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Abstract—Traditional methods of video resizing such as cropping 

or scaling distorts important regions in the frame, whereas content-
aware retargeting preserves these areas and thus, creates more 
aesthetically pleasing results. Seam carving is a popular technique for 
content-aware retargeting. We illustrate video retargeting using an 
improved seam carving that selects 2D seams from 3D voxels. Since 
computational complexity bottlenecks the execution speed, we present 
a hardware-oriented approach and algorithmic modification to 
improve performance. The performance of the algorithm is evaluated 
on an FPGA board, which shows an improvement of at least 5x. We 
also present heuristics for video-retargeting based on popular video-
quality metrics.  
 

Index Terms— Camera, FPGA, Memory, Seam Carving 

I. INTRODUCTION 
HE use of portable devices is rapidly expanding – in 

2019, the number of mobile phone users is forecasted to 
reach 4.68 billion. Because of the various display aspect 

ratios (DARs) for these devices, images and videos must be 
adjusted to fit the screen. Traditional methods of video resizing 
include scaling and cropping, but these methods either remove 
important contents completely (cropping) or distorts the entire 
screen content (scaling). Thus, the resultant video becomes 
undesirable. The typical case of scaling with additional black-
colored backgrounds does preserve the original images’ 
contents, but for portable devices with small displays, the 
resultant images become so small that is hard to see. For users 
with restricted vision, this approach goes against technology 
accessibility as it may produce images that are impossible for 
them to see. Furthermore, video retargeting allows for better 
information delivery by drawing attention to important contents 
in the video through the reduced focal region.  

Avidan [1] proposed a novel method coined Seam Carving 
for content-aware image resizing algorithms. The approach 
uses seams - monotonic and connected paths of pixels going 
from the top of the image to the bottom, or from left to right. 
Dynamic programming can be used to determine the path of 
least energy importance and this seam is then removed to reduce 
the image size. This can be done to reduce width or height as 
well as add dimension by duplicating the seam of least 
importance. A naive extension of seam carving to video is to 
treat each video frame as an image and resize it independently 
as shown in Fig 1. c. This creates jittery artifacts due to the lack 
of temporal coherency, and a global approach is required.  

To process video, Avidan [3] proposed an improved seam 
carving operator, static-seam, in Improved Seam Carving for 
Video Retargeting by replacing the spatial energy map in favor 
of a global energy map consisting of both temporal and spatial 
elements to determine 2D seam manifolds from 3D voxel 

volumes that are fully connected. However, the computational 
complexity become the bottleneck of the implementation. For 
example, on an Intel(R) Core (TM) i5-4260U CPU @ 1.40GHz, 
removing 20 vertical seams from a video of resolution 640x360 
and total frames of 43 took 15.7018 seconds. 

We plan to implement a hardware-oriented approach for 
seam carving on the DE-10 Standard FPGA to increase 
performance speed by leveraging on the high number of 
functional units. We also propose a modification on seam-
carving that is to remove the multiple best seams during each 
run of the algorithm instead of only the optimal seam. We 
define this parameter as Number of Seams per Algorithmic Run 
(NSAR). We target an improvement of at least 5x compared to 
a C++11 implementation based on Avidan’s static-seam 
approach. We discuss this target performance further in II. 
Design Requirements. 

 

  
                                                (a) 

   
(b) 

 
(c) 

Fig. 1. (a) Left: An extracted seam. Right: An example of a resized image by 
using seam carving. (b) Left: Scaling. Right: Seams. (c) Seam carving on each 
video frame independently creates locally optimal seams that can be totally 
different across video frames. This creates a jittery resized video. A video 
resized using this method can be seen here: 
https://www.youtube.com/watch?v=Qb-l4ZWI8qc 

II. DESIGN REQUIREMENTS 
We focus our design requirements in terms of 3 aspects: 
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utility, timing and video quality.  

A. Utility  
We meet our requirements if we able to resize any user-

supplied video within the constraints to the correct specified 
resolution and this resized video is viewable on a monitor. We 
constrain our video input resolution to 240x360. This is because 
of the constraint of the amount of memory available on our 
FPGA; the largest typical resolution size (480p is the next) that 
can be used for double buffering. We illustrate this memory 
mapping in III Architecture And/Or Principle of Operation. 

