
18-500 Final Project Report: 05/08/2019

1

Abstract—This capstone project is a distributed, hardware-

accelerated platform that provides functional video processing on

live streams with the goal of scalability and speed. With the

prevalence of low-cost video devices, coupled with the use of

intense video processing algorithms, the need to offload said

processing is on the rise. Our system streams video feeds over Wi-

Fi from low-power, low-performance devices through an Avnet

Ultra96 SoC and FPGA to easily and capably handle real-time

video processing before sending the processed streams to a

monitoring computer over Wi-Fi. The algorithm we implement is

the Canny edge detection algorithm, one that is the basis of many

computer vision algorithms, and is quite computationally-intense

and powerful as a preprocessing step for further algorithms such

as image segmentation and object detection. Our implementation

will improve on a software-only approach and thus improve

performance and unlock additional scalability while keeping costs

low.

Index Terms—Distributed Systems, Edge Detection, High-Level

Synthesis, FPGA, Hardware-Accelerated, Computer Networking,

Video Processing.

I. INTRODUCTION

S augmented reality, self-driving cars, and other

technologies become mainstream, having the ability to do

real-time video processing will play a critical role in the

adoption of these technologies. Our project will explore and

analyze the implementation of hardware-accelerated real-time

video streams with Canny edge detection in a security system

context. We implemented a networked video streaming and

processing system that receives a 720p30 H.264 video stream

from a Raspberry Pi Zero W over Wi-Fi and performs

hardware-accelerated Canny edge detection on the Ultra96’s

Xilinx FPGA before routing the processed video stream to a

laptop that displays the results similar to a security system’s

central monitoring room. Before routing the stream to the

monitoring room, the CPU offloads the computational steps of

Canny edge detection to our custom implementation on FPGA

fabric to reduce computational latency from approximately 1.25

seconds to just 20 milliseconds. Our system reaches scalability

limitations on server-side CPU due to lack of support for

hardware-accelerated video encoding and decoding, which

could be mitigated by sourcing Xilinx’s V-variant Zynq SoC

that includes dedicated video processing functionality including

hardware-accelerated video encode and decode.

Our implementation and findings have the potential to be

applied to a wide spectrum of video processing applications,

especially the security, transportation, and telecommunication

sectors. With new developments in video-based security

systems, self-driving cars, and video conferencing systems, our

work can really improve on the latency for all of these

applications. This is the main advantage of our approach.

Currently, Canny edge detection is accomplished mainly using

software either on CPUs or on GPUs, which can take anywhere

between 100s milliseconds to over 1 second to to go through

the multi-step algorithm. Our system significantly reduces this

latency, resulting in a much faster response time that opens up

new possibilities in all of these sectors both in terms of

functionality and scalability. Also, the networking and memory

interfacing aspects of our system allow for a multiple feed

approach to any problem that these sectors will inevitably

encounter. Our main goal is to use our implementation as a

proof of concept for an easily scalable, hardware-accelerated

video processing system.

II. DESIGN REQUIREMENTS

Our main design requirements were that we can handle at

least two Raspberry Pi streams simultaneously within our

system, and communicate successfully across the entire

architecture. Additionally, we must be able to accomplish the

canny edge detection algorithm on our FPGA, while

minimizing latency. Finally, we must be able to achieve a real-

time video stream, and demonstrate the scalability of the system

as a whole. Qualitatively, most of this was verified by visual

analysis, as we had the final output of the video feed displayed

on a browser, such that we can both see the video feed and

analyze the results of the canny edge detection process.

Quantitatively, we were aiming for a goal of < 100 ms of

latency throughout the entire system. In order to verify that our

design met these specifications, we planned to and succeeded

in conduct unit tests throughout the process, in order to isolate

each component, and eventually, conducted integration tests.

