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Abstract—Traditional methods of video resizing such as cropping 

or scaling distorts important regions in the frame, whereas content-
aware retargeting preserves these areas and thus, creates more 
aesthetically pleasing results. Seam carving is a popular technique for 
content-aware retargeting. We illustrate video retargeting using an 
improved seam carving that selects 2D seams from 3D voxels. Since 
computational complexity bottlenecks the execution speed, we present 
a hardware-oriented approach and algorithmic modification to 
improve performance. The performance of the algorithm is evaluated 
on an FPGA board, which shows an improvement of 13.67x. We also 
present heuristics for video-retargeting based on popular video-quality 
metrics.  
 

Index Terms— FPGA, Memory, Seam Carving 

I. INTRODUCTION 
HE use of portable devices is rapidly expanding – in 

2019, the number of mobile phone users is forecasted to 
reach 4.68 billion. Because of the various display aspect ratios 
(DARs) for these devices, images and videos must be adjusted 
to fit the screen. Traditional methods of video resizing include 
scaling and cropping, but these methods either remove 
important contents completely (cropping) or distorts the entire 
screen content (scaling). Thus, the resultant video becomes 
undesirable. The typical case of scaling with additional black-
colored backgrounds does preserve the original images’ 
contents, but for portable devices with small displays, the 
resultant images become so small that is hard to see. For users 
with restricted vision, this approach goes against technology 
accessibility as it may produce images that are impossible for 
them to see. Furthermore, video retargeting allows for better 
information delivery by drawing attention to important contents 
in the video through the reduced focal region.  

Avidan [1] proposed a novel method coined Seam Carving 
for content-aware image resizing algorithms. The approach 
uses seams - monotonic and connected paths of pixels going 
from the top of the image to the bottom, or from left to right. 
Dynamic programming can be used to determine the path of 
least energy importance and this seam is then removed to reduce 
the image size. This can be done to reduce width or height as 
well as add dimension by duplicating the seam of least 
importance. A naive extension of seam carving to video is to 
treat each video frame as an image and resize it independently 
as shown in Fig 1. c. This creates jittery artifacts due to the lack 
of temporal coherency, and a global approach is required.  

To process video, Avidan [3] proposed an improved seam 
carving operator, static-seam, in Improved Seam Carving for 
Video Retargeting by replacing the spatial energy map in favor 

of a global energy map consisting of both temporal and spatial 
elements to determine 2D seam manifolds from 3D voxel 
volumes that are fully connected. However, the computational 
complexity become the bottleneck of the implementation. For 
example, on an Intel(R) Core (TM) i5-4260U CPU @ 1.40GHz, 
removing 20 vertical seams from a video of resolution 640x360 
and total frames of 43 took 15.7018 seconds. 

We implemented a hardware-oriented approach for seam 
carving on the DE-10 Standard FPGA to increase performance 
speed by leveraging on the high number of functional units. In 
our design report, we proposed a modification on seam-carving 
that is to remove the multiple best seams during each run of the 
algorithm instead of only the optimal seam. However, we found 
this was no longer conducive for our design specifications; this 
is discussed further in II. Design Requirements. We targeted an 
improvement of at least 5x compared to a C++11 
implementation based on Avidan’s static-seam approach and 
positive user testing results for selecting output videos from 
both implementations. We achieved our targets for speed, user 
testing and PSNR, but were 2% shy of our SSIM metric. 

  
                                                (a) 

   
(b) 

 
(c) 

Fig. 1. (a) Left: An extracted seam. Right: An example of a resized image by 
using seam carving. (b) Left: Scaling. Right: Seams. (c) Seam carving on each 
video frame independently creates locally optimal seams that can be totally 
different across video frames. This creates a jittery resized video. A video 
resized using this method can be seen here: 
https://www.youtube.com/watch?v=Qb-l4ZWI8qc 
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II. DESIGN REQUIREMENTS 
We focus our design requirements in terms of 3 aspects: 

utility, timing and video quality.  