We also constrain the resolution of the resultant video to be 
a minimum of 240x180 to preserve viewability of the result 
video on the monitor. This resolution is also the minimum 
required for YouTube, the popular online streaming platform.  
B. Timing 

We meet our requirements if we get an improvement of at 
least 5x in terms of running time (seconds) when compared to 
a C++11 implementation based on Avidan’s static-seam 
approach based on our  approach. We chose this value because 
our multi-seam approach allows for NSAR=5 so this should 
achieve at least a 3x improvement. The transition from C++ to 
a FPGA implementation allows parallelization of computation 
of a row of pixels and this is dependent on the resolution of the 
image, but an improvement of at least 2x is achievable 
regardless. 

C. Video Quality 
We meet our requirements if the result video preserves 

content better than the alternative cropped, scaled, or low-
resolution versions. We will verify this with user testing and 
video quality metrics. 

We design our user testing as a double-blind experiment 
where one teammate sets up the study but then has another 
teammate collect the data from participants. We will show 3 
videos to a participant: 1) The original video 2) Result video 
from static-seam C++ implementation and 3) Result video from 
multi-seam FPGA implementation. We then ask the participant 
to rank videos 2 and 3 between 1 and 10. 

For video quality metrics, we have chosen to use peak signal 
to noise ratio (PSNR) that estimates absolute errors and spatio-
temporal structural similarity index (SSIM) that  measures 
similarity in luminance, contrast, and structure of pixels. We 
will run SSIM with our results from the C++11 implementation 
and we meet requirements if we are <10% error from that. We 
will run PSNR on the result video and we meet requirements if 
we are within 80dB of the PSNR of the original video.  

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
We build on and extend the work of Avidan [3]. The general 

approach of the static seam carving algorithm is 1) compute the 
energy map, 2) compute all path sums of seams and 3) find the 
minimum path seam. These 3 steps are repeated as many times 
as number of seams desired to be removed.  

We propose multi-seam removal for each global energy map 
computed to increase throughput. The number of seams 
removed serves as a parameter that balances throughput and 
video result quality. The higher the number of seams, the higher 
the throughput as the number of times the entire algorithm is 
ran is reduced. However, it is important to note that removing 

the top 5 minimum path seams from 1 energy map is not the 
same as selecting the minimum path seam from 5 energy maps 
computed consecutively like in the original seam carving 
approach. We explain this tradeoff further in IV. Design Trade 
Studies. 

 
Our minimum viable product will reflect the following. Five 

seconds of input video of resolution 360x240 and 30 fps will be 
taken on the D8M-GPIO camera that interfaces directly with 
the DE10-Standard FPGA with SoC. The HPS on the DE10-
Standard will handle video preprocessing such as gray-scaling 
and conversion to hex files through scripts run on Linux. The 
video will be stored as a modified (see subsystems for details) 
array in the SDRAM, accessible by the FPGA through AXI 
bridges. The FPGA will load workable half frames into 
embedded memory (M10K blocks) and run the three stages of 
the seam carving algorithm. It will find the indices of pixels in 
the best seams and send this to the HPS, which will run post-
processing scripts to remove these pixels from the frames and 
display the video onto a monitor. An optional user input on the 
FPGA or processor will indicate the removal or addition of 
seams, triggering the algorithm to run and display a resized 
video on the monitor.  

 

Fig. 2. User Perspective of Minimum Viable Product 
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Fig. 3. Block Diagram of our Data Transfer 
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IV. DESIGN TRADE STUDIES 
 

A. Timing Performance vs Video Quality 
Our proposed seam carving operator, multi-seam heuristic, 

removes multiple seams from an energy map versus the 
traditional approach of removing 1 seam and then recomputing 
the energy map after that removal. This produces a higher 
throughput as we skip energy map calculations that are 
computationally heavily. This increased performance of speed 
is not free as we are not selecting the optimal seam for every 
single pixel reduction in width (or height). We deliberated this 
design trade-off and we have opted to specify the NSAR in 
multi-seam heuristic to be a user-specified parameter. To make 
usage simpler, we specify the parameter as such: High Quality 
(1 seam), Medium Quality (3 seams) and Low Quality (5 
seams). 

The mapping between NSAR and Video Quality was 
calculated through by running our static-seam software 
implementation on an image but with NSAR = 1, 2, 3, … 8. We 
then presented the videos to users to determine a threshold for 
video quality. Our results conclude that 5 is the maximum 
threshold people would be alright with and while the difference 
between NSAR=2 and NSAR=3 were not insignificant, the 
difference for NSAR=3 and NSAR=4 was much larger. We will 
employ the video quality metrics - PSNR and SSIM - to verify 
this mapping. 