Aside from performance, there was also a scalability

requirement for our system. Because we are targeting a network

of security cameras, the ability to add an additional feed is

crucial to our design. As such we need to be able to quantify

how many resources a feed takes up in the form of FPGA fabric

(LUTs, FFs, BRAMs, DSPs are the main metrics of interest),

Wi-Fi bandwidth, and DRAM address space. With these

HW-Accelerated Real-Time Video Streaming

and Processing

Authors: Ilan Biala, Brandon Takao, Edric Kusuma

Electrical and Computer Engineering

Carnegie Mellon University

Email: {ibiala, brt, ekusuma}@andrew.cmu.edu

A

18-500 Final Project Report: 05/08/2019

2

metrics we are able to extrapolate the cost of an additional

stream if we were to add more to a larger FPGA.

A. Success Metrics

1) Software Networking

TABLE I. NETWORKING SUCCESS METRICS
Metric Goal Result Pass/Fail

Concurrent

streams

At least 2 1 for end-to-end

3 for SoC-

exclusive pipeline

Fail

Resolution 1280x720 1280x720 Pass

Framerate 30 FPS 5 FPS Fail

Packet loss < 3% ~1% Pass

Communication

latency

75 ms 50 ms Pass

Visual analysis

of result

Compare to

software

implementation

Visual inspection

passed

Pass

In order to demonstrate the scalability of the system, we

originally aimed for at least two streams, which we actually

achieved on the Pis (we demonstrated three streams, and those

streams all exceeded our metrics of 30 FPS and ~50 ms latency,

which achieved real-time streams). Unfortunately, when

sending the streams through the ARM core, we realized that

because of the lack of dedicated video encode and decode

functionality, we could not support more than one stream (we

could not even support one at our target metrics) since the

H.264 decode and encode maxed out CPU and memory

utilization. Additionally, this limited our FPS on the send side,

as we ended up receiving from the Pis at 30 FPS, but sending

out at 5 FPS. While all of our other metrics pa ssed - resolution

at 1280x720, ~1% packet loss due to TCP, and a

communication latency of 50 ms - this FPS bottleneck resulted

in a jittery, delayed result stream. Thus, we were unsuccessful

in achieving an end-to-end real-time video stream, and we did

not have enough time to source and integrate a dedicated H.264

IP block. However, our solution could easily be migrated to use

Xilinx’s V-variant SoC with dedicated hardware

encode/decode functionality or hardware-accelerated

encode/decode as part of our overall edge detection compute

pipeline.

2) Hardware-accelerated Computation

TABLE II. HARDWARE SUCCESS METRICS
Metric Goal Result Pass/Fail

Scalable with

more streams

2 streams > 7 supported

streams

Pass

High resolution

and framerate

720p30 720p60 stream

processing

Pass

High pipeline

throughput

320 MHz clock

frequency

333 MHz clock

frequency

Pass

Computation

latency

25 ms/frame 15ms/frame Pass

We initially targeted 2 streams as a proof-of-concept, and

since we were working with a smaller FPGA that might be

limited if the pipeline proved to use all of the 128 DSP

slices/edge detection pipeline that we originally estimated.

However, we were able to optimize many of the operations to

either not use DSP slices at all while still maintaining good

performance or to use look-up tables and other workaround

functionality. Our design was also further optimized from initial

experimentation and estimates and used significantly less fabric

per edge detection pipeline. Regarding the timing metrics, we

are able to achieve nearly double the 30 FPS target frame rate

since our design is both pipelined within each stage as well as

between stages. This yields higher throughput by sacrificing a

small amount of register-transfer latency, but our computation

latency still remains about 1.67x our original estimate. Our

target clock frequency was also surpassed after some

optimization of the compute pipeline. We were not able to push

this clock frequency any higher due to AXI port clock

frequency limitations.

3) Final Hardware Resource Utilization Metrics

TABLE III. HARDWARE UTILIZATION METRICS

Here we show the final hardware resource utilization metrics,

with a breakdown between base components and the per-

compute pipeline components. We can see that the base

components use a negligible amount of resources, and each

pipeline uses approximately ~10% of the FPGAs LUTs after a

moderate amount of optimization. This is how we come to our

conclusion of being able to support over 7 simultaneous streams

in hardware. Aside from hardware resource utilization, memory

bandwidth is the other factor to consider. Note that we pivoted

from a main memory buffering scheme to a streaming

computation design, which yields much lower memory and

bandwidth utilization. The AXI port’s bandwidth is also on the

order of gigabits/second, so it is not a limiting factor. As a

result, we conclude that we could support a much higher

number of streams, likely between 7-8 depending on place-and-

route results and optimization tweaks to fit in this SoC’s FPGA

fabric.