A. Utility  
We meet our requirements if we able to resize any user-

supplied video within the constraints to the correct specified 
resolution and this resized video is viewable on a monitor. We 
constrain our video input resolution to 128x128. This is because 
of the constraint of the amount of memory available on our 
FPGA; In our design report, we had targeted 256x144 but our 
hardware design was not able to fit onto the board. We will 
discuss this further in III. Design Trade Studies. We illustrate 
this memory mapping in III Architecture And/Or Principle of 
Operation. 

We originally constrained the resolution of the resultant 
video to be a minimum of half the width of the original video 
to preserve viewability of the result video on the monitor. 
However, this constrain no longer applies because we changed 
our design to remove one seam at a time, and the user can rerun 
the program to remove any desired number of seams from the 
video. 
B. Timing 

We meet our requirements if we get an improvement of at 
least 5x in terms of running time (seconds) when compared to 
a C++11 implementation based on Avidan’s static-seam 
approach based on our  approach. The transition from C++ to a 
FPGA implementation allows parallelization of computation 
over the columns of pixels and this is dependent on the 
resolution of the image. This would imply that we are able to 
compute 128 columns in parallel and this would be an 
improvement of 128x but this does not account for the time 
required for data transfer between the HPS and FPGA, 
differences in how functional units are used in the CPU vs 
FPGA, optimizations done by the CPU compiler vs FPGA 
compiler, communication for parallel computation in the FPGA 
and so on.  Thus, we aim for an improvement of at least 5x to 
be err on the conservative.  

C. Video Quality 
We meet our requirements if the result video preserves 

content better than the alternative cropped, scaled, or low-
resolution versions. We will verify this with user testing and 
video quality metrics. 

We designed our user testing as a double-blind experiment 
where one teammate sets up the study but then has another 
teammate collect the data from participants. We will show 3 
videos to a participant: 1) The original video 2) Result video 
from static-seam C++ implementation and 3) Result video from 
FPGA implementation. We did not tell the participants which 
video came from which implementation. We then asked the 
participants to choose between 3 options: 1) video 2 chose a 
better seam, 2) video 3 chose a better seam, or 3) the seams in 
videos 2 and 3 and indistinguishable. We decided we will pass 
our user testing requirement if over 90% of participants choose 
either option 2 or option 3. 

Our specification for video quality was that we wanted a 
processed result of similar quality to the result of our software 
benchmarking code. We wanted to use two objective video 

quality metrics to test our results, peak signal to noise ratio 
(PNSR) and spatio-temporal SSIM.  Both of these video quality 
metrics are used to compare the amount of distortion in a 
processed video compared to the original video. PSNR 
estimates absolute errors and spatio-temporal structural 
similarity index (SSIM) measures similarity in luminance, 
contrast, and structure of pixels. We calculated these values 
using FFmpeg. For our benchmark values PNSR and SSIM 
values, we compared the resulting video from our software 
implementation of seam carving to the original video. Then we 
compared the resulting video from our FPGA implementation 
of seam carving to the original video and calculate PNSR and 
SSIM values for this comparison. Therefore, we have two sets 
of PNSR and SSIM values. We will compare the PNSR and 
SSIM values from the FPGA implementation of seam carving 
to the PNSR and SSIM values from the software 
implementation of seam carving. Our goal was to have at most 
10% difference in the quality metrics from the two 
implementations for SSIM. We will run PSNR on the result 
video and we meet requirements if we are within 80dB of the 
PSNR of the original video.  

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
We build on and extend the work of Avidan [3]. The general 

approach of the static seam carving algorithm is 1) compute the 
energy map, 2) compute all path sums of seams and 3) find the 
minimum path seam. These 3 steps are repeated as many times 
as number of seams desired to be removed.  