 

Metrics 
Number of Seams per Algorithmic Run (NSAR) 

1 3 5 

Quality High Medium Low 
Execution 
time Longest Medium Shortest 

User 
Testing Most Satisfied Medium 

Satisfaction 
Low 
Satisfaction 

 
 
 
 

B. FPGA Memory Allocation 
The algorithm bottleneck encountered in software is the high 
volume of data and computation needed for the full video. 
Implementing the algorithm on hardware will increase 
parallelizing capability, but we are still limited by the amount 
of data that can be fit on the FPGA. The video is also specially 
formatted to optimize parallelization, organized with internal 
copies. Each row will be represented by itself as well as its 
adjacent top and bottom rows (since these will be needed when 
doing partial calculations of the kernel) (See subsystems for full 
algorithm implementation details) Thus full size of the video is: 
 
360*240*30fps*5sec*3(row representation) 
= 38,880,000 bytes 
 
The full video can be stored in the SDRAM (with a capacity of 
1GB), but the DE10-Standard only has 557 M10K blocks of 
embedded memory - needed for storing the frames currently 
being processed as well as intermediate calculation values. The 
space limitations are fully outlined in the following figure. 75 

blocks are needed to store a single regularly formatted frame, 
which is the same size as the energy maps. The temporal energy 
map will need double representation since it will be calculated 
across frames and we will not process more than a single frame 
at a time, so previous values need to be stored. This will leave 
332 blocks - one block is needed for a single row representation 
(3 rows of 320 bytes), so this is not enough to store two frames. 
We aim to use double buffering to absorb the load time (load 
the next frame while working with the current one), but with the 
mentioned memory constraints we will only work with half a 
frame at a time. This means 120 blocks to process ½ a frame 
and another 120 to load in the next from SDRAM. This first 
step of the algorithm is the most computationally heavy, and is 
the most limiting factor in terms of allocation decisions. The 
other two stages leave plenty of space for parallelization. 
 

 
 
C. Quality Metrics 
Our specification for video quality was that we wanted a 
processed result of similar quality to the result of our software 
benchmarking code. We wanted to use two objective video 
quality metrics to test our results, peak signal to noise ratio 
(PNSR) and spatio-temporal SSIM. We plan to use the MSU 
video quality measurement tool to get values for these metrics. 
Both of these video quality metrics are used to compare the 
amount of distortion in a processed video compared to the 
original video. For our benchmark values PNSR and SSIM 
values, we will compare the resulting video from our software 
implementation of seam carving to the original video. Then we 
will compare the resulting video from our FPGA 
implementation of seam carving to the original video and 
calculate PNSR and SSIM values for this comparison. 
Therefore, we will have two sets of PNSR and SSIM values. 
We will compare the PNSR and SSIM values from the FPGA 
implementation of seam carving to the PNSR and SSIM values 
from the software implementation of seam carving. Our goal is 
to have at most 10% difference in the quality metrics from the 
two implementations. 
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V. SYSTEM DESCRIPTION 
We will use the FPGA to SDRAM interface on the DE-10’s 
FPGA to read the video array from the HPS’s SDRAM into the 
FPGA’s memory. This data transfer is done using 2 64 bit read 
ports in a master-slave architecture to allow the FPGA’s 
peripherals to access the HPS’s SDRAM. 

 
 
The theoretical throughput for this data transfer is 2.3 MB/s. We 
are operating on a half-frame at a time with each row copied 
with the row above it as well as the row below it, this gives us 
a total of 93,600 bytes. Therefore we can load a half-frame at 
0.056 seconds. This data transfer is relatively fast compared to 
the computation time of the energy maps. We can ensure data 
integrity for FPGA to SDRAM communication by using an 
independent testbench for this module to ensure the reads are 
not corrupted. 

 
The top module of the FPGA design will handle switching 
between stages - within a stage certain FSMs will be triggered 
and when the stage calculations are complete the done signal 
will move the top FSM to the next stage. The Finish state will 
be when the final pixel indices will be sent back to the processor 
serially.  
 
Recall that the algorithm is separated into 3 stages.  

 
The first stage involves computing an energy map of the pixels 
(the size of a frame), with both a spatial and temporal aspect. 
The spatial energy map will be calculated for each frame (across 
x and y), and will give high energy values to pixels that have 
most difference (edges, etc). For each value of a pixel over time, 
the largest spatial energy calculated will be kept for the final 
energy map. The temporal aspect will involve looking at the 
difference in a single pixel value over time (across z, or t for 
time). The final energy map is a weighted sum of the two. 
 
The second stage is an accumulation stage, in which we 
generate an accumulation matrix. The energy value of a pixel is 
added to the minimum of the top three adjacent accumulation 
values to find the current pixel accumulation value, and this 
process is iterated over rows (edges will give an accumulation 
value of 0). This path of minimums represents a seam, and thus 
all the possible seams in the video will be found in this stage. 
 