B. Testing and Validation Plan

Testing and validation is a critical step in ensuring that any

project’s implementation works correctly and meets the

18-500 Final Project Report: 05/08/2019

3

requirements set forth during the design, and this is no different

for this project. On the software side, many components were

unit tested and mocked out to easily test the implementation

along the way. Methods such as dummy and random frame

generation for sending and receiving video frames allowed us

to easily test our implementation, as well as visual inspection

when using images and actual video streams. Packet loss is also

both easily visually inspected as well as programmatically

measured, since any dropped packets are observed as missing

data and incomplete frames. On the hardware side, our compute

pipeline design is fully testable in simulation, and as such time

has been allocated for testbenches to be developed that will test

both correctness and reliability of our hardware

implementation. Our testbenches will again use dummy and

randomized data generation to feasibly test as much of our

design as we can without requiring a significant amount of time

creating test cases. At the integration stage, most of work will

be testable by visual inspection as well as by verifying against

a software library implementation. Our interfaces are the least

testable, and as such we will mainly be focusing on testing these

interfaces and verifying realistic actual bandwidth and

throughput numbers based on their theoretical values. Our

memory interaction between the ARM core and FPGA is tested

through the use of a starter Vivado HLS block that is known to

be functional and performs a Gaussian blur. Throughout the

development process, these testbenches were used to quickly

root cause bugs and unwanted behavior during bring-up,

development, and integration. As always, avoiding integration

failures and failing earlier during the component and module

implementation phase is preferable, so our integration tests are

mostly for the purpose of testing before other components of

the system are ready, and they also act as simulated, controlled

functional testing that will prove helpful for simulating actual

bugs during the integration process.

III. DESIGN TRADE STUDIES

A. Software

 On the software side, there were two main decisions that

were analyzed for design tradeoffs and ultimately determined

the major design of the software system. These two decisions

were UDP vs TCP and format transmission protocol (raw

arrays vs JPEG vs H.264 compressed encoded stream).

 For the UDP vs TCP decision, we implemented and tested

both protocols early on, and compiled some latency numbers.

While UDP was significantly lower latency than TCP (~3x),

in packet loss testing, it resulted in enough packet loss to

significantly negatively affect the quality of the video (based

on visual inspection). Even though our project was highly

focused on minimizing latency, we felt that the quality of the

video must reach a certain standard (<3% packet loss), and

that UDP wasn’t achieving this. Thus, we decided to pivot to

TCP, and accept the higher latency. Fortunately, we were still

able to satisfy our software communication latency

requirement.

 For the format transmission protocol decision, most of the

semester was spent on this decision. Initially, we started with

raw grayscale array transmission, which is extremely

inefficient, and not very realistic in achieving the low latency

and high FPS in our goals. However, sending arrays is a much

simpler task, and these arrays are therefore much more

accessible than the other options. Our first pivot was into an

H.264 stream, which we implemented by the interim demo.

Unfortunately, with bandwidth issues in the Pis, we weren’t

able to observe a significant increase in FPS, and it was a

fairly complex process to extract individual frames from the

stream, so we pivoted a second time into JPEGs. This method

was less efficient than the H.264 stream, but still much more

efficient than raw grayscale arrays. However, even with a

threading system implemented, and after fixing the bandwidth

issues on the Pis, we were still failing to achieve the FPS goals

that we were hoping for. We finally pivoted for a third time

back to H.264 streams, but using a different transmission

method to allow for frame extraction, and this method worked

very well overall. The differences in these qualities, along

with ease of visualization, is demonstrated in Table IV below.

TABLE IV. VIDEO STREAM FORMAT TRADEOFFS
Format Accessibility Efficiency Visualization

Raw arrays 1 3 2

H.264 3 1 1

JPEG 2 2 3
*Qualities are ranked from 1 (best) to 3 (worst).