We propose multi-seam removal for each global energy map 
computed to increase throughput. The number of seams 
removed serves as a parameter that balances throughput and 
video result quality. The higher the number of seams, the higher 
the throughput as the number of times the entire algorithm is 
ran is reduced. However, it is important to note that removing 
the top 5 minimum path seams from 1 energy map is not the 
same as selecting the minimum path seam from 5 energy maps 
computed consecutively like in the original seam carving 
approach. After synthesizing our FPGA implementation onto 
the DE10 Standard, we achieved a 13.67x performance speed 
relative to the C++ implementation, most of which was 
bottlenecked by data transfer. Thus, we no longer found multi-
seam removal to fit our design specification as speedup would 
be minimal compared to speeding up data transfer and we 
would still be losing video quality. We explain this tradeoff 
further in IV. Design Trade Studies. 

Our minimum viable product will reflect the following. Five 
seconds of input video of resolution 128x128 and 30 fps with 
total number of frames=300  will be taken externally and passed 
into the DE10-Standard file system. The HPS on the DE10-
Standard will handle video preprocessing such as gray-scaling 
and conversion to hex files through scripts run on Linux. The 
video will be stored as a modified (see subsystems for details) 
array in the SDRAM, accessible by the FPGA through AXI 
bridges. The FPGA will load workable frames into embedded 
memory (M10K blocks) and run the three stages of the seam 
carving algorithm. It will find the indices of pixels in the best 
seams and send this to the HPS, which will run post-processing 
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scripts to remove these pixels from the frames and display the 
video onto a monitor. A user can toggle between the three 
output options on the monitor – the original video, the video 
with the identified seam highlighted, and the video with the 
seam removed. 

 

 
Fig. 2. User Perspective of Minimum Viable Product 

 
 
 
 
 

 
 
 
 

 
Fig. 3. Block Diagram of our Data Transfer 
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IV. DESIGN TRADE STUDIES 
 

A. Timing Performance vs Video Quality 
In our previous design report, we proposed multi-seam 

removal for each iteration of the algorithm. The multi-seam 
removal would have given n times the throughput where n is 
the number of seams removed. Our proposed testing method is 
shown below in Fig 4, however this was not used in our final 
testing. This produces a higher throughput as we skip energy 
map calculations that are computationally heavily. This 
increased performance of speed is not free as we are not 
selecting the optimal seam for every single pixel reduction in 
width (or height).However, after testing our FPGA 
implementation for single seam removal, we realized that our 
implementation was already so much faster (13.67x) than our 
baseline. Thus, sacrificing video quality for speed was no 
longer necessary for us to reach our performance projections.  

Another reason is that our performance was being bottle-
necked by the data transfer between the HPS and FPGA and not 
the algorithm itself. We would have gotten much better 
performance by leveraging the full width of the AXI bus 
between the FPGA and HPS. Currently, we send 8 bits of data 
which is composed of the 0-255 value of a grayscale pixel. The 
bus is capable of sending 128 bits. This change would involve 
packing 16 pixels (128 bits / 8 bits) in the HPS through C++ 
and updating the finite state machine on the FPGA to handle 16 
pixels at a time from the pixel stream from the HPS. 

 

Metrics 
Number of Seams per Algorithmic Run (NSAR) 

1 3 5 

Quality High Medium Low 
Execution 
time Longest Medium Shortest 

User 
Testing Most Satisfied Medium 

Satisfaction 
Low 
Satisfaction 

 
Fig. 4.  

B. FPGA Memory Allocation 
The algorithm bottleneck encountered in software is the high 

volume of data and computation needed for the full video. 
Implementing the algorithm on hardware will increase 
parallelizing capability, but we are still limited by the amount 
of data that can be fit on the FPGA. The full video can be stored 
frame by frame in the HPS file system, and sent over to the 
FPGA side in a serial stream (row by row). The most 
computationally heavy part of the algorithm is in stage 1, 
calculating the energy map – to maximize parallelizing 
capability, we would want to process each column at once and 
sequentially process rows. If we store the frames in embedded 
memory, each column must be stored in its own separate block 
to be able to have read/write access to all of them at once. With 
our given frame size of 128x128p, a column more than 
definitely fits into a M10K block (which can hold 1024 bytes). 
The DE10-Standard only has 557 M10K blocks of embedded 
memory – this means we can create a “bank” of 128 blocks, 
each holding a column of a video frame, to fully store the video, 
as well as other necessary arrays in the algorithms (energy map, 

accumulation paths – which are the size of a single video 
frame).  

