
18-500 Final Project Report: 05/08/2019 1

Abstract—Traditional methods of video resizing such as cropping

or scaling distorts important regions in the frame, whereas content-
aware retargeting preserves these areas and thus, creates more
aesthetically pleasing results. Seam carving is a popular technique for
content-aware retargeting. We illustrate video retargeting using an
improved seam carving that selects 2D seams from 3D voxels. Since
computational complexity bottlenecks the execution speed, we present
a hardware-oriented approach and algorithmic modification to
improve performance. The performance of the algorithm is evaluated
on an FPGA board, which shows an improvement of 13.67x. We also
present heuristics for video-retargeting based on popular video-quality
metrics.

Index Terms— FPGA, Memory, Seam Carving

I. INTRODUCTION
HE use of portable devices is rapidly expanding – in

2019, the number of mobile phone users is forecasted to
reach 4.68 billion. Because of the various display aspect ratios
(DARs) for these devices, images and videos must be adjusted
to fit the screen. Traditional methods of video resizing include
scaling and cropping, but these methods either remove
important contents completely (cropping) or distorts the entire
screen content (scaling). Thus, the resultant video becomes
undesirable. The typical case of scaling with additional black-
colored backgrounds does preserve the original images’
contents, but for portable devices with small displays, the
resultant images become so small that is hard to see. For users
with restricted vision, this approach goes against technology
accessibility as it may produce images that are impossible for
them to see. Furthermore, video retargeting allows for better
information delivery by drawing attention to important contents
in the video through the reduced focal region.

Avidan [1] proposed a novel method coined Seam Carving
for content-aware image resizing algorithms. The approach
uses seams - monotonic and connected paths of pixels going
from the top of the image to the bottom, or from left to right.
Dynamic programming can be used to determine the path of
least energy importance and this seam is then removed to reduce
the image size. This can be done to reduce width or height as
well as add dimension by duplicating the seam of least
importance. A naive extension of seam carving to video is to
treat each video frame as an image and resize it independently
as shown in Fig 1. c. This creates jittery artifacts due to the lack
of temporal coherency, and a global approach is required.

To process video, Avidan [3] proposed an improved seam
carving operator, static-seam, in Improved Seam Carving for
Video Retargeting by replacing the spatial energy map in favor

of a global energy map consisting of both temporal and spatial
elements to determine 2D seam manifolds from 3D voxel
volumes that are fully connected. However, the computational
complexity become the bottleneck of the implementation. For
example, on an Intel(R) Core (TM) i5-4260U CPU @ 1.40GHz,
removing 20 vertical seams from a video of resolution 640x360
and total frames of 43 took 15.7018 seconds.

We implemented a hardware-oriented approach for seam
carving on the DE-10 Standard FPGA to increase performance
speed by leveraging on the high number of functional units. In
our design report, we proposed a modification on seam-carving
that is to remove the multiple best seams during each run of the
algorithm instead of only the optimal seam. However, we found
this was no longer conducive for our design specifications; this
is discussed further in II. Design Requirements. We targeted an
improvement of at least 5x compared to a C++11
implementation based on Avidan’s static-seam approach and
positive user testing results for selecting output videos from
both implementations. We achieved our targets for speed, user
testing and PSNR, but were 2% shy of our SSIM metric.

 (a)

(b)

(c)

Fig. 1. (a) Left: An extracted seam. Right: An example of a resized image by
using seam carving. (b) Left: Scaling. Right: Seams. (c) Seam carving on each
video frame independently creates locally optimal seams that can be totally
different across video frames. This creates a jittery resized video. A video
resized using this method can be seen here:
https://www.youtube.com/watch?v=Qb-l4ZWI8qc

FPGA Accelerated Seam Carving for Video
Eshani Mishra, Shruti Narayan, Kimberly Lim

Electrical and Computer Engineering, Carnegie Mellon University

T

18-500 Final Project Report: 05/08/2019 2

II. DESIGN REQUIREMENTS
We focus our design requirements in terms of 3 aspects:

utility, timing and video quality.