B. Hardware

 On the hardware side, the bulk of the design tradeoffs were

made in 1) the passing of data through the pipeline, and 2) the

interfaces between each phase.

1) Pixel Data

We decided early on that we would be using 8-bit pixel values

as edge detection doesn’t require much, if any granularity with

pixel color values. There was an issue around having to use

floats for the Sobel phase’s gradient calculation, but we

noticed that the HLS built-in arctangent function conveniently

rounds values to integers. Thus we were able to keep an 8-bit

stream throughout the pipeline.

2) Memory Interfacing

TABLE V. MEMORY INTERFACING TRADEOFFS
Interface Advantages Disadvantages

DRAM Default interface, and
extremely easy to

implement.

Extremely slow to access
values, and convolution

access patterns are low in

locality, thus burst reads
are not possible.

BRAM Also easy to implement,

and is much faster than

DRAM.

Not enough BRAM on the

Ultra96 to buffer the entire

frame. Too expensive to
scale up for multiple

streams.

AXI streams Very low BRAM
utilization, streamed

accesses have high

throughput, leading to
lower overall latency.

More complicated to
implement. Unable to

access values already read

without something like
line buffers.

The table above summarizes our experiences with each of the

interface types we tried. In the end we decided to use AXI

18-500 Final Project Report: 05/08/2019

4

streams as they were most in line with our requirements of low

utilization and low latency. Our entire code had to be

overhauled to adhere to the streaming access pattern, but the

gains from doing so were well warranted.

IV. ARCHITECTURE AND SYSTEM DESCRIPTION

The RPis with cameras act as clients, streaming their video

via Wi-Fi with TCP to the Ultra96 SoC. The server Ultra96’s

ARM core is then utilized to handle the receiving, decoding,

and storing of input frames to the edge detection pipeline and

re-encoding and sending of the processed frames. Due to the

memory requirement of storing an entire frame, we decide to

store frame data in DRAM as a contiguous array of pixels. We

note that adding more streams to the system will reduce the

space allowed for each stream; however, DRAM has become

relatively inexpensive and is not the limiting factor in cost

scalability of this system, as we will later go in detail.

Fig. 1. Example system architecture

A. Software System/Video Transmission

After numerous instances of trial and error where we

implemented raw array frame transmission, H.264 stream

transmission, and JPEG transmission, we decided to revert to

the H.264 stream transmission protocol to minimize network

bandwidth consumption. The Raspberry Pi Camera feeds were

recorded using the Raspivid framework, and then piped into

an FFmpeg TCP transmission block on the RPi. On the

Ultra96’s ARM core, an FFmpeg receive and decode block is

used to convert the incoming TCP stream to a raw array of 24-

bit RGB pixel data. This image is then converted to grayscale

on the ARM core before being stored into contiguous memory

blocks for the fabric to access and process. The resulting

processed frames are outputted back into the ARM core into a

dedicated contiguous receive buffer. These frames are

encoded back into an H.264 stream and sent using FFmpeg

over TCP to the laptop “monitoring room”. The stream is

received and displayed using Mplayer, which allowed for real-

time visualization. H.264 as a streaming and compression

system really helped us attempt to maximize the FPS of our

video stream, as in our tests with JPEG and raw arrays, the

amount of data being sent and the inherent computational

overhead of producing this data really limited the FPS of the

resulting video. We also decided to use TCP vs UDP because

of the packet loss we were experiencing through UDP. Finally,

Mplayer was the easiest media visualizer that was compatible

with H.264 streams, so it was the natural choice for video

stream visualization.