We choose to instantiate two “banks” of this nature to hold 
frames to process on – in stage 1, we will need at most this many 
at a time. (Quartus analysis revealed that the memory blocks 
and more importantly, the logic (ALM) utilization was full for 
this frame size). In stage 1, bank 2 will be the most used – both 
the spatial and temporal energy maps use 16 bit data points 
rather than 8 bit, and since they are stored together in the same 
bank, each corresponding pixel will require 32 bits – this means 
there are 256 spots in each memory block, still more than 
enough for a 128 pixel column. The accumulation values are 
only needed for a single row at a time, so these can be stored in 
a set of 128 registers. 

Figure 5 further explains each stage’s use of the two 
instantiated “banks.” 
 

Fig. 5. Embedded Memory Allocation 
 
 

V. SYSTEM DESCRIPTION 
In our design report, we intended the FPGA to SDRAM 
interface on the DE-10’s FPGA to read the video array from the 
HPS’s SDRAM into the FPGA’s memory. This data transfer is 
done using 2 64 bit read ports in a master-slave architecture to 
allow the FPGA’s peripherals to access the HPS’s SDRAM. 

 
 
In our original design, we stored video data in the HPS’s 
SDRAM. However, we realized this was not the most optimal 
solution because data in SDRAM does not persist when the 
FPGA is turned off. Therefore, we decided to store our video, 
as well as all of its frames as images on the Linux filesystem of 
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the HPS. We decided to use FIFOs to communicate between the 
HPS and the FPGA.  

 
 
Our current design uses a C program, which runs on the HPS, 
to read from the frames of the video on the filesystem, and write 
each pixel onto the HPS to FPGA FIFO. This write is done 
using a 32-bit AXI write using memory mapped bridges on the 
DE-10 Standard that are used to communicate between the HPS 
and the FPGA. We set up these connections on the board with 
the use of QSYS, a development tool that handles the FPGA’s 
interconnect with external modules. Once the pixel data is in 
the FIFO, we use a state machine to read from the FIFO and 
send a pixel to the top module each time the top module sends 
a data ready signal. 
 
The top module of the FPGA design will handle switching 
between stages - within a stage its corresponding FSMs will be 
triggered and when the stage calculations are complete the done 

signal will move the top FSM to the next stage. Stage One will 
handle receiving the incoming pixel stream and Stage Three 
will send back the pixel indices of the seam(s). The Finish state 
will indicate the completion of the algorithm on the FPGA end. 
 
Recall that the algorithm is separated into 3 stages.  
 
The first stage involves computing an energy map of the pixels 
(the size of a frame), with both a spatial and temporal aspect. 
The spatial energy map will be calculated for each frame (across 
x and y), and will give high energy values to pixels that have 
most difference (edges, etc). For each value of a pixel over time, 
the largest spatial energy calculated will be kept for the final 
energy map. The temporal aspect will involve looking at the 
difference in a single pixel value over time (across z, or t for 
time). The final energy map is a weighted sum of the two. 

 
The second stage is an accumulation stage, in which we 
generate an accumulation matrix. The energy value of a pixel is 
added to the minimum of the top three adjacent accumulation 
values to find the current pixel accumulation value, and this 
process is iterated over rows (edges will give an accumulation 
value of 0). This path of minimums represents a seam, and thus 
all the possible seams in the video will be found in this stage. 
 