A. Utility
We meet our requirements if we able to resize any user-

supplied video within the constraints to the correct specified
resolution and this resized video is viewable on a monitor. We
constrain our video input resolution to 128x128. This is because
of the constraint of the amount of memory available on our
FPGA; In our design report, we had targeted 256x144 but our
hardware design was not able to fit onto the board. We will
discuss this further in III. Design Trade Studies. We illustrate
this memory mapping in III Architecture And/Or Principle of
Operation.

We originally constrained the resolution of the resultant
video to be a minimum of half the width of the original video
to preserve viewability of the result video on the monitor.
However, this constrain no longer applies because we changed
our design to remove one seam at a time, and the user can rerun
the program to remove any desired number of seams from the
video.
B. Timing

We meet our requirements if we get an improvement of at
least 5x in terms of running time (seconds) when compared to
a C++11 implementation based on Avidan’s static-seam
approach based on our approach. The transition from C++ to a
FPGA implementation allows parallelization of computation
over the columns of pixels and this is dependent on the
resolution of the image. This would imply that we are able to
compute 128 columns in parallel and this would be an
improvement of 128x but this does not account for the time
required for data transfer between the HPS and FPGA,
differences in how functional units are used in the CPU vs
FPGA, optimizations done by the CPU compiler vs FPGA
compiler, communication for parallel computation in the FPGA
and so on. Thus, we aim for an improvement of at least 5x to
be err on the conservative.

C. Video Quality
We meet our requirements if the result video preserves

content better than the alternative cropped, scaled, or low-
resolution versions. We will verify this with user testing and
video quality metrics.

We designed our user testing as a double-blind experiment
where one teammate sets up the study but then has another
teammate collect the data from participants. We will show 3
videos to a participant: 1) The original video 2) Result video
from static-seam C++ implementation and 3) Result video from
FPGA implementation. We did not tell the participants which
video came from which implementation. We then asked the
participants to choose between 3 options: 1) video 2 chose a
better seam, 2) video 3 chose a better seam, or 3) the seams in
videos 2 and 3 and indistinguishable. We decided we will pass
our user testing requirement if over 90% of participants choose
either option 2 or option 3.

Our specification for video quality was that we wanted a
processed result of similar quality to the result of our software
benchmarking code. We wanted to use two objective video

quality metrics to test our results, peak signal to noise ratio
(PNSR) and spatio-temporal SSIM. Both of these video quality
metrics are used to compare the amount of distortion in a
processed video compared to the original video. PSNR
estimates absolute errors and spatio-temporal structural
similarity index (SSIM) measures similarity in luminance,
contrast, and structure of pixels. We calculated these values
using FFmpeg. For our benchmark values PNSR and SSIM
values, we compared the resulting video from our software
implementation of seam carving to the original video. Then we
compared the resulting video from our FPGA implementation
of seam carving to the original video and calculate PNSR and
SSIM values for this comparison. Therefore, we have two sets
of PNSR and SSIM values. We will compare the PNSR and
SSIM values from the FPGA implementation of seam carving
to the PNSR and SSIM values from the software
implementation of seam carving. Our goal was to have at most
10% difference in the quality metrics from the two
implementations for SSIM. We will run PSNR on the result
video and we meet requirements if we are within 80dB of the
PSNR of the original video.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
We build on and extend the work of Avidan [3]. The general

approach of the static seam carving algorithm is 1) compute the
energy map, 2) compute all path sums of seams and 3) find the
minimum path seam. These 3 steps are repeated as many times
as number of seams desired to be removed.