Fig. 2. Software video stream flow

B. Server Architecture

Fig. 3. High-level receive-side and compute server architecture

18-500 Final Project Report: 05/08/2019

5

Fig. 4. PS/PL memory interface

Our server architecture diagrams mainly focus on the

communication portion of the system, since this is somewhat

isolated from the compute pipeline in functionality (aside from

data widths, packing schemes, etc.). Here we focus on the

receive-side of the system, since the send-side communication

is simply to display the processed video streams on a

monitoring computer and is quite straightforward. The Ultra96

has a built-in TI WL1831MOD Wi-Fi chip that in practice

yielded approximately 40 Mbps throughput, which will be more

than sufficient for two streams and leaves a small amount of

room for future scalability depending on the exact bitrates used

for the H.264 streams. All data is transmitted over Wi-Fi, and

the ARM core is responsible for allocating contiguous memory

for pre-processed and post-processed frames. Our memory

interface starts by receiving 32-bit streaming grayscale pixel

data, with the lower 8 bits of each data beat containing 1 8-bit

pixel value. This is the simplest approach and we did not

anticipate memory bandwidth being the initial bottleneck, so we

left this unoptimized. The DRAM memory interface on the

Ultra96 supports 1066 Mbps and the AXI port interface

supports a theoretical maximum of 42.6 Gbps. Both of these

interfaces will again be more than sufficient for two streams

while still having room to scale. Once the frames are in DRAM,

the ARM core will communicate with the hardware

implementation in FPGA fabric with a producer consumer

handshake. The FPGA fabric itself will stream and convert the

32-bit pixel data from the contiguous memory buffer through

the compute pipeline since each frame is too large to store in

block RAM or distributed RAM. Once processing is done, the

ARM core will push out the processed frames over Wi-Fi to the

monitoring computer, which will display the streams for users.

C. Compute Block Architecture

 When a frame is ready to be processed, the ARM core will

signal the compute block with a ready signal and a starting

address. From there the frame is pulled from DRAM and the

processing can begin.

Because the convolution operation requires the values of

surrounding pixels, we are unable to process a frame and

modify its value in-place. Moreover, because each phase is

dependent on the output of the previous, we would require a

significant amount of memory to store a copy of every

processed frame. Doing so in DRAM is unacceptable, as the

latency around pulling from DRAM would be too high for our

requirements. To account for this limitation, we decided to

stream the frame data through the pipeline using 8-bit AXI

streams. As edge detection pixels are either black or white there

is no need to waste bandwidth on higher-bit streams. Due to the

nature of the convolution operation which requires accessing

previously used pixels, we use a line buffer to keep temporary

copies of the surrounding pixels. We find that through using

streams and line buffers we are able to both remove the

excessive latency involving DRAM accesses while keeping our

overall utilization low. Once a phase is complete the next phase

in the pipeline takes in the streaming output of the previous and

operates on it, whereby this process repeats until completion.

In implementing the Canny compute pipeline, we decided to

do the entirety of it in Vivado’s High-Level Synthesis (HLS)

suite. Doing so gave us the following benefits: removing the

development time needed to implement an AXI interface and

interface with other Vivado IP blocks, use of convenient

utilities like line buffers and complex math functions, detailed

synthesis reports with both timing and utilization summaries,

and the convenient use of C++ testbenches for behavioral

validation.

 In the Gaussian blur, Sobel, Non-maximum Suppression

and edge tracking phase, a 3x3 convolution is necessary. To do

this we utilized three line buffers which are shifted down the

frame once an entire row is finished processing. This allows us

to access pixel values that we would normally be unable to use

given our streaming data access pattern. While the operations

performed for each phase’s convolution were different, the

usage of this line buffer structure stayed the same. This made

implementation of each phase quite simple once we got past the

learning curve of using HLS’s built-in utilities.

 We can see during the Intensity Gradient Phase that two

separate operations need to be performed: calculating pixel

magnitude and gradient. Initially we attempted to write to two

Fig. 5. Canny compute pipeline

18-500 Final Project Report: 05/08/2019

6

concurrent AXI streams, which were successful in the C

simulation but ended up being too out of sync with each other

going into the non-max suppression block and deadlocked

when run on the RTL simulator and on the FPGA. In the end

we decided to output a single 16-bit stream where the

magnitude and gradient results are concatenated together. The

NMS phase is then responsible for extracting these values. It is

worth noting that thresholding does not require the use of

neighboring pixel data, so we managed to include this in the

NMS phase. This reduced the overall latency of the pipeline.

