors facing the front of the robot and 3 sets of
sensors facing the back of the robot (more details about number
of sensors in Trade Design section). With the 13-inch diameter
of the Roomba, having one set of sensors on the left-most side,
one set in the middle, and one set on the right-most side will be
able to detect any human that is standing in front of or behind
the Roomba, even if the human is sideways. After detecting
something is in front of the Roomba, the values we get from the
IR sensors tell us the distance the human is away. The goal is to
stop at least 3 feet away from any human (refer to Design
Requirements section). Knowing that these voltages correspond
with these output values from the IR sensors through the
Arduino,

Voltage Output from IR sensor through Arduino

0 V 0

5 V 1023

then 1 V corresponds to a value of 204.6 form the IR sensor

through the Arduino. The Roomba should attempt to stop when
it detects a human 3.5 feet away, to allow for 1 second of
latency at 0.5 ft/sec, and still stop at least 3 feet away from the
human.

3.5 feet = 106.68 cm

From the IR sensors’ specifications, we know that the voltage
is 0.4 V at 150 cm and 2.5 V at 20 cm.

So once we get an output value of 353 from any of the IR

sensors, the thermal camera sensor will then assist in
determining if it’s actually a human or if it’s just a wall. If the
data from the thermal camera tells us there’s heat signature, the
robot will stop and take a photo based on the Photo
Optimization subsystem description. The camera has a 62.2°

field of view, so after it takes a photo, the goal is for it to
discover a whole new view in order to detect and take photos of
new subjects. Thus, after it takes a photo, it will rotate 62.2° to
start with a new field of view. The robot will alternate turning
left and right 62.2° in order to avoid going in circles if no bodies
are detected.

After a human is detected and the camera feed is analyzed,
adjust according to instructions from photo optimization
algorithm (see Photo Optimization Subsystem for details).

C. Photo Optimization

Another main subsystem of Camerazzi is the photo
optimization algorithm which will determine when and where
photos are captured. Specifically, our photo optimization
algorithm will use data from the camera, thermal camera sensor,
and IR sensors to determine whether it is in the right position to
take a photo at a given time. As a result of the data, the robot
will move forward or back, and the camera will move up and
down using our motorized stick, in order to satisfy our
requirements for ideal photos. The thermal and IR sensors will
be used to identify when we believe there is a human in view of
the robot. As specified in the section above, we will detect
humans and stop, then activating our face detection algorithm
to begin searching for faces. Using live video data from the
camera, our photo optimization algorithm will use OpenCV
Haar Cascades to identify if and where there are faces in view.

If faces are detected, our photo optimization algorithm will
check multiple parameters to determine how to adjust and
capture the photo. First, we will check if all faces are above the
minimum width requirement of 10% image width. As a second
check, we will determine whether or not there is enough margin
(5% image width) around all faces. If either of these
requirements are not met, we will adjust the position of the
Roomba to attempt to satisfy them. For example, the Roomba
will move forward if a given face width is too small, and
backwards if the face width is too large. Similarly, if there is
too little margin around a face to the left or right, the Roomba
will move backwards, and if there is too much margin, the
Roomba will move forwards. Lastly, if there is too little margin
above or below a face, the motorized stick will move up or
down accordingly. Due to the fact that adjusting to one
constraint will affect the value of the other variables, we have
come up with a protocol that will help us determine how the
robot will move, or if it should continue moving because the
requirements cannot be satisfied. In the order of vertical margin,
face width, and horizontal margin, Camerazzi will adjust its
position or camera height slowly until the requirement is
satisfied. After the given requirement is satisfied, we will check
if earlier requirements were made invalid due to the following
adjustments. In that case, the ideal photo is not possible by our
requirements, so Camerazzi will continue roaming. This
protocol for adjusting the robot for ideal image capture provides
a straightforward approach to handling edge cases and
determining whether photos should be taken or not.

18-500 Design Report: 03/04/2019

6

D. LCD Screen and Motorized Stick
Other components in our system include the LCD display and

the motorized stick.
The LCD display is the robot’s way of communicating to the

people in front of it that it is going to take a picture. It will be
connected to the Raspberry Pi over the I2C interface and will go
through the following sequence: “3!”, wait 1 second, “2!”, wait
1 second, “1!”, wait 1 second, “SMILE!” By providing this
feedback to the human, the human knows how long it should
stay still for the picture.