We propose multi-seam removal for each global energy map
computed to increase throughput. The number of seams
removed serves as a parameter that balances throughput and
video result quality. The higher the number of seams, the higher
the throughput as the number of times the entire algorithm is
ran is reduced. However, it is important to note that removing
the top 5 minimum path seams from 1 energy map is not the
same as selecting the minimum path seam from 5 energy maps
computed consecutively like in the original seam carving
approach. After synthesizing our FPGA implementation onto
the DE10 Standard, we achieved a 13.67x performance speed
relative to the C++ implementation, most of which was
bottlenecked by data transfer. Thus, we no longer found multi-
seam removal to fit our design specification as speedup would
be minimal compared to speeding up data transfer and we
would still be losing video quality. We explain this tradeoff
further in IV. Design Trade Studies.

Our minimum viable product will reflect the following. Five
seconds of input video of resolution 128x128 and 30 fps with
total number of frames=300 will be taken externally and passed
into the DE10-Standard file system. The HPS on the DE10-
Standard will handle video preprocessing such as gray-scaling
and conversion to hex files through scripts run on Linux. The
video will be stored as a modified (see subsystems for details)
array in the SDRAM, accessible by the FPGA through AXI
bridges. The FPGA will load workable frames into embedded
memory (M10K blocks) and run the three stages of the seam
carving algorithm. It will find the indices of pixels in the best
seams and send this to the HPS, which will run post-processing

18-500 Final Project Report: 05/08/2019 3

scripts to remove these pixels from the frames and display the
video onto a monitor. A user can toggle between the three
output options on the monitor – the original video, the video
with the identified seam highlighted, and the video with the
seam removed.

Fig. 2. User Perspective of Minimum Viable Product

Fig. 3. Block Diagram of our Data Transfer

18-500 Final Project Report: 05/08/2019 4

IV. DESIGN TRADE STUDIES

A. Timing Performance vs Video Quality
In our previous design report, we proposed multi-seam

removal for each iteration of the algorithm. The multi-seam
removal would have given n times the throughput where n is
the number of seams removed. Our proposed testing method is
shown below in Fig 4, however this was not used in our final
testing. This produces a higher throughput as we skip energy
map calculations that are computationally heavily. This
increased performance of speed is not free as we are not
selecting the optimal seam for every single pixel reduction in
width (or height).However, after testing our FPGA
implementation for single seam removal, we realized that our
implementation was already so much faster (13.67x) than our
baseline. Thus, sacrificing video quality for speed was no
longer necessary for us to reach our performance projections.

Another reason is that our performance was being bottle-
necked by the data transfer between the HPS and FPGA and not
the algorithm itself. We would have gotten much better
performance by leveraging the full width of the AXI bus
between the FPGA and HPS. Currently, we send 8 bits of data
which is composed of the 0-255 value of a grayscale pixel. The
bus is capable of sending 128 bits. This change would involve
packing 16 pixels (128 bits / 8 bits) in the HPS through C++
and updating the finite state machine on the FPGA to handle 16
pixels at a time from the pixel stream from the HPS.

Metrics
Number of Seams per Algorithmic Run (NSAR)

1 3 5

Quality High Medium Low
Execution
time Longest Medium Shortest

User
Testing Most Satisfied Medium

Satisfaction
Low
Satisfaction

Fig. 4.

B. FPGA Memory Allocation
The algorithm bottleneck encountered in software is the high

volume of data and computation needed for the full video.
Implementing the algorithm on hardware will increase
parallelizing capability, but we are still limited by the amount
of data that can be fit on the FPGA. The full video can be stored
frame by frame in the HPS file system, and sent over to the
FPGA side in a serial stream (row by row). The most
computationally heavy part of the algorithm is in stage 1,
calculating the energy map – to maximize parallelizing
capability, we would want to process each column at once and
sequentially process rows. If we store the frames in embedded
memory, each column must be stored in its own separate block
to be able to have read/write access to all of them at once. With
our given frame size of 128x128p, a column more than
definitely fits into a M10K block (which can hold 1024 bytes).
The DE10-Standard only has 557 M10K blocks of embedded
memory – this means we can create a “bank” of 128 blocks,
each holding a column of a video frame, to fully store the video,
as well as other necessary arrays in the algorithms (energy map,

accumulation paths – which are the size of a single video
frame).