The final stage will involve picking the minimum value(s) of 
the end accumulated row and following back on the path for the 
given seam to remove. The resultant index of each pixel in this 
seam will be sent back as found. 
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A. Stage 1 
Stage 1 involves two FSMs for the double buffering - one to 
process the current loaded frame and the other to handle loading 
the next frame block into the embedded memory. The following 
diagram outlines the control signals needed to do handshaking 
between the FSMs. (wr_ indicates the loading FSM and pl_ 
indicates the processing FSM).  

 

 
 
Regarding the processing: 
 
We calculate the temporal and spatial energies in parallel, using 
a synchronized pipelined data calculation and transfer that will 
store the final values for each index at the same time. The 
pipeline will have an initial latency, but once that flush of values 
occurs energy map values will be stored every other clock cycle 
(on a two cycle pattern for alternate read and write states – the 
map values are constantly  
 
As mentioned previously, we will store a column per embedded 
memory block, using bank 1 for our initial data read. Bank 2 
will store the spatial and temporal map in tandem – the pipeline 
latency is outlined by the grey dotted lines to show the 
synchronous calculation of each value for the same pixel index.  
 
To calculate the spatial map, we will need to apply a Sobel filter 
over the x and y axes and take the norm (or the sum of the 
absolute values, since this is a cheaper operation). 
 

Pixel value [i,j] 0<=i<128 0<=j<128 
Y1: y spatial_map [i-1, j] += image[i, j-1] + 2*image[i,j] + 
image[i, j+1] 
Y2: y spatial_map [i, j] += 0 
Y3: y spatial_map [i-1,j] += -image[i, j-1] - 2*image[i,j] - 
image[i, j+1] 
 
X1: x spatial_map [i-1, j] += -image[i, j-1] + image[i, j+1] 
X2: x spatial_map [i,j] += -2*image[i, j-1] + 2*image[i, j+1] 
X3: x spatial_map [i-1, j] += -image[i, j-1] + image[i, j+1] 
 
The equations represent the partial calculations of the Sobel 
kernel if we only read 3 bytes at a time. These will be calculated 
through a modified pipelined set of adders, as depicted in the 
following diagram. 
 
The final norm will be compared to the stored best spatial 
energy value for the pixel over all previous frames, and then 
the maximum of those two from the comparison will be stored 
in the spatial map representation in memory.  
 
The temporal energy map is calculated as the largest pixel value 
difference between frames - so a running comparison of the best 
differences will be calculated for each pixel each frame. To do 
this a record of the previous pixel value needs to be stored, as 
well as the thus far largest difference (which will be the final 
temporal energy for a given pixel). The pipeline for this value 
calculation is coordinated with that of the spatial so that the 
value being stored at every clock tick corresponds to the same 
pixel (and address). 
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Once both the spatial and temporal maps are found, the 
processing FSM will enter its final state in which a weighted 
sum of the two energy maps will be calculated and stored in 
embedded memory as the final energy map. The weight value 
will be a tunable parameter. 
 

B. Stage 2 
The FSM for stage 2 will wait in idle until the top FSM gives it 
the signal to begin loading the first row of the energy map into 
intermediate registers that will hold the accumulation row. Then 
it will move into the Accumulation state. The accumulation 
value for a cell is found by adding the current cell’s energy 
value to the minimum accumulation value of the adjacent top 
three cells. The paths followed by this accumulation will be 
stored in embedded memory, the same size as a frame. Each cell 
in this accumulation paths matrix will hold the index of the 
pixel that was the minimum of the top three adjacent ones.  

 
 
C. Stage 3 
This will involve first (in the Pick state) running the final 
accumulation row in the registers through a modified series of 
pipelined comparators that will yield the pixel index of the 
minimum value (the starting point of our seam). We used a 2 
stage pipeline of comparators that compared 8 values at once. 
Thus, to find the minimum of 128 values, we took 17 cycles (1 
additional cycle for first stage). Then, in the Travel state, we 
used the accumulation paths matrix from stage 2 and iterated 
through that matrix with the starting point found from the Pick 
state (similar to traveling through a linked list) and store all the 
indices into a FIFO buffer queue. Each cell in the matrix will 
give the index of the next cell - this index will be stored in the 
matrix and then used as the address for the next cell, and this 
will repeat until we reach the top row. We send back the pixel 
indices to the HPS through the FPGA-HPS FIFO. We used two 
different FIFOs as the FPGA-HPS FIFO and rate of arrival for 
a new pixel index is at different latencies.  