The motorized stick will be used to adjust the camera’s
position to meet the 5% margin requirement on the top and
bottom of the image. It will be attached to the bottom of the
enclosure containing the Raspberry Pi camera and push it up
when the bottom margin does not meet the 5% requirement.
Likewise, it will pull the enclosure down when the top margin
does not meet the 5% requirement. The Raspberry Pi will
control the motorized stick over Bluetooth.

E. Power

The iRobot Create 2 will be powered by its accompanying
battery, which has a battery life of 3.5 hours.

The Raspberry Pi will be supplying power to the sensors, the
cameras, and the Arduinos. The Raspberry Pi itself will be
powered by a 10000 mA/h battery. With the Raspberry Pi and
camera module with Wi-Fi and Bluetooth on using 550 mA, the
2 thermal sensors using 100 mA each, the 3 Arduinos using 50
mA each, and the 18 IR proximity sensors using 33 mA each,
we find total consumption to be 1494 mA. With an ideal version
of the battery, we can provide power for a little bit over 6.5
hours. With a version that is 50% efficient, we will still be able
to power our devices over 3 hours which is sufficient for our
purposes.

Provide one or more overall system and subsystem figures.
This should drop into more specific detail compared to the
functional diagram described in section III. Specific chips,
sensors, interconnects, etc. should be described in this section.

Concisely describe and, if appropriate, depict each major
subsystem.

VI. PROJECT MANAGEMENT

A. Schedule

18-500 Design Report: 03/04/2019

7

B. Team Member Responsibilities
Mimi

As a software engineer, Mimi is responsible for the face
detection portion of this project using OpenCV and NumPy on
the Raspberry Pi. She will also do image analysis to determine
the margins of the current frame and send that data to Cornelia
to move the base of the robot for adjustments. After
movement, Mimi will again check the margins and then
ultimately capture the photo. Then, Mimi is responsible for
transmitting the photo to a Google Drive folder over Wi-Fi.

Cornelia

As a software engineer, Cornelia is responsible for the
Roomba movement portion of this project. Using PyCreate2,
an iRobot Roomba opcode library, she is programming the
Roomba’s initial movement, processing thermal and IR sensor
data for human collision detection in order to stop, and
processing face detection/margin data from Mimi to adjust the
Roomba’s position.

Adriel

As a hardware engineer, Adriel is responsible for setting up
the Raspberry Pi and Arduinos. More importantly, he is
responsible for all the interconnects between the components
of this project. He will also be working on building and
assembling the physical structure of the robot, including the
camera and LCD display enclosure, the attachments between
the Roomba and the robot’s top, and the extending limb
holding the camera. This will also involve coding the stick to
move up and down.

C. Budget

Part Source # $ Total $ Purchas
ed?

Raspberry
Pi 3
Model B+

Amazon 1 42.99 42.99 Y

Raspberry
Pi Camera
Module
V2

Amazon 1 24.68 24.68 Y

Arduino
UNO

Amazon 2 11.86 26 N

Sharp
GP2Y0A0
2YK0F IR
proximity
sensor

Robot
Shop

17 13.02 221.34 N

Adafruit
AMG8833
Thermal
Camera
Sensor

Amazon 2 43.99 87.98 Y

Micro SD
Card

Amazon 1 11.39 11.39 Y

Tripod Amazon 1 14.99 14.99 N

Wood Woodcra
ft Supply

1 10 10 N

Motorized
Stick

Amazon 1 21.99 21.99 N

Parts that were acquired without purchase:

Part Quantity Contributor

iRobot Create 2
w/ USB serial
cable

1 Robo Club

Arduino UNO 1 18220

Sharp
GP2Y0A02YK0F
IR proximity
sensor

1 Ideate Room

Power bank 1 Adriel

18-500 Design Report: 03/04/2019

8

 Tools we will be using to accomplish our project:
• Soldering iron
• Laser Cutter
• Sublime
• Visual Studio Code

D. Risk Management
A major design risk for our project from this point forward is

the accuracy of face detection using OpenCV. Because the
detection requires that the face is facing straight on with the
camera, we may have problems with too few faces detected,
resulting in too few images being taken. We have a plan to
mitigate this using a high-level requirement of the minimum
threshold of the number of photos being taken at an event based
on the number of people in the room, length of duration of
event, and length and width of the event space. We can also
mitigate this risk by using additional OpenCV datasets, but this
may reduce the speed of the video analysis and photo capture
processes.