The final stage will involve picking the minimum value(s) of 
the end accumulated row and following back on the path for the 
given seam to remove. 
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A. Stage 1 
Stage 1 will involve two FSMs for the double buffering - one 
will process the current loaded ½ frame and the other will 
handle loading the next ½ frame block into the embedded 
memory. The following diagram outlines the control signals 
needed to do handshaking between the FSMs.  
 
Regarding the processing: 
 
Each row will be represented by itself and the top and bottom 
adjacent row in a single block. Each load from embedded 
memory will yield data in a 3 byte block (the top, middle, and 
bottom cells) and this will iterate over the columns. The rows 
themselves will be parallelized (since we can read from each 
memory block at once).  
 
To calculate the spatial map, we will need to apply a Sobel filter 
over the x and y axes and take the norm. 
 
Pixel value [i,j] 0<=i<240 0<=j<320 
X1: x spatial_map [i, j-1] += image[i-1, j] + 2*image[i,j] + 
image[i+1, j] 
X2: x spatial_map [i, j += 0 
X3: x spatial_map [i,j+1] += -image[i-1, j]  2*image[i,j] - 
image[i+1, j] 
 
Y1: y spatial_map [i, j-1] += -image[i-1, j] + image[i+1, j] 
Y2: y spatial_map [i,j] += -2*image[i-1, j] + 2*image[i+1, j] 
Y3: y spatial_map [i, j+1] += -image[i-1, j] + image[i+1, j] 
 
 
The equations represent the partial calculations of the Sobel 
kernel if we only read 3 bytes at a time. These will be calculated 
through a modified pipelined set of adders, as depicted in the 
following diagram (assume the same will exist for the Y spatial 
map).  
 

The final norm will be compared to the stored best spatial 
energy value for the pixel over all previous frames, and then 
the best of those two from the comparison will be stored in the 
spatial map representation in memory.  
 

The temporal energy map is calculated as the largest pixel value 
difference between frames - so a running comparison of the best 
differences will be calculated for each pixel each frame. To do 
this a record of the previous pixel value needs to be stored, as 
well as the thus far largest difference (which will be the final 
temporal energy for a given pixel).  
 
To load the found spatial and temporal energy values for a pixel 
after the comparison back into embedded memory, even with 
work on multiple rows parallelized, the values to be stored will 
be entered into a buffer queue. 
 
Once both the spatial and temporal maps are found, the 
processing FSM will enter the Final state in which a weighted 
sum of the two energy maps will be calculated and stored in 
embedded memory as the final energy map. The weight value 
will be a tunable parameter. 
 

B. Stage 2 
The FSM for stage 2 will wait in idle until the top FSM gives it 
the signal to begin loading the first row of the energy map into 
intermediate registers that will hold the accumulation row. Then 
it will move into the Accumulation state. The accumulation 
value for a cell is found by adding the current cell’s energy 
value to the minimum accumulation value of the adjacent top 
three cells. The paths followed by this accumulation will be 
stored in embedded memory, the same size as a frame. Each cell 
in this accumulation paths matrix will hold the index of the 
pixel that was the minimum of the top three adjacent ones.  
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C. Stage 3 
This will involve first (in the Pick state) running the final 
accumulation row in the registers through a modified series of 
pipelined comparators that will yield the pixel index of the 
minimum values (the starting points of our seams). Then, in the 
Travel state, depending on the number of seams we wish to 
remove (another tunable parameter, maximum 5), we will make 
that many copies of the accumulation paths matrix and then 
iterate through that matrix with the different given starting 
points (similar to traveling through a linked list) and store all 
the found indices into a buffer queue. Each cell in the matrix 
will give the index of the next cell - this index will be stored in 
the matrix and then used as the address for the next cell, and 
this will repeat until we reach the top row. 

 
D. Final 
The last stage will simply serially send back the pixel indices 
in the buffer queue to the HPS.  
 

E. HPS Post-processing 
After we calculate the pixel indices of the seams to remove on 

the FPGA, this data needs to be read by the HPS in order to 
remove these seams from the video array. This data transfer will 
be done through a HPS to FPGA bridge, which allows the HPS 
to read from the FPGA’s peripherals through the L3 main 
switch on the HPS. The L3 main switch is connected to the 
ARM Core through the L2 cache, which allows the main 
processor to receive the indices after they have been read from 
the FPGA. All of these data transfers will be done through a 64 
bit AXI read. Once the ARM core receives the indices to be 
removed, we can run our seam removal scripts on Linux to 
remove the pixels at those indices from the video arrays. 