 
 

D. HPS Post-processing 
After we calculate the pixel indices of the seams to remove on 
the FPGA, this data needs to be read by the HPS in order to 
remove these seams from the video array. This data transfer will 
be done through a HPS to FPGA bridge, which allows the HPS 
to read from the FPGA’s peripherals through the L3 main 
switch on the HPS. The L3 main switch is connected to the 
ARM Core through the L2 cache, which allows the main 
processor to receive the indices after they have been read from 
the FPGA. All of these data transfers will be done through a 64 
bit AXI read. The bridge is linked to our FPGA to HPS FIFO, 
which allows our scripts to read in the pixel indices. Once the 
ARM core receives the indices to be removed, we can run our 
seam removal scripts on Linux to remove the pixels at those 
indices from the video arrays.  
 
 

VI. PROJECT MANAGEMENT 

A. Schedule 

We had to push our schedule back about 2 week from our 
original plans due to delays in the shipping of the camera, 
additional time required to select which FPGA to use for our 
project, as well as additional time required to learn the tools 
required to use the DE-10 standard, including the Embedded 
Design Suite, and Megafunction Wizard. 
(See attached last page) 
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B. Team Member Responsibilities 
 
We all chose to be involved in the top level algorithmic 
understanding and discussion of overall implementation and 
tunable parameters. We each researched different viable 
solutions and compared them together, settling on that which 
has been described. From there Kimberly took the initiative to 
write the C++ software benchmark of the system and reported 
on the timing metrics. Eshani worked on researching the DE10-
Standard HPS and understanding how to interface with the 
fabric. She also is in charge of our quality metrics analysis. 
Shruti has taken the high level algorithmic approach and 
designed the hardware implementation (tradeoff between 
parallelization and use of resources) to the FSM and datapath. 
From here each member wrotes certain modules and 
testbenches. Shurti worked on stage 1, Eshani worked on stage 
2, and Kimberly worked on stage 3. Kimberly worked on 
quality metrics. 
 

C. Budget Items 

a. Camera - $131.30 
 Note: Due to design changes, ended up unused 

b. DE-10 - Borrowed ($0) 

c. Monitor - Borrowed ($0) 
 
D. Risk Management 

We are transferring a lot of data between different parts of the 
DE-10 board in our algorithm. One risk involved here is data 
corruption so we can plan to write unit tests to check for data 
integrity between each of the modules. Another one of our main 
risks is that memory on the FPGA would be more constrained 
than our theoretical calculations. Our contingency plan for this 
would be to use the SoC to divide the video into blocks more 
manageable by FPGA memory and sent in intervals, or 
alternatively to constrain the video resolution. We chose to 
preprocess the video on the SoC for this reason so we could 
easily the size of blocks we are computing on at a time if 
required. Another risk we have is overlapping seams, since we 
have the ability to remove up to 5 seams at a time. Our plan to 
mitigate this risk is to check for duplicate indices when the 
processor receives the indices and remove only the seam of 
lowest accumulated weight that includes the duplicated indices. 