We choose to instantiate two “banks” of this nature to hold
frames to process on – in stage 1, we will need at most this many
at a time. (Quartus analysis revealed that the memory blocks
and more importantly, the logic (ALM) utilization was full for
this frame size). In stage 1, bank 2 will be the most used – both
the spatial and temporal energy maps use 16 bit data points
rather than 8 bit, and since they are stored together in the same
bank, each corresponding pixel will require 32 bits – this means
there are 256 spots in each memory block, still more than
enough for a 128 pixel column. The accumulation values are
only needed for a single row at a time, so these can be stored in
a set of 128 registers.

Figure 5 further explains each stage’s use of the two
instantiated “banks.”

Fig. 5. Embedded Memory Allocation

V. SYSTEM DESCRIPTION
In our design report, we intended the FPGA to SDRAM
interface on the DE-10’s FPGA to read the video array from the
HPS’s SDRAM into the FPGA’s memory. This data transfer is
done using 2 64 bit read ports in a master-slave architecture to
allow the FPGA’s peripherals to access the HPS’s SDRAM.

In our original design, we stored video data in the HPS’s
SDRAM. However, we realized this was not the most optimal
solution because data in SDRAM does not persist when the
FPGA is turned off. Therefore, we decided to store our video,
as well as all of its frames as images on the Linux filesystem of

18-500 Final Project Report: 05/08/2019 5

the HPS. We decided to use FIFOs to communicate between the
HPS and the FPGA.

Our current design uses a C program, which runs on the HPS,
to read from the frames of the video on the filesystem, and write
each pixel onto the HPS to FPGA FIFO. This write is done
using a 32-bit AXI write using memory mapped bridges on the
DE-10 Standard that are used to communicate between the HPS
and the FPGA. We set up these connections on the board with
the use of QSYS, a development tool that handles the FPGA’s
interconnect with external modules. Once the pixel data is in
the FIFO, we use a state machine to read from the FIFO and
send a pixel to the top module each time the top module sends
a data ready signal.

The top module of the FPGA design will handle switching
between stages - within a stage its corresponding FSMs will be
triggered and when the stage calculations are complete the done

signal will move the top FSM to the next stage. Stage One will
handle receiving the incoming pixel stream and Stage Three
will send back the pixel indices of the seam(s). The Finish state
will indicate the completion of the algorithm on the FPGA end.

Recall that the algorithm is separated into 3 stages.

The first stage involves computing an energy map of the pixels
(the size of a frame), with both a spatial and temporal aspect.
The spatial energy map will be calculated for each frame (across
x and y), and will give high energy values to pixels that have
most difference (edges, etc). For each value of a pixel over time,
the largest spatial energy calculated will be kept for the final
energy map. The temporal aspect will involve looking at the
difference in a single pixel value over time (across z, or t for
time). The final energy map is a weighted sum of the two.

The second stage is an accumulation stage, in which we
generate an accumulation matrix. The energy value of a pixel is
added to the minimum of the top three adjacent accumulation
values to find the current pixel accumulation value, and this
process is iterated over rows (edges will give an accumulation
value of 0). This path of minimums represents a seam, and thus
all the possible seams in the video will be found in this stage.

The final stage will involve picking the minimum value(s) of
the end accumulated row and following back on the path for the
given seam to remove. The resultant index of each pixel in this
seam will be sent back as found.

18-500 Final Project Report: 05/08/2019 6

A. Stage 1
Stage 1 involves two FSMs for the double buffering - one to
process the current loaded frame and the other to handle loading
the next frame block into the embedded memory. The following
diagram outlines the control signals needed to do handshaking
between the FSMs. (wr_ indicates the loading FSM and pl_
indicates the processing FSM).

