
18-500 Design Review Report: 03/03/2019 1

Abstract—Traditional methods of video resizing such as cropping

or scaling distorts important regions in the frame, whereas content-
aware retargeting preserves these areas and thus, creates more
aesthetically pleasing results. Seam carving is a popular technique for
content-aware retargeting. We illustrate video retargeting using an
improved seam carving that selects 2D seams from 3D voxels. Since
computational complexity bottlenecks the execution speed, we present
a hardware-oriented approach and algorithmic modification to
improve performance. The performance of the algorithm is evaluated
on an FPGA board, which shows an improvement of at least 5x. We
also present heuristics for video-retargeting based on popular video-
quality metrics.

Index Terms— Camera, FPGA, Memory, Seam Carving

I. INTRODUCTION
HE use of portable devices is rapidly expanding – in

2019, the number of mobile phone users is forecasted to
reach 4.68 billion. Because of the various display aspect

ratios (DARs) for these devices, images and videos must be
adjusted to fit the screen. Traditional methods of video resizing
include scaling and cropping, but these methods either remove
important contents completely (cropping) or distorts the entire
screen content (scaling). Thus, the resultant video becomes
undesirable. The typical case of scaling with additional black-
colored backgrounds does preserve the original images’
contents, but for portable devices with small displays, the
resultant images become so small that is hard to see. For users
with restricted vision, this approach goes against technology
accessibility as it may produce images that are impossible for
them to see. Furthermore, video retargeting allows for better
information delivery by drawing attention to important contents
in the video through the reduced focal region.

Avidan [1] proposed a novel method coined Seam Carving
for content-aware image resizing algorithms. The approach
uses seams - monotonic and connected paths of pixels going
from the top of the image to the bottom, or from left to right.
Dynamic programming can be used to determine the path of
least energy importance and this seam is then removed to reduce
the image size. This can be done to reduce width or height as
well as add dimension by duplicating the seam of least
importance. A naive extension of seam carving to video is to
treat each video frame as an image and resize it independently
as shown in Fig 1. c. This creates jittery artifacts due to the lack
of temporal coherency, and a global approach is required.

To process video, Avidan [3] proposed an improved seam
carving operator, static-seam, in Improved Seam Carving for
Video Retargeting by replacing the spatial energy map in favor
of a global energy map consisting of both temporal and spatial
elements to determine 2D seam manifolds from 3D voxel

volumes that are fully connected. However, the computational
complexity become the bottleneck of the implementation. For
example, on an Intel(R) Core (TM) i5-4260U CPU @ 1.40GHz,
removing 20 vertical seams from a video of resolution 640x360
and total frames of 43 took 15.7018 seconds.

We plan to implement a hardware-oriented approach for
seam carving on the DE-10 Standard FPGA to increase
performance speed by leveraging on the high number of
functional units. We also propose a modification on seam-
carving that is to remove the multiple best seams during each
run of the algorithm instead of only the optimal seam. We
define this parameter as Number of Seams per Algorithmic Run
(NSAR). We target an improvement of at least 5x compared to
a C++11 implementation based on Avidan’s static-seam
approach. We discuss this target performance further in II.
Design Requirements.

 (a)

(b)

(c)

Fig. 1. (a) Left: An extracted seam. Right: An example of a resized image by
using seam carving. (b) Left: Scaling. Right: Seams. (c) Seam carving on each
video frame independently creates locally optimal seams that can be totally
different across video frames. This creates a jittery resized video. A video
resized using this method can be seen here:
https://www.youtube.com/watch?v=Qb-l4ZWI8qc

II. DESIGN REQUIREMENTS
We focus our design requirements in terms of 3 aspects:

FPGA Accelerated Seam Carving for Video
Eshani Mishra, Shruti Narayan, Kimberly Lim

Electrical and Computer Engineering, Carnegie Mellon University

T

18-500 Design Review Report: 03/03/2019 2

utility, timing and video quality.

A. Utility
We meet our requirements if we able to resize any user-

supplied video within the constraints to the correct specified
resolution and this resized video is viewable on a monitor. We
constrain our video input resolution to 240x360. This is because
of the constraint of the amount of memory available on our
FPGA; the largest typical resolution size (480p is the next) that
can be used for double buffering. We illustrate this memory
mapping in III Architecture And/Or Principle of Operation.