 
We are transferring a lot of data between different parts of the 
DE-10 board in our algorithm. One risk involved here is data 
corruption so we can plan to write unit tests to check for data 
integrity between each of the modules. Another one of our 
main risks is that memory on the FPGA would be more 
constrained than our theoretical calculations. Our contingency 
plan for this would be to use the SoC to divide the video into 
blocks more manageable by FPGA memory and sent in 
intervals, or alternatively to constrain the video resolution. We 
chose to preprocess the video on the SoC for this reason so we 

could easily the size of blocks we are computing on at a time 
if required.  
In our design report, we discussed another risk we had which 
was the removal of 5 seams per algorithmic run. Our plan was 
to mitigate this risk by checking for duplicate indices when the 
processor receives the indices and remove only the seam of 
lowest accumulated weight that includes the duplicated 
indices. However, we no longer needed to account for this risk 
because we updated our design to only always choose the 
optimal seam and recalculating the energy map before 
choosing the next seam to remove. We discussed our 
motivations for doing so in the previous sections.   
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VII. RELATED WORK 
Setlur et al. [2] proposed Automatic Image Retargeting which 

1) identify regions of interest in image, 2) segments the image 
based on those regions, 3) fills the resulting gaps, 4) resizes the 
remaining areas and then 5) re-inserts important regions to 
obtain the output. The results produced by this method are 
aesthetically satisfying as it preserves important features but, 
this method require many sequential steps and is thus, time 
consuming. 

Avidan [3] proposed in Improved Seam Carving for Video a 
formulation of the seam carving operator as a minimum cost 
graph cut problem on images and then extended it to video. 
They define a video seam as a connected 2D manifold surface 
in space-time that cuts through the video 3D cube. The 
intersection of the surface with each frame defines one seam in 
this frame. To implement minimum cost graph cut, they 
construct a grid-like graph from the image in which every node 
represents a pixel and connects to its neighboring pixels. Virtual 
terminal nodes, S (source) and T (sink) are created and 
connected with infinite weight arcs to all pixels of the leftmost 
and rightmost columns of the image respectively. The optimal 
seam is defined by the minimum cut which is the cut that has 
the minimum cost among all valid cuts. The results produced 
by this method are aesthetically satisfying but requires both 
large amounts of memory and time to construct the graph for 
the entire video. 

Yasuhide [5] presents a hardware-oriented seam carving 
algorithm for images in Performance evaluation of hardware-
oriented seam carving algorithm. The algorithm gives a 
dedicated processor for each pixel in a row/column of an image, 
and the parallel computation for the pixels can be done. The 
performance of the algorithm is evaluated on an FPGA board, 
and it turns out that the algorithm can achieve two thousands of 
performance as much as that for the original one. The 
implementation works very well as they are able to fit the entire 
image onto the FPGA’s memory, but this is infeasible for 
videos which require much more memory. 

Jin [6] presented a method for calculating the removal seam 
for each frame of a video separately in his website project Seam 
Carving. Temporal coherency between frames is also preserved 
by using look-ahead energy, a linear combination of energies 
from future frames. The optimal seam for one frame is achieved 
by finding the minimum cut on the cube which consists of the 
current frame and the next 4 frames. In this way, the speed is 
greatly increased when compared to a graph cut on the entire 
voxel cube.  
 

VIII. SUMMARY 
Our MVP for this concept captured some of the basic 

functionality of seam carving with the added benefits of running 
on the FPGA. We met our timing requirements because we got 
a 13x speedup. We also met our user testing requirements, as 
shown below. 

 

 
However, there were many planned extensions and additions 

that we did not get to and would be worth exploring in the 
future. To begin with, there is still much scope for streamlining 
and optimizing of the current design and features. We ran into 
issues with allocating memory vs timing and other such 
tradeoffs, and future work could entail finding a better balance 
than what we ended up with. The target max video size can be 
increased so larger device sizes can be accommodated – 
pipelining over half frames (or smaller segments) would allow 
use of the same number of functional units with an increase of 
time for a larger video that otherwise caused overfitting for the 
board. The current design also involves reinputting a video for 
each seam to remove – our previous solution of storing the 
video in SDRAM rather than the HPS file system and removing 
seams directly each iteration over the algorithm might improve 
timing. 

A. Future work 
There is also much to be added to the algorithm itself. We 

implemented the algorithm using static seams without forward 
energy – the next extension we should explore to better pick 
seams would be to also implement forward energy, and then use 
the graph cut method to better target videos with moving 
subjects or camera. We can also extend the algorithm use – we 
can use it to add seams instead of just removing, we can use a 
frame look ahead method and process for a live video feed, we 
could use implement object/facial detection to better identify 
high energy regions in a frame… there are lots of cool 
extensions! 

