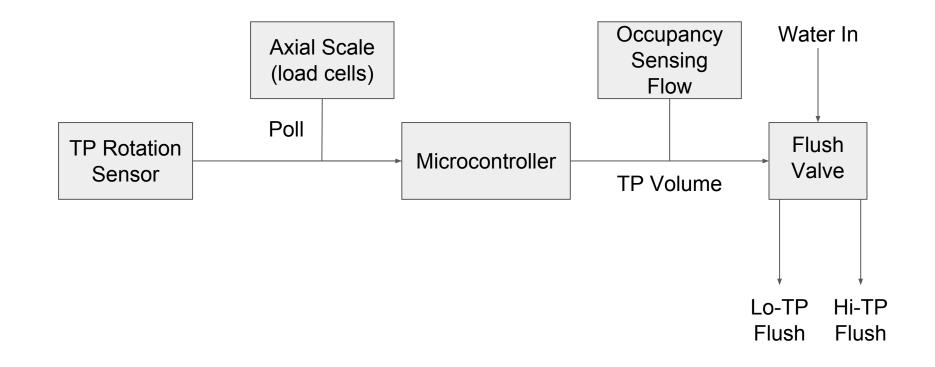


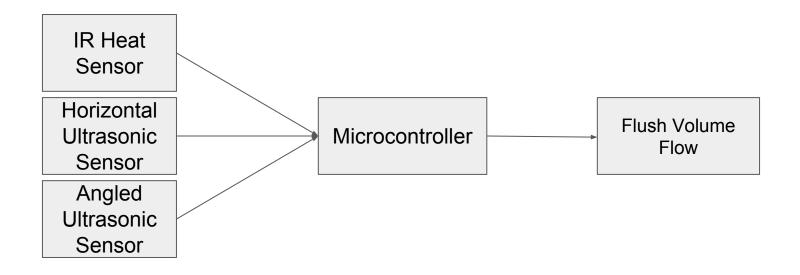

Introduction & Problem Statement

- The average person uses a toilet 2500 times a year
- Commercial automatic flush toilets are convenient, but they pose a problem with wastewater usage
- They often misfire, wasting gallons per-flush
- Most automatic toilets do not implement dual-flushing
- Bathroom usage is not standardized



Proposed Solution

- Toilet paper sensing
 - Toilet paper is the most frequently clogging item in toilets
 - Detecting how much has been used would allow toilets to implement variable volume flushes, further conserving water
- Improved occupancy sensing
 - Reduces flush misfires
 - Better accounts for non-standard usage


Solution Detail (Variable Flush)

Variable Flush Methodology

- Load cell detects the start of TP usage
- Triggers the microcontroller to poll the rotation sensor
 - Conserves power by reducing polling rate
- Flush volume is determined by amount of rotation
- Once occupancy is no longer detected, rotational polling stops
- Volume is sent to variable valve to flush

Solution Detail (Improved Sensing)

Sensing Methodology

- Basic IR heat sensing to detect human presence
 - Issues arise from certain clothing, fallbacks are needed
- Horizontal ultrasonic sensor
 - Distance sensing to detect presence without the challenges of IR sensors
- Angled ultrasonic sensor
 - Used to compensate for shifting positions as well as standing wipers

Challenges

- Designing a rotation sensor that allows for TP roll replacement in an easy fashion
- Integrating a variable volume valve into a mechanism compatible with common systems.
- Tweaking the ultrasonic sensor angle to capture all relevant data
- Keeping the module small enough for commercial usage

Testing & Verification

- Testing Variable Volume Flush
 - Attach valve and TP sensor logic to test pipe
 - Measure flow rate
- Data logging for occupancy sensing testing
 - Integrate flush data logging into an off-the shelf flush sensor
 - Use a test chair to compare flush misfires between the two

Schedule

Research Stage		02/11/19	02/15/19				
Construct TP Sensor	12d	02/16/19	03/04/19				
Construct prototype circuit (w/o occupancy)	4d	03/05/19	03/08/19				
Spring Break LOL	6d	03/09/19	03/15/19				
Prototype occupancy sensing	7d	03/18/19	03/26/19				
Final prototype circuit, testing	7d	03/27/19	04/04/19				
Design PCB	7d	04/05/19	04/15/19				
Final Design, stretch goals	6d	04/16/19	04/23/19				
In Lab Demo	1d	04/24/19	04/24/19				

- David Reverse Engineering/Valve Design, TP Sensor Design, and PCB Design
- Brian Occupancy Sensing Logic and Occupancy Sensor Design
- James TP Sensor Design and Housing Design
- All Testing and Integration

MVP

- Semi-compact sensor unit
 - Basic TP volume sensing
 - Variable flush volume valve
 - Basic occupancy sensing
 - Manual override

Stretch Goals

- Near-perfect occupancy sensing to eliminate misfired flushes
- Small-form-factor commercially viable implementation
 - Professional quality housing & pcb
- Integration into a real working toilet