We also constrain the resolution of the resultant video to be
a minimum of 240x180 to preserve viewability of the result
video on the monitor. This resolution is also the minimum
required for YouTube, the popular online streaming platform.
B. Timing

We meet our requirements if we get an improvement of at
least 5x in terms of running time (seconds) when compared to
a C++11 implementation based on Avidan’s static-seam
approach based on our approach. We chose this value because
our multi-seam approach allows for NSAR=5 so this should
achieve at least a 3x improvement. The transition from C++ to
a FPGA implementation allows parallelization of computation
of a row of pixels and this is dependent on the resolution of the
image, but an improvement of at least 2x is achievable
regardless.

C. Video Quality
We meet our requirements if the result video preserves

content better than the alternative cropped, scaled, or low-
resolution versions. We will verify this with user testing and
video quality metrics.

We design our user testing as a double-blind experiment
where one teammate sets up the study but then has another
teammate collect the data from participants. We will show 3
videos to a participant: 1) The original video 2) Result video
from static-seam C++ implementation and 3) Result video from
multi-seam FPGA implementation. We then ask the participant
to rank videos 2 and 3 between 1 and 10.

For video quality metrics, we have chosen to use peak signal
to noise ratio (PSNR) that estimates absolute errors and spatio-
temporal structural similarity index (SSIM) that measures
similarity in luminance, contrast, and structure of pixels. We
will run SSIM with our results from the C++11 implementation
and we meet requirements if we are <10% error from that. We
will run PSNR on the result video and we meet requirements if
we are within 80dB of the PSNR of the original video.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
We build on and extend the work of Avidan [3]. The general

approach of the static seam carving algorithm is 1) compute the
energy map, 2) compute all path sums of seams and 3) find the
minimum path seam. These 3 steps are repeated as many times
as number of seams desired to be removed.

We propose multi-seam removal for each global energy map
computed to increase throughput. The number of seams
removed serves as a parameter that balances throughput and
video result quality. The higher the number of seams, the higher
the throughput as the number of times the entire algorithm is
ran is reduced. However, it is important to note that removing

the top 5 minimum path seams from 1 energy map is not the
same as selecting the minimum path seam from 5 energy maps
computed consecutively like in the original seam carving
approach. We explain this tradeoff further in IV. Design Trade
Studies.

Our minimum viable product will reflect the following. Five

seconds of input video of resolution 360x240 and 30 fps will be
taken on the D8M-GPIO camera that interfaces directly with
the DE10-Standard FPGA with SoC. The HPS on the DE10-
Standard will handle video preprocessing such as gray-scaling
and conversion to hex files through scripts run on Linux. The
video will be stored as a modified (see subsystems for details)
array in the SDRAM, accessible by the FPGA through AXI
bridges. The FPGA will load workable half frames into
embedded memory (M10K blocks) and run the three stages of
the seam carving algorithm. It will find the indices of pixels in
the best seams and send this to the HPS, which will run post-
processing scripts to remove these pixels from the frames and
display the video onto a monitor. An optional user input on the
FPGA or processor will indicate the removal or addition of
seams, triggering the algorithm to run and display a resized
video on the monitor.

Fig. 2. User Perspective of Minimum Viable Product

18-500 Design Review Report: 03/03/2019 3

Fig. 3. Block Diagram of our Data Transfer

18-500 Design Review Report: 03/03/2019 4

IV. DESIGN TRADE STUDIES

A. Timing Performance vs Video Quality
Our proposed seam carving operator, multi-seam heuristic,

removes multiple seams from an energy map versus the
traditional approach of removing 1 seam and then recomputing
the energy map after that removal. This produces a higher
throughput as we skip energy map calculations that are
computationally heavily. This increased performance of speed
is not free as we are not selecting the optimal seam for every
single pixel reduction in width (or height). We deliberated this
design trade-off and we have opted to specify the NSAR in
multi-seam heuristic to be a user-specified parameter. To make
usage simpler, we specify the parameter as such: High Quality
(1 seam), Medium Quality (3 seams) and Low Quality (5
seams).

The mapping between NSAR and Video Quality was
calculated through by running our static-seam software
implementation on an image but with NSAR = 1, 2, 3, … 8. We
then presented the videos to users to determine a threshold for
video quality. Our results conclude that 5 is the maximum
threshold people would be alright with and while the difference
between NSAR=2 and NSAR=3 were not insignificant, the
difference for NSAR=3 and NSAR=4 was much larger. We will
employ the video quality metrics - PSNR and SSIM - to verify
this mapping.