B. Lessons Learned 
Our main lessons learned were that it’s important to have a 
simple but guaranteed solution, as many contingency plans can 
fail. It’s also important to start with a simple plan and optimize 
later once the components work because planning for the most 
optimized solution from the beginning can lead to many bugs. 
We learned this lesson as we wanted to use the SDRAM on the 
board to store data for faster data transfer but we ran into many 
issues with the SDRAM and we realized a more effective 
solution would be to use FIFOs to handle the data transfer. 
Although we had planned the overall system architecture 
together, we decided to parallelize the work by writing the 
modules on our own and then integrating those modules 
together at the end. This decision was not bad - but we had to 
fail to consider how long it would actually take to integrate all 
our modules together. We should have given much more time 
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for this in our schedule. Another obstacle also came with this 
late integration process – after combining all our modules, 
compiling and synthesizing, we could not fit our entire design 
onto the board. We had used more than 25% of the available 
Adaptive Logic Module (ALM) on the board. Because of this, 
we were again faced with another design trade-off. We 
considered our options which included optimizing Quartus’s 
compiler for area instead of speed, and this gave a 5% reduction 
in area, but we were no longer meeting the timing requirements. 
After conversing with our project advisor, we decided to 
constrain the number of columns we were computing in parallel 
by instead. This solved our issue of area but at the cost of less 
parallelization. We then discussed other methods to increase 
performance which included pipelining stage 1 and packing 
multiple pixels into the data sent through the HPS-FPGA FIFO. 
Another lesson we learnt is to choose your hardware very 
wisely. When we chose the DE10-Standard board, we made the 
assumption that all the Cyclone V boards were similar and that 
we could reuse libraries for the DE10-Nano and DE1-SOC for 
our own board. However, this was not the case as each board 
carried different mappings for memory and had different sizes 
for that as well. Although the differences seemed subtle, it 
proved to be breaking. Many of the documentation and tutorials 
online were also geared towards the DE10-Nano and DE1-SOC 
as those boards were more price accessible. In hindsight, we 
should have verified our FPGA-HPS communication on the 
DE10-Standard much earlier before fully committing to the  
board as we would have more time to pivot on our choice of 
board if so. On the bright side, this challenge pushed us to 
understand our hardware on a much deeper level than we had 
originally anticipated. 
Another option we considered to contend the memory 
constraint of the DE10-Standard was to use a Xilinx board 
which has much more memory on it. However, using a Xilinx 
board would have meant that we would have to learn a new 
toolchain, Vivado, and after careful consideration, we decided 
that working on the DE10-Standard would allow us to focus on 
our implementation and even pushed us to design innovatively 
within the memory constraints of the board. This is not to say 
that we did not learn new tools while working on the project; 
we had trouble debugging once we had placed the design on the 
board as we were using LEDs to communicate information and 
that was not very informative. We should have consulted others 
who have used the board before as we would have found out 
about a much richer debugging tool, SignalTap. SignalTap is an 
Embedded Logic Analyzer megafunction where one can select 
signals, set up triggers, configure memory and display 
waveforms; these functions proved very helpful in debugging 
and verifying our design and we should have known tools 
available to us from the start.  
Furthermore, we could have consulted with other teams to 
further verify our design. There was another team working on a 
similar project as us who also faced similar problems on 
communication between the SoC and FPGA and the slow data 
transfer between the two components. We realized that by 
verifying our design just between ourselves and advisors, we 
had developed our own echo chamber on what the design was 
and not what it could have been. By connecting with the other 
team, we could have given and received feedback that was 
highly specific to our problems. We should have taken our own 

initiatives to leverage on the intellectual and collaborative 
environment in CMU as we would have been able to design 
better solutions for our project quicker.   
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