Another design risk is tables and chairs in the room that may
be obstacles for our robot but above the height that the Roomba
can detect it as such. In this case, we may need to place IR
sensors up and down along the legs of the tripod to detect
obstacles at all heights. With a durable robot structure above,
however, we may be able to mitigate this issue by bumping into
the table or chair and detecting the base using the Roomba’s
built-in light bumper sensors. Another design risk is the up and
down moving mechanism for our camera enclosure to adjust for
top and bottom margins in the photos being taken. The current
implementation uses a motorized selfie stick that communicates
with the Raspberry Pi over Bluetooth, however, because this
piece is so mechanical and unique to our project in that we need
it to be able to support our camera and Raspberry Pi enclosure,
we may need to consult peers and professors in other
departments to design something custom.

Schedule has been tight because we received our parts pretty
late. Many things came up that delayed some of our progress
such as the first iRobot Create 2 we borrowed from Robo Club
was faulty and would not charge, the SD card that came with
our Raspberry Pi was too small for OpenCV to be installed so
we had to reorder it, and we discovered that just using thermal
sensors would not give us the depth data that we needed so we
had to reconsider our design and add IR sensors to our
implementation. However, we are still on track with our Gantt
Chart.

We have no problems with our budget and still have leeway
if we need more sensors. In terms of personnel, we have just the
right amount of software and hardware specialists to complete
the tasks this project requires.

VII. RELATED WORK

A similar project we found when doing research for our

project is called the “Roomberry Surveillance Robot,” which
uses a Roomba, and Raspberry Pi Zero, and a camera, to send
video through a web interface [1]. This project has many
similarities to our project in terms of the hardware components
it uses, and the functionalities it achieves such as a movable
camera, saving photos, and serving up photos through Wi-Fi.
However, this project lacks a lot of the more complex features
we hope to include, such as optimizing photos and the Roomba
position for human faces, and taking care of collision detection.

A similar product we found on the market is the “Double
Robotics Double 2 Telepresence Robot,” which is used for
virtual interaction with remote individuals [2]. This robot is
similar to our robot in shape and size, as well as the capability
to take photos with a 5MP camera. However, this telepresence
robot varies drastically in terms of cost and movement, as it is
priced over $3000, and must be remote controlled for
movement.

A product with a similar use case to our project is called the
“Polycam Player,” which was developed by Nikon company
MRMC, and is designed to take the place of cameramen who
specifically capture action shots in sports settings [3] [4]. The
system uses face and limb detection to track players and get
close up action shots and video of game play. This project
shares many similarities with our system in terms of using
feature detection to capture quality photos of humans.

Lastly, an article that we found, called “Autonomous Mobile
Robotics Research for Daily-Life Environment,” details the
research of a university team that experimented with multiple
types of robots in different environments [5]. This article was
informative to us, due to its explanation of key functions and
behaviors of indoor, autonomous, mobile robots.

REFERENCES
 [1] https://www.hackster.io/danimaciasperea/roomberry-
surveillance-robot-Roomba-pi-zero-camera-c056f9
[2] https://www.bhphotovideo.com/c/product/1296165-
REG/double_robotics_1012dr_universal_360_camera_mount.
html
[3] https://www.technologyreview.com/the-
download/610711/a-robotic-camera-system-films-sports-like-
a-human-does/
[4] https://www.techradar.com/news/nikons-robotic-cameras-
are-designed-to-give-sports-teams-the-competitive-edge
[5]
https://www.sciencedirect.com/science/article/pii/S147466701
7331099
[6] http://www.cs.cmu.edu/~illah/CLASSDOCS/p331-
mumm.pdf
[7] http://www.gkstill.com/Support/crowd-
density/CrowdDensity-1.html

18-500 Design Report: 03/04/2019

9

Fig. 1

18-500 Design Report: 03/04/2019

10

Fig. 2