Metrics
Number of Seams per Algorithmic Run (NSAR)

1 3 5

Quality High Medium Low
Execution
time Longest Medium Shortest

User
Testing Most Satisfied Medium

Satisfaction
Low
Satisfaction

B. FPGA Memory Allocation
The algorithm bottleneck encountered in software is the high
volume of data and computation needed for the full video.
Implementing the algorithm on hardware will increase
parallelizing capability, but we are still limited by the amount
of data that can be fit on the FPGA. The video is also specially
formatted to optimize parallelization, organized with internal
copies. Each row will be represented by itself as well as its
adjacent top and bottom rows (since these will be needed when
doing partial calculations of the kernel) (See subsystems for full
algorithm implementation details) Thus full size of the video is:

360*240*30fps*5sec*3(row representation)
= 38,880,000 bytes

The full video can be stored in the SDRAM (with a capacity of
1GB), but the DE10-Standard only has 557 M10K blocks of
embedded memory - needed for storing the frames currently
being processed as well as intermediate calculation values. The
space limitations are fully outlined in the following figure. 75

blocks are needed to store a single regularly formatted frame,
which is the same size as the energy maps. The temporal energy
map will need double representation since it will be calculated
across frames and we will not process more than a single frame
at a time, so previous values need to be stored. This will leave
332 blocks - one block is needed for a single row representation
(3 rows of 320 bytes), so this is not enough to store two frames.
We aim to use double buffering to absorb the load time (load
the next frame while working with the current one), but with the
mentioned memory constraints we will only work with half a
frame at a time. This means 120 blocks to process ½ a frame
and another 120 to load in the next from SDRAM. This first
step of the algorithm is the most computationally heavy, and is
the most limiting factor in terms of allocation decisions. The
other two stages leave plenty of space for parallelization.

C. Quality Metrics
Our specification for video quality was that we wanted a
processed result of similar quality to the result of our software
benchmarking code. We wanted to use two objective video
quality metrics to test our results, peak signal to noise ratio
(PNSR) and spatio-temporal SSIM. We plan to use the MSU
video quality measurement tool to get values for these metrics.
Both of these video quality metrics are used to compare the
amount of distortion in a processed video compared to the
original video. For our benchmark values PNSR and SSIM
values, we will compare the resulting video from our software
implementation of seam carving to the original video. Then we
will compare the resulting video from our FPGA
implementation of seam carving to the original video and
calculate PNSR and SSIM values for this comparison.
Therefore, we will have two sets of PNSR and SSIM values.
We will compare the PNSR and SSIM values from the FPGA
implementation of seam carving to the PNSR and SSIM values
from the software implementation of seam carving. Our goal is
to have at most 10% difference in the quality metrics from the
two implementations.

18-500 Design Review Report: 03/03/2019 5

V. SYSTEM DESCRIPTION
We will use the FPGA to SDRAM interface on the DE-10’s
FPGA to read the video array from the HPS’s SDRAM into the
FPGA’s memory. This data transfer is done using 2 64 bit read
ports in a master-slave architecture to allow the FPGA’s
peripherals to access the HPS’s SDRAM.

The theoretical throughput for this data transfer is 2.3 MB/s. We
are operating on a half-frame at a time with each row copied
with the row above it as well as the row below it, this gives us
a total of 93,600 bytes. Therefore we can load a half-frame at
0.056 seconds. This data transfer is relatively fast compared to
the computation time of the energy maps. We can ensure data
integrity for FPGA to SDRAM communication by using an
independent testbench for this module to ensure the reads are
not corrupted.

The top module of the FPGA design will handle switching
between stages - within a stage certain FSMs will be triggered
and when the stage calculations are complete the done signal
will move the top FSM to the next stage. The Finish state will
be when the final pixel indices will be sent back to the processor
serially.

Recall that the algorithm is separated into 3 stages.

The first stage involves computing an energy map of the pixels
(the size of a frame), with both a spatial and temporal aspect.
The spatial energy map will be calculated for each frame (across
x and y), and will give high energy values to pixels that have
most difference (edges, etc). For each value of a pixel over time,
the largest spatial energy calculated will be kept for the final
energy map. The temporal aspect will involve looking at the
difference in a single pixel value over time (across z, or t for
time). The final energy map is a weighted sum of the two.

The second stage is an accumulation stage, in which we
generate an accumulation matrix. The energy value of a pixel is
added to the minimum of the top three adjacent accumulation
values to find the current pixel accumulation value, and this
process is iterated over rows (edges will give an accumulation
value of 0). This path of minimums represents a seam, and thus
all the possible seams in the video will be found in this stage.

The final stage will involve picking the minimum value(s) of
the end accumulated row and following back on the path for the
given seam to remove.

18-500 Design Review Report: 03/03/2019 6

A. Stage 1
Stage 1 will involve two FSMs for the double buffering - one
will process the current loaded ½ frame and the other will
handle loading the next ½ frame block into the embedded
memory. The following diagram outlines the control signals
needed to do handshaking between the FSMs.