 Once a frame is complete the compute block signals the

ARM core that it is finished. It is then up to the core to pull the

frame from DRAM and transmit it to the monitor. This includes

encoding the frame data back to H.264 before sending it out.

V. PROJECT MANAGEMENT

A. Schedule

Since our schedule is not readable as an inline image here,

we have included it at the end of the report. The overall

schedule has not changed noticeably with respect to the tasks to

do, however there were a number of delays that had to be made.

For the software side, we spent so much time fixing the

bandwidth issues on the Pis, that we were delayed up until the

demo with a lot of backed up work. Without accurate FPS

numbers on the video feeds, it was extremely difficult to work

on integration, visualization and concurrent streams. Thus, that

work got pushed back as we explored the various transmission

formats and bandwidth fixes. Once we were able to get the

bandwidth fixed on the Pis, we accelerated intensely to

complete integration and visualization for the demo.

Unfortunately, due to the lack of dedicated video processing

functionality on the ARM core, our system was unable to

accommodate multiple streams. However, we were still able to

implement them separately, just to demonstrate the real-time,

reasonably high FPS that we were able to achieve without the

ARM core bottleneck. At the end of the day, we were satisfied

with our results considering what was under our control, what

was out of our hands, and the numerous delays caused by such

intertwined issues.

Hardware interfacing was originally planned to be finished

just after the start of the realization phase after spring break, but

significantly more time was needed to fully understand how to

use Vivado’s block diagram, AXI interconnects, DMA cores,

and other components to make the interface work. Additionally,

the initial start with Vivado HLS was slow, and considering our

whole hardware focus relied on significantly accelerating a

heavyweight algorithm, we decided to devote more time to this

initially. However, this proved to be both good and bad, since

the compute pipeline’s memory interface was modified a few

times since the overall memory interface was not solidified until

quite late in the realization phase.

The delays with the compute pipeline stem from two parts:

understanding the operations done in each phase of the Canny

algorithm, and the learning curve with using HLS. The former

was not a significant issue, as there were plenty of resources

online that were simple to understand. The slack we had

originally put in place for implementing the pipeline absorbed

all of this. The latter issue however proved to be quite an

obstacle. Our pains with HLS are detailed more in the

“Summary” section.

B. Team Member Responsibilities

Broadly, our project is split into two main areas, hardware

design and software systems (signal processing is still present

through the video processing algorithm theory, but it is not a

core focus of this project). As such, our team is composed of

three qualified individuals specializing in these two areas.

Brandon focused on the software system, while Edric and Ilan

on the hardware design and component interfacing and system

integration, respectively. Within the software system, Brandon

implemented client code on the Raspberry Pis, server code on

the ARM core, and the communication protocol between these

devices. His work mainly focused on the low-level networking

between these devices and ensuring that frame data is

efficiently and reliably transmitted. Additionaly, Brandon and

Ilan worked together on the revamping the transmission

pipeline to use FFmpeg video processing offloading between

the ARM core and the FPGA fabric. Edric focused on

hardware design, implementation, and verification for the

FPGA’s Canny compute pipeline. He and Ilan worked

together to design the communication between software,

hardware, and DRAM and the high-level interfacing for the

edge detection algorithm’s DSP pipeline. Ilan worked on

hardware interfaces at the beginning to support both Brandon

and Edric (Wi-Fi, Raspberry Pi bring-up, ARM core bring-up,

FPGA bring-up), and transitioned in the middle to support

Edric in the implementation and verification of some of the

pipeline’s stages. Finally, Ilan transitioned back to

implementing the memory interface between PS and PL,

helping Edric integrate the pipeline into the design and debug

any issues, and working with Brandon to switch to FFmpeg

for increase streaming throughput from the RPis. Budget

Since most of our project’s cost is the Ultra96 board, which

is provided by the 18-500 course staff, our project comes in well

under the $600 budget with just under $400 remaining.

However, it is worth noting that for a commercial

implementation the total cost would still likely differ from our

bill of materials since the Ultra96 is a development kit and not

ideal for commercial applications.

