
Team AC: Smart Chess 
Board

Chris Lee, Austin Milford-Rosales, David Hanna



Application Area
● We wanted to make an accelerator. But... not within collective skillset :(

○ David found this: https://gitlab.com/fabriciorit/OpenGPU, gallium3d softpipe with hardware 
rasterizer plus block diagrams

○ Linux drivers + Graphics + RTL

● We decided to pivot to a Smart Chess Board!
● Motivation: We like playing chess on a real board, but don’t always have 

physically present friends to play against
● This chess board will be able to do the following:

○ Identify which pieces are on which squares
○ Light up squares appropriately to signal intended moves, legality of moves, etc.
○ Automatically operate a chess timer
○ Connect to another board to enable live play between remote players

https://gitlab.com/fabriciorit/OpenGPU


Solution Approach
● Each square will have an RGB LED to signal any information about that 

square to the player and a magnetic sensor (leaning towards the TI 
DRV5053OA) to determine what piece is placed on the square

● The board surface will be made of acrylic, and will have a box underneath to 
hide the greater circuit containing the sensor array and pi the clock itself will 
be sticking out the side

● A raspberry pi will be used to process data from the sensor array and run the 
game logic, and to interface with/run the remote game

● Our MVP will be connecting this board to another pi, which will run the game 
remotely.  Ideally, we will have a second board connected to this pi as well.





Hardware Overview
● Hall Effect Sensors

○ TI DRV5053OAQLPG
○ Can sense fields on the order of 10 mT

● Magnets
○ 1”x1”x1/16” N42 magnets
○ Can generate fields on the order of 10 mT with 1/8” separation 

● 8-to-1 Mux
○ TI CD74HC4051-EP
○ Is a digitally controlled analog mux, takes 8 inputs and sends one output

● RGB LED strip
○ WS2812 RGB LED Strip
○ Can be controlled with 2 pins on the pi, lights are spaced out well and individually segmented



Software Overview
1. Player lifts piece
2. Pi samples Hall sensors via ADC
3. Pi interprets change
4. “GUI” translates change in board to 

(custom) UCI command
5. Stockfish returns legal moves 

based on game state
6. Custom logic lights RGB array

Piece on chess board/sensor

ADC 

PI
ADC SPI read

“GUI” translates to Chess 
move

stockfish

lights clock



Software - ADC, Smart Clock
Sensor to ADC

- Hall effect sensors only provide analog 
output

- ADC required: ads1015 (4 inputs)
- Pi sweeps through array of 64 sensors
- Compares previous state of game with 

current game to determine piece lifted
Smart Clock

- Adafruit 0.56" 4-Digit 7-Segment Display 
w/I2C Backpack

- Minimizes number of pins required
- Already using i2c to communicate with adc

- Started when player lifts piece, stops when 
piece placed back on board



Stockfish Integration

● Stockfish as “chess engine”
○ Leading open-source chess engine 
○ API based off of UCI
○ Clean C++ codebase 

● Implements move generation and AI
● Expects a “GUI” that generates UCI commands
● Our “GUI” equivalent will be our smart chessboard + software that translates 

sensor data to chess moves
● Will need an actual custom debug GUI for our board
● Note: UCI = Universal Chess Interface, communication protocol for chess 

engines to communicate with user interfaces



Networked Play
- Two physical boards
- Pi’s connected over 

ethernet
- Stockfish routines used 

on both Pi’s for 
move/position validation

- “Master/Slave” 
configuration akin to 
Peer-2-peer video games 

Raspberry Pi
“Slave”

Raspberry Pi
“Master”

● Owns game state
● Runs local server
● Reserves right to 

reject slave’s input
● Read’s and 

interprets boards 
sensor data

ethernet

● Opens socket to 
master

● Read and interprets 
sensor data

● Send’s legal moves to 
Master



Testing Methods
● Sensor and square circuit testing

○ We will wire up one sensor through the ADC to the pi, then attempt to identify the following
○ A single sensor can react appropriately to the presence/lack of presence of a magnet
○ A single sensor can identify six different magnet strengths

● Board functionality testing
○ We will have a testing GUI implementation that will allow us to see the pi’s interpretation of the 

current game state
○ Will help us debug errors in both piece placement and lighting of the full board

● Remote multiplayer testing
○ Fuzz slave input to ensure gracefully handling of errors
○ Hash out gameplay invariants to implement in host server



Metrics and Validation
Potential areas for latency

- Determining which piece was picked up
- Sweeping through the sensor array
- Checking the piece type

- Running stockfish on the pi
Things to consider:

- Decision making process in chess
- Player picks up piece, considers possible outcomes, puts piece down
- Need to determine which piece was moved and possible next moves during this time

- Average human takes 0.25 seconds to recognize visual stimulus
- Board should react to a piece’s removal in a reasonable time, human 

visual reaction time of 0.25 seconds may be ideal



Gantt Chart