Regarding the processing:

Each row will be represented by itself and the top and bottom
adjacent row in a single block. Each load from embedded
memory will yield data in a 3 byte block (the top, middle, and
bottom cells) and this will iterate over the columns. The rows
themselves will be parallelized (since we can read from each
memory block at once).

To calculate the spatial map, we will need to apply a Sobel filter
over the x and y axes and take the norm.

Pixel value [i,j] 0<=i<240 0<=j<320
X1: x spatial_map [i, j-1] += image[i-1, j] + 2*image[i,j] +
image[i+1, j]
X2: x spatial_map [i, j += 0
X3: x spatial_map [i,j+1] += -image[i-1, j] 2*image[i,j] -
image[i+1, j]

Y1: y spatial_map [i, j-1] += -image[i-1, j] + image[i+1, j]
Y2: y spatial_map [i,j] += -2*image[i-1, j] + 2*image[i+1, j]
Y3: y spatial_map [i, j+1] += -image[i-1, j] + image[i+1, j]

The equations represent the partial calculations of the Sobel
kernel if we only read 3 bytes at a time. These will be calculated
through a modified pipelined set of adders, as depicted in the
following diagram (assume the same will exist for the Y spatial
map).

The final norm will be compared to the stored best spatial
energy value for the pixel over all previous frames, and then
the best of those two from the comparison will be stored in the
spatial map representation in memory.

The temporal energy map is calculated as the largest pixel value
difference between frames - so a running comparison of the best
differences will be calculated for each pixel each frame. To do
this a record of the previous pixel value needs to be stored, as
well as the thus far largest difference (which will be the final
temporal energy for a given pixel).

To load the found spatial and temporal energy values for a pixel
after the comparison back into embedded memory, even with
work on multiple rows parallelized, the values to be stored will
be entered into a buffer queue.

Once both the spatial and temporal maps are found, the
processing FSM will enter the Final state in which a weighted
sum of the two energy maps will be calculated and stored in
embedded memory as the final energy map. The weight value
will be a tunable parameter.

B. Stage 2
The FSM for stage 2 will wait in idle until the top FSM gives it
the signal to begin loading the first row of the energy map into
intermediate registers that will hold the accumulation row. Then
it will move into the Accumulation state. The accumulation
value for a cell is found by adding the current cell’s energy
value to the minimum accumulation value of the adjacent top
three cells. The paths followed by this accumulation will be
stored in embedded memory, the same size as a frame. Each cell
in this accumulation paths matrix will hold the index of the
pixel that was the minimum of the top three adjacent ones.

18-500 Design Review Report: 03/03/2019 7

C. Stage 3
This will involve first (in the Pick state) running the final
accumulation row in the registers through a modified series of
pipelined comparators that will yield the pixel index of the
minimum values (the starting points of our seams). Then, in the
Travel state, depending on the number of seams we wish to
remove (another tunable parameter, maximum 5), we will make
that many copies of the accumulation paths matrix and then
iterate through that matrix with the different given starting
points (similar to traveling through a linked list) and store all
the found indices into a buffer queue. Each cell in the matrix
will give the index of the next cell - this index will be stored in
the matrix and then used as the address for the next cell, and
this will repeat until we reach the top row.

D. Final
The last stage will simply serially send back the pixel indices
in the buffer queue to the HPS.

E. HPS Post-processing
After we calculate the pixel indices of the seams to remove on

the FPGA, this data needs to be read by the HPS in order to
remove these seams from the video array. This data transfer will
be done through a HPS to FPGA bridge, which allows the HPS
to read from the FPGA’s peripherals through the L3 main
switch on the HPS. The L3 main switch is connected to the
ARM Core through the L2 cache, which allows the main
processor to receive the indices after they have been read from
the FPGA. All of these data transfers will be done through a 64
bit AXI read. Once the ARM core receives the indices to be
removed, we can run our seam removal scripts on Linux to
remove the pixels at those indices from the video arrays.

VI. PROJECT MANAGEMENT

A. Schedule

We had to push our schedule back about 2 week from our
original plans due to delays in the shipping of the camera,
additional time required to select which FPGA to use for our
project, as well as additional time required to learn the tools
required to use the DE-10 standard, including the Embedded
Design Suite, and Megafunction Wizard.
(See attached last page)

B. Team Member Responsibilities

We all chose to be involved in the top level algorithmic
understanding and discussion of overall implementation and
tunable parameters. We each researched different viable
solutions and compared them together, settling on that which
has been described. From there Kimberly took the initiative to
write the C++ software benchmark of the system and reported
on the timing metrics. Eshani worked on researching the DE10-
Standard HPS and understanding how to interface with the
fabric. She also is in charge of our quality metrics analysis.
Shruti has taken the high level algorithmic approach and
designed the hardware implementation (tradeoff between
parallelization and use of resources) to the FSM and datapath.
From here each member will write certain modules and
testbenches for them (Shruti and Eshani will split stage 1 as that
is the largest, Shruti working on the processing FSM and Eshani
on the loading) and Kimberly on stage 2/3 as they are closely
linked.