C. Budget

Since most of our project’s cost is the Ultra96 board, which

is provided by the 18-500 course staff, our project comes in well

under the $600 budget with just under $300 remaining. The

increase in cost led from our attempts to improve the video

stream bandwidth via antennae. It is worth noting that for a

commercial implementation the total cost would still likely

differ from our bill of materials since the Ultra96 is a

development kit and not ideal for commercial applications.

The final, itemized Bill of Materials can be found on the next

page.

18-500 Final Project Report: 05/08/2019

7

D. Risk Management

In terms of software system design, many aspects of our

system were flexible and did not carry a large amount of risk.

We mitigated packet loss risk by leaving TCP open as an option

for the transmission protocol. We expected very little risk in the

software component of our system, and thus didn’t have a lot in

place against this. We unfortunately didn’t anticipate the

bandwidth issue, since it was such an obscure issue, so it took

us a long time to develop a solution. Our hardware component

of the system carried much more risk for the following reasons:

(1) difficulty of algorithm implementation, (2) longer time-to-

completion, (3) fewer support resources. The Canny edge

detection algorithm involves multiple stages, with many parts

of the algorithm having data dependences on adjacent pixels.

This did not lend itself to simple, easy-to-implement RTL

implementations in the time allotted. We ended up utilizing

HLS, peer resources, and Xilinx documentation to mitigate

against the hardware risk overall. Finally, our project had a

significant amount of unallocated budget, and so we could

easily afford to order replacements or additional parts in case of

any issues. This helped with our Wi-Fi antenna purchases as a

potential solution to our Pi bandwidth issue.

VI. RELATED WORK

On the software side, we found a paper by Chi-Fai Wong,

Wai-Lam Fung, Jack T. Chi-Fai, and S.H. Gary Chan, entitled

TCP Streaming for Low Delay Wireless Video. This paper

debates the usage of TCP over UDP for video transmission, and

cites the following reasons against UDP: unreliable complex

error handling, network unfriendliness, unselective data loss,

and firewall penetration. For TCP, they cite reliable

transmission, network fairness, and ease of deployment. We

experienced almost all of these qualities for both, and thus

concluded TCP as superior similar to the writers of this paper.

 On the hardware side, we found a paper by Qian Xu,

Chaitali Chakrabarti, and Lina J. Karam, entitled A distributed

Canny edge detector and its implementation on FPGA. This

paper similarly investigates and exploits the parallelism and

pipelining of the canny edge detection algorithm, and yielded a

16x decrease in processing time compared to the software

implementation using a Xilinx Virtex-5 FPGA.

 Finally, we found a paper by Calliope-Louisa

Sotiropoulou, Christos Gentsos and Spiridon Nikolaidis,

entitled FPGA-based Canny Edge Detection for Real-Time

Applications. This paper is almost identical to the hardware side

of our project, but involved much more optimization by hand

that couldn’t be achieved by us due to time-constraints. They

achieved ~300 FPS while we achieved ~60 FPS on the

hardware.

VII. SUMMARY

In the end, our system was able to perform the Canny edge

detection algorithm on an incoming video stream, and stream

this result to a client. While our functionality requirements were

met, our performance requirements were not. Due to the

bottleneck caused by the ARM core’s lack of dedicated video

decoding/encoding hardware we were unable to achieve our

success metrics. The camera streams were each 720p30

streams, and we demonstrated that without the ARM core

bottleneck we could send three concurrent streams to the

monitor computer. On the hardware side, the Canny compute

pipeline was able to completely process video at around 60 FPS,

far above our target. Moreover the utilization came in at just

over 10%, so we are fairly confident that barring the addition of

routing logic for multiple streams we can achieve 7-8

concurrent video feeds.

Fig. 6. Project bill of materials

18-500 Final Project Report: 05/08/2019

8

A. Future Work

Because we realized our true bottleneck far too late in the

project, any future work would likely tackle that issue. With

some searching, there is a variant of the chip used by the

Ultra96 that has the dedicated hardware necessary for video

encoding with 8k streams, but this solution may be unnecessary

for the processing intensity of our project. Instead, with more

time we would likely look into offloading the stream

decoding/encoding to the fabric itself, effectively implementing

our own custom hardware.