Regarding the processing:

We calculate the temporal and spatial energies in parallel, using
a synchronized pipelined data calculation and transfer that will
store the final values for each index at the same time. The
pipeline will have an initial latency, but once that flush of values
occurs energy map values will be stored every other clock cycle
(on a two cycle pattern for alternate read and write states – the
map values are constantly

As mentioned previously, we will store a column per embedded
memory block, using bank 1 for our initial data read. Bank 2
will store the spatial and temporal map in tandem – the pipeline
latency is outlined by the grey dotted lines to show the
synchronous calculation of each value for the same pixel index.

To calculate the spatial map, we will need to apply a Sobel filter
over the x and y axes and take the norm (or the sum of the
absolute values, since this is a cheaper operation).

Pixel value [i,j] 0<=i<128 0<=j<128
Y1: y spatial_map [i-1, j] += image[i, j-1] + 2*image[i,j] +
image[i, j+1]
Y2: y spatial_map [i, j] += 0
Y3: y spatial_map [i-1,j] += -image[i, j-1] - 2*image[i,j] -
image[i, j+1]

X1: x spatial_map [i-1, j] += -image[i, j-1] + image[i, j+1]
X2: x spatial_map [i,j] += -2*image[i, j-1] + 2*image[i, j+1]
X3: x spatial_map [i-1, j] += -image[i, j-1] + image[i, j+1]

The equations represent the partial calculations of the Sobel
kernel if we only read 3 bytes at a time. These will be calculated
through a modified pipelined set of adders, as depicted in the
following diagram.

The final norm will be compared to the stored best spatial
energy value for the pixel over all previous frames, and then
the maximum of those two from the comparison will be stored
in the spatial map representation in memory.

The temporal energy map is calculated as the largest pixel value
difference between frames - so a running comparison of the best
differences will be calculated for each pixel each frame. To do
this a record of the previous pixel value needs to be stored, as
well as the thus far largest difference (which will be the final
temporal energy for a given pixel). The pipeline for this value
calculation is coordinated with that of the spatial so that the
value being stored at every clock tick corresponds to the same
pixel (and address).

18-500 Final Project Report: 05/08/2019 7

Once both the spatial and temporal maps are found, the
processing FSM will enter its final state in which a weighted
sum of the two energy maps will be calculated and stored in
embedded memory as the final energy map. The weight value
will be a tunable parameter.

B. Stage 2
The FSM for stage 2 will wait in idle until the top FSM gives it
the signal to begin loading the first row of the energy map into
intermediate registers that will hold the accumulation row. Then
it will move into the Accumulation state. The accumulation
value for a cell is found by adding the current cell’s energy
value to the minimum accumulation value of the adjacent top
three cells. The paths followed by this accumulation will be
stored in embedded memory, the same size as a frame. Each cell
in this accumulation paths matrix will hold the index of the
pixel that was the minimum of the top three adjacent ones.

C. Stage 3
This will involve first (in the Pick state) running the final
accumulation row in the registers through a modified series of
pipelined comparators that will yield the pixel index of the
minimum value (the starting point of our seam). We used a 2
stage pipeline of comparators that compared 8 values at once.
Thus, to find the minimum of 128 values, we took 17 cycles (1
additional cycle for first stage). Then, in the Travel state, we
used the accumulation paths matrix from stage 2 and iterated
through that matrix with the starting point found from the Pick
state (similar to traveling through a linked list) and store all the
indices into a FIFO buffer queue. Each cell in the matrix will
give the index of the next cell - this index will be stored in the
matrix and then used as the address for the next cell, and this
will repeat until we reach the top row. We send back the pixel
indices to the HPS through the FPGA-HPS FIFO. We used two
different FIFOs as the FPGA-HPS FIFO and rate of arrival for
a new pixel index is at different latencies.