C. Budget Items

a. Camera - $131.30

b. DE-10 - Borrowed ($0)

c. Monitor - Borrowed ($0)

D. Risk Management

We are transferring a lot of data between different parts of the
DE-10 board in our algorithm. One risk involved here is data
corruption so we can plan to write unit tests to check for data
integrity between each of the modules. Another one of our main
risks is that memory on the FPGA would be more constrained
than our theoretical calculations. Our contingency plan for this
would be to use the SoC to divide the video into blocks more
manageable by FPGA memory and sent in intervals, or
alternatively to constrain the video resolution. We chose to
preprocess the video on the SoC for this reason so we could
easily the size of blocks we are computing on at a time if
required. Another risk we have is overlapping seams, since we
have the ability to remove up to 5 seams at a time. Our plan to
mitigate this risk is to check for duplicate indices when the
processor receives the indices and remove only the seam of
lowest accumulated weight that includes the duplicated indices.

18-500 Design Review Report: 03/03/2019 8

VII. RELATED WORK
Setlur et al. [2] proposed Automatic Image Retargeting which

1) identify regions of interest in image, 2) segments the image
based on those regions, 3) fills the resulting gaps, 4) resizes the
remaining areas and then 5) re-inserts important regions to
obtain the output. The results produced by this method are
aesthetically satisfying as it preserves important features but,
this method require many sequential steps and is thus, time
consuming.

Avidan [3] proposed in Improved Seam Carving for Video a
formulation of the seam carving operator as a minimum cost
graph cut problem on images and then extended it to video.
They define a video seam as a connected 2D manifold surface
in space-time that cuts through the video 3D cube. The
intersection of the surface with each frame defines one seam in
this frame. To implement minimum cost graph cut, they
construct a grid-like graph from the image in which every node
represents a pixel and connects to its neighboring pixels. Virtual
terminal nodes, S (source) and T (sink) are created and
connected with infinite weight arcs to all pixels of the leftmost
and rightmost columns of the image respectively. The optimal
seam is defined by the minimum cut which is the cut that has
the minimum cost among all valid cuts. The results produced
by this method are aesthetically satisfying but requires both
large amounts of memory and time to construct the graph for
the entire video.

Yasuhide [5] presents a hardware-oriented seam carving
algorithm for images in Performance evaluation of hardware-
oriented seam carving algorithm. The algorithm gives a
dedicated processor for each pixel in a row/column of an image,
and the parallel computation for the pixels can be done. The
performance of the algorithm is evaluated on an FPGA board,
and it turns out that the algorithm can achieve two thousands of
performance as much as that for the original one. The
implementation works very well as they are able to fit the entire
image onto the FPGA’s memory, but this is infeasible for
videos which require much more memory.

Jin [6] presented a method for calculating the
removal seam for each frame of a video separately in
his website project Seam Carving. Temporal
coherency between frames is also preserved by using
look-ahead energy, a linear combination of energies
from future frames. The optimal seam for one frame
is achieved by finding the minimum cut on the cube
which consists of the current frame and the next 4
frames. In this way, the speed is greatly increased
when compared to a graph cut on the entire voxel
cube.

REFERENCES
[1] Avidan, S., AND Shamir, A. 2007. Seam carving for content-aware

image resizing. In Proceedings of SIGGRAPH, Article No. 10.
[2] Setlur, V., Takagi S., Raskar R., Gleicher M., AND Gooch B. 2005.

Automatic image retargeting. In Proceedings of MUM ’05, Proceedings
of the 4th international conference on Mobile and ubiquitous
multimedia, 59-68.

[3] Avidan, S., Rubinstein, M., AND Shamir, A. 2008. Improved seam
carving for video retargeting. In Proceedings of SIGGRAPH, Article
No. 16.

[4] Yasuhide K. AND Yoshihisa D. 2014. Performance evaluation of
hardware-oriented seam carving algorithm. 2014 IEEE 3rd Global
Conference on Consumer Electronics (GCCE).

[5] Cheung C. AND Jin. R. Seam Carving. 2016. [Online]. Available: http
blackruan.github.io/seam-carving/ [Accessed: 4-Mar-2019].

18-500 Design Review Report: 03/03/2019 9

Schedule