 On the compute side, there is further work to be done in

HLS. Referencing the Sotiropoulou paper, clearly it is possible

to push the Canny algorithm’s latency much further. For now

the critical path remains in the arctan and square root functions.

No obvious solutions come to mind for this, although there are

likely resources out there that discuss better ways to perform

these operations in hardware. It is unlikely that the built-in HLS

implementation is the fastest. We also received a fair number of

warnings in HLS regarding the lack of memory ports, so

improving memory management and this memory port limit by

duplicating memory will lead to significant improvements. On

the memory interface side, we found out that keeping the pixel

data in discrete 8-bit values led to a significant amount of

overhead in the streams. Packing multiple pixel data in larger

blocks will amortize said overhead and improve our memory

access latency.

B. Lessons Learned

Apart from the usual “start early” advice, we found too late

that better initial research on existing designs and protocols

leads to less pains in implementation. Knowing what is and isn’t

possible before development is something that would have been

incredibly helpful. This particularly came up when looking into

the video stream formatting, as we flipped back and forth

between JPEG, h264, and raw video far more often than we

should have. Another lesson learned is to commit to a design

early and deal with the problems later. When we discussed the

different hardware interfaces, we made the mistake of delaying

the decision until after the implementation. Once we decided on

AXI streams, we then found out that the entire implementation

had to be overhauled to adhere to the interface, leading to

further delays. Committing to AXI much earlier would have

alleviated this. Finally, set aside time for learning a tool set if it

is not a familiar one. HLS certainly had its issues when we

started using it, and the learning curve proved to be a significant

obstacle in the first half of the semester.

REFERENCES

[1] Chi-Fai Wong, Wai-Lam Fung, Chi-Fai Jack Tang and S. -. G. Chan,
"TCP streaming for low-delay wireless video," Second International

Conference on Quality of Service in Heterogeneous Wired/Wireless

Networks (QSHINE'05), Lake Vista, FL, 2005, pp. 6 pp.-41.
[2] Sotiropoulou, Calliope-Louisa & Gentsos, Christos & Nikolaidis,

Spyridon & Rjoub, Abdoul. (2011). FPGA-based Canny Edge Detection

for Real-Time Applications.
[3] Q. Xu, C. Chakrabarti and L. J. Karam, "A distributed Canny edge

detector and its implementation on FPGA," 2011 Digital Signal

Processing and Signal Processing Education Meeting (DSP/SPE),
Sedona, AZ, 2011, pp. 500-505.

[4] Ultra96 User Guide,

https://www.avnet.com/opasdata/d120001/medias/docus/187/Ultra96-
HW-User-Guide-rev-1-0-V0_9_preliminary.pdf

[5] SoC/FPGA Guide,

https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-
ultrascale-plus-overview.pdf

[6] Zynq Ultrascale Technical Reference Manual,

https://www.xilinx.com/support/documentation/user_guides/ug1085-
zynq-ultrascale-trm.pdf

[7] DSP48E2 Slice Datasheet,

https://www.xilinx.com/support/documentation/user_guides/ug579-
ultrascale-dsp.pdf

[8] Wi-Fi Chip Datasheet, http://www.ti.com/lit/ds/symlink/wl1831mod.pdf

[9] Liang, Justin, Canny Edge Detection,
http://justin-liang.com/tutorials/canny/

[10] Edge Detection in Python,

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-
python-computer-vision-b49c3a2d8123

[11] Vivado HLS overview,

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018
_2/ug902-vivado-high-level-synthesis.pdf

[12] Vivado HLS tutorial,

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018
_2/ug871-vivado-high-level-synthesis-tutorial.pdf

[13] Vivado HLS methodology guide,

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018
_1/ug1270-vivado-hls-opt-methodology-guide.pdf

https://www.avnet.com/opasdata/d120001/medias/docus/187/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/187/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
http://www.ti.com/lit/ds/symlink/wl1831mod.pdf
http://justin-liang.com/tutorials/canny/
https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf

18-500 Final Project Report: 05/08/2019

9

Fig. 7. Final Gantt chart

Fig. 8. Vivado block diagram for the Ultra96