D. HPS Post-processing
After we calculate the pixel indices of the seams to remove on
the FPGA, this data needs to be read by the HPS in order to
remove these seams from the video array. This data transfer will
be done through a HPS to FPGA bridge, which allows the HPS
to read from the FPGA’s peripherals through the L3 main
switch on the HPS. The L3 main switch is connected to the
ARM Core through the L2 cache, which allows the main
processor to receive the indices after they have been read from
the FPGA. All of these data transfers will be done through a 64
bit AXI read. The bridge is linked to our FPGA to HPS FIFO,
which allows our scripts to read in the pixel indices. Once the
ARM core receives the indices to be removed, we can run our
seam removal scripts on Linux to remove the pixels at those
indices from the video arrays.

VI. PROJECT MANAGEMENT

A. Schedule

We had to push our schedule back about 2 week from our
original plans due to delays in the shipping of the camera,
additional time required to select which FPGA to use for our
project, as well as additional time required to learn the tools
required to use the DE-10 standard, including the Embedded
Design Suite, and Megafunction Wizard.
(See attached last page)

18-500 Final Project Report: 05/08/2019 8

B. Team Member Responsibilities

We all chose to be involved in the top level algorithmic
understanding and discussion of overall implementation and
tunable parameters. We each researched different viable
solutions and compared them together, settling on that which
has been described. From there Kimberly took the initiative to
write the C++ software benchmark of the system and reported
on the timing metrics. Eshani worked on researching the DE10-
Standard HPS and understanding how to interface with the
fabric. She also is in charge of our quality metrics analysis.
Shruti has taken the high level algorithmic approach and
designed the hardware implementation (tradeoff between
parallelization and use of resources) to the FSM and datapath.
From here each member wrotes certain modules and
testbenches. Shurti worked on stage 1, Eshani worked on stage
2, and Kimberly worked on stage 3. Kimberly worked on
quality metrics.

C. Budget Items

a. Camera - $131.30
 Note: Due to design changes, ended up unused

b. DE-10 - Borrowed ($0)

c. Monitor - Borrowed ($0)

D. Risk Management

We are transferring a lot of data between different parts of the
DE-10 board in our algorithm. One risk involved here is data
corruption so we can plan to write unit tests to check for data
integrity between each of the modules. Another one of our main
risks is that memory on the FPGA would be more constrained
than our theoretical calculations. Our contingency plan for this
would be to use the SoC to divide the video into blocks more
manageable by FPGA memory and sent in intervals, or
alternatively to constrain the video resolution. We chose to
preprocess the video on the SoC for this reason so we could
easily the size of blocks we are computing on at a time if
required. Another risk we have is overlapping seams, since we
have the ability to remove up to 5 seams at a time. Our plan to
mitigate this risk is to check for duplicate indices when the
processor receives the indices and remove only the seam of
lowest accumulated weight that includes the duplicated indices.

We are transferring a lot of data between different parts of the
DE-10 board in our algorithm. One risk involved here is data
corruption so we can plan to write unit tests to check for data
integrity between each of the modules. Another one of our
main risks is that memory on the FPGA would be more
constrained than our theoretical calculations. Our contingency
plan for this would be to use the SoC to divide the video into
blocks more manageable by FPGA memory and sent in
intervals, or alternatively to constrain the video resolution. We
chose to preprocess the video on the SoC for this reason so we

could easily the size of blocks we are computing on at a time
if required.
In our design report, we discussed another risk we had which
was the removal of 5 seams per algorithmic run. Our plan was
to mitigate this risk by checking for duplicate indices when the
processor receives the indices and remove only the seam of
lowest accumulated weight that includes the duplicated
indices. However, we no longer needed to account for this risk
because we updated our design to only always choose the
optimal seam and recalculating the energy map before
choosing the next seam to remove. We discussed our
motivations for doing so in the previous sections.

18-500 Final Project Report: 05/08/2019 9

VII. RELATED WORK
Setlur et al. [2] proposed Automatic Image Retargeting which

1) identify regions of interest in image, 2) segments the image
based on those regions, 3) fills the resulting gaps, 4) resizes the
remaining areas and then 5) re-inserts important regions to
obtain the output. The results produced by this method are
aesthetically satisfying as it preserves important features but,
this method require many sequential steps and is thus, time
consuming.