VI. PROJECT MANAGEMENT 

A. Schedule 

We had to push our schedule back about 2 week from our 
original plans due to delays in the shipping of the camera, 
additional time required to select which FPGA to use for our 
project, as well as additional time required to learn the tools 
required to use the DE-10 standard, including the Embedded 
Design Suite, and Megafunction Wizard. 
(See attached last page) 
 
B. Team Member Responsibilities 
 
We all chose to be involved in the top level algorithmic 
understanding and discussion of overall implementation and 
tunable parameters. We each researched different viable 
solutions and compared them together, settling on that which 
has been described. From there Kimberly took the initiative to 
write the C++ software benchmark of the system and reported 
on the timing metrics. Eshani worked on researching the DE10-
Standard HPS and understanding how to interface with the 
fabric. She also is in charge of our quality metrics analysis. 
Shruti has taken the high level algorithmic approach and 
designed the hardware implementation (tradeoff between 
parallelization and use of resources) to the FSM and datapath. 
From here each member will write certain modules and 
testbenches for them (Shruti and Eshani will split stage 1 as that 
is the largest, Shruti working on the processing FSM and Eshani 
on the loading) and Kimberly on stage 2/3 as they are closely 
linked. 
 

C. Budget Items 

a. Camera - $131.30 

b. DE-10 - Borrowed ($0) 

c. Monitor - Borrowed ($0) 
 
D. Risk Management 

We are transferring a lot of data between different parts of the 
DE-10 board in our algorithm. One risk involved here is data 
corruption so we can plan to write unit tests to check for data 
integrity between each of the modules. Another one of our main 
risks is that memory on the FPGA would be more constrained 
than our theoretical calculations. Our contingency plan for this 
would be to use the SoC to divide the video into blocks more 
manageable by FPGA memory and sent in intervals, or 
alternatively to constrain the video resolution. We chose to 
preprocess the video on the SoC for this reason so we could 
easily the size of blocks we are computing on at a time if 
required. Another risk we have is overlapping seams, since we 
have the ability to remove up to 5 seams at a time. Our plan to 
mitigate this risk is to check for duplicate indices when the 
processor receives the indices and remove only the seam of 
lowest accumulated weight that includes the duplicated indices. 
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VII. RELATED WORK 
Setlur et al. [2] proposed Automatic Image Retargeting which 

1) identify regions of interest in image, 2) segments the image 
based on those regions, 3) fills the resulting gaps, 4) resizes the 
remaining areas and then 5) re-inserts important regions to 
obtain the output. The results produced by this method are 
aesthetically satisfying as it preserves important features but, 
this method require many sequential steps and is thus, time 
consuming. 

Avidan [3] proposed in Improved Seam Carving for Video a 
formulation of the seam carving operator as a minimum cost 
graph cut problem on images and then extended it to video. 
They define a video seam as a connected 2D manifold surface 
in space-time that cuts through the video 3D cube. The 
intersection of the surface with each frame defines one seam in 
this frame. To implement minimum cost graph cut, they 
construct a grid-like graph from the image in which every node 
represents a pixel and connects to its neighboring pixels. Virtual 
terminal nodes, S (source) and T (sink) are created and 
connected with infinite weight arcs to all pixels of the leftmost 
and rightmost columns of the image respectively. The optimal 
seam is defined by the minimum cut which is the cut that has 
the minimum cost among all valid cuts. The results produced 
by this method are aesthetically satisfying but requires both 
large amounts of memory and time to construct the graph for 
the entire video. 

Yasuhide [5] presents a hardware-oriented seam carving 
algorithm for images in Performance evaluation of hardware-
oriented seam carving algorithm. The algorithm gives a 
dedicated processor for each pixel in a row/column of an image, 
and the parallel computation for the pixels can be done. The 
performance of the algorithm is evaluated on an FPGA board, 
and it turns out that the algorithm can achieve two thousands of 
performance as much as that for the original one. The 
implementation works very well as they are able to fit the entire 
image onto the FPGA’s memory, but this is infeasible for 
videos which require much more memory. 

Jin [6] presented a method for calculating the 
removal seam for each frame of a video separately in 
his website project Seam Carving. Temporal 
coherency between frames is also preserved by using 
look-ahead energy, a linear combination of energies 
from future frames. The optimal seam for one frame 
is achieved by finding the minimum cut on the cube 
which consists of the current frame and the next 4 
frames. In this way, the speed is greatly increased 
when compared to a graph cut on the entire voxel 
cube.  
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