Avidan [3] proposed in Improved Seam Carving for Video a
formulation of the seam carving operator as a minimum cost
graph cut problem on images and then extended it to video.
They define a video seam as a connected 2D manifold surface
in space-time that cuts through the video 3D cube. The
intersection of the surface with each frame defines one seam in
this frame. To implement minimum cost graph cut, they
construct a grid-like graph from the image in which every node
represents a pixel and connects to its neighboring pixels. Virtual
terminal nodes, S (source) and T (sink) are created and
connected with infinite weight arcs to all pixels of the leftmost
and rightmost columns of the image respectively. The optimal
seam is defined by the minimum cut which is the cut that has
the minimum cost among all valid cuts. The results produced
by this method are aesthetically satisfying but requires both
large amounts of memory and time to construct the graph for
the entire video.

Yasuhide [5] presents a hardware-oriented seam carving
algorithm for images in Performance evaluation of hardware-
oriented seam carving algorithm. The algorithm gives a
dedicated processor for each pixel in a row/column of an image,
and the parallel computation for the pixels can be done. The
performance of the algorithm is evaluated on an FPGA board,
and it turns out that the algorithm can achieve two thousands of
performance as much as that for the original one. The
implementation works very well as they are able to fit the entire
image onto the FPGA’s memory, but this is infeasible for
videos which require much more memory.

Jin [6] presented a method for calculating the removal seam
for each frame of a video separately in his website project Seam
Carving. Temporal coherency between frames is also preserved
by using look-ahead energy, a linear combination of energies
from future frames. The optimal seam for one frame is achieved
by finding the minimum cut on the cube which consists of the
current frame and the next 4 frames. In this way, the speed is
greatly increased when compared to a graph cut on the entire
voxel cube.

VIII. SUMMARY
Our MVP for this concept captured some of the basic

functionality of seam carving with the added benefits of running
on the FPGA. We met our timing requirements because we got
a 13x speedup. We also met our user testing requirements, as
shown below.

However, there were many planned extensions and additions

that we did not get to and would be worth exploring in the
future. To begin with, there is still much scope for streamlining
and optimizing of the current design and features. We ran into
issues with allocating memory vs timing and other such
tradeoffs, and future work could entail finding a better balance
than what we ended up with. The target max video size can be
increased so larger device sizes can be accommodated –
pipelining over half frames (or smaller segments) would allow
use of the same number of functional units with an increase of
time for a larger video that otherwise caused overfitting for the
board. The current design also involves reinputting a video for
each seam to remove – our previous solution of storing the
video in SDRAM rather than the HPS file system and removing
seams directly each iteration over the algorithm might improve
timing.

A. Future work
There is also much to be added to the algorithm itself. We

implemented the algorithm using static seams without forward
energy – the next extension we should explore to better pick
seams would be to also implement forward energy, and then use
the graph cut method to better target videos with moving
subjects or camera. We can also extend the algorithm use – we
can use it to add seams instead of just removing, we can use a
frame look ahead method and process for a live video feed, we
could use implement object/facial detection to better identify
high energy regions in a frame… there are lots of cool
extensions!

B. Lessons Learned
Our main lessons learned were that it’s important to have a
simple but guaranteed solution, as many contingency plans can
fail. It’s also important to start with a simple plan and optimize
later once the components work because planning for the most
optimized solution from the beginning can lead to many bugs.
We learned this lesson as we wanted to use the SDRAM on the
board to store data for faster data transfer but we ran into many
issues with the SDRAM and we realized a more effective
solution would be to use FIFOs to handle the data transfer.
Although we had planned the overall system architecture
together, we decided to parallelize the work by writing the
modules on our own and then integrating those modules
together at the end. This decision was not bad - but we had to
fail to consider how long it would actually take to integrate all
our modules together. We should have given much more time

18-500 Final Project Report: 05/08/2019 10

for this in our schedule. Another obstacle also came with this
late integration process – after combining all our modules,
compiling and synthesizing, we could not fit our entire design
onto the board. We had used more than 25% of the available
Adaptive Logic Module (ALM) on the board. Because of this,
we were again faced with another design trade-off. We
considered our options which included optimizing Quartus’s
compiler for area instead of speed, and this gave a 5% reduction
in area, but we were no longer meeting the timing requirements.
After conversing with our project advisor, we decided to
constrain the number of columns we were computing in parallel
by instead. This solved our issue of area but at the cost of less
parallelization. We then discussed other methods to increase
performance which included pipelining stage 1 and packing
multiple pixels into the data sent through the HPS-FPGA FIFO.
Another lesson we learnt is to choose your hardware very
wisely. When we chose the DE10-Standard board, we made the
assumption that all the Cyclone V boards were similar and that
we could reuse libraries for the DE10-Nano and DE1-SOC for
our own board. However, this was not the case as each board
carried different mappings for memory and had different sizes
for that as well. Although the differences seemed subtle, it
proved to be breaking. Many of the documentation and tutorials
online were also geared towards the DE10-Nano and DE1-SOC
as those boards were more price accessible. In hindsight, we
should have verified our FPGA-HPS communication on the
DE10-Standard much earlier before fully committing to the
board as we would have more time to pivot on our choice of
board if so. On the bright side, this challenge pushed us to
understand our hardware on a much deeper level than we had
originally anticipated.
Another option we considered to contend the memory
constraint of the DE10-Standard was to use a Xilinx board
which has much more memory on it. However, using a Xilinx
board would have meant that we would have to learn a new
toolchain, Vivado, and after careful consideration, we decided
that working on the DE10-Standard would allow us to focus on
our implementation and even pushed us to design innovatively
within the memory constraints of the board. This is not to say
that we did not learn new tools while working on the project;
we had trouble debugging once we had placed the design on the
board as we were using LEDs to communicate information and
that was not very informative. We should have consulted others
who have used the board before as we would have found out
about a much richer debugging tool, SignalTap. SignalTap is an
Embedded Logic Analyzer megafunction where one can select
signals, set up triggers, configure memory and display
waveforms; these functions proved very helpful in debugging
and verifying our design and we should have known tools
available to us from the start.
Furthermore, we could have consulted with other teams to
further verify our design. There was another team working on a
similar project as us who also faced similar problems on
communication between the SoC and FPGA and the slow data
transfer between the two components. We realized that by
verifying our design just between ourselves and advisors, we
had developed our own echo chamber on what the design was
and not what it could have been. By connecting with the other
team, we could have given and received feedback that was
highly specific to our problems. We should have taken our own

initiatives to leverage on the intellectual and collaborative
environment in CMU as we would have been able to design
better solutions for our project quicker.

REFERENCES
[1] Avidan, S., AND Shamir, A. 2007. Seam carving for content-aware

image resizing. In Proceedings of SIGGRAPH, Article No. 10.
[2] Setlur, V., Takagi S., Raskar R., Gleicher M., AND Gooch B. 2005.

Automatic image retargeting. In Proceedings of MUM ’05, Proceedings
of the 4th international conference on Mobile and ubiquitous
multimedia, 59-68.

[3] Avidan, S., Rubinstein, M., AND Shamir, A. 2008. Improved seam
carving for video retargeting. In Proceedings of SIGGRAPH, Article
No. 16.

[4] Yasuhide K. AND Yoshihisa D. 2014. Performance evaluation of
hardware-oriented seam carving algorithm. 2014 IEEE 3rd Global
Conference on Consumer Electronics (GCCE).

[5] Cheung C. AND Jin. R. Seam Carving. 2016. [Online]. Available: http
blackruan.github.io/seam-carving/ [Accessed: 4-Mar-2019].

18-500 Final Project Report: 05/08/2019 11

SCHEDULE

