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Abstract—This capstone project is a distributed, hardware-

accelerated platform that provides functional video processing on 

live streams with the goal of scalability and speed. With the 

prevalence of low-cost video devices, coupled with the use of 

intense video processing algorithms, the need to offload said 

processing is on the rise. Our system streams video feeds over Wi-

Fi from low-power, low-performance devices through an Avnet 

Ultra96 SoC and FPGA to easily and capably handle real-time 

video processing before sending the processed streams to a 

monitoring computer over Wi-Fi. The algorithm we implement is 

the Canny edge detection algorithm, one that is the basis of many 

computer vision algorithms, and is quite computationally-intense 

and powerful as a preprocessing step for further algorithms such 

as image segmentation and object detection. Our implementation 

will improve on a software-only approach and thus improve 

performance and unlock additional scalability while keeping costs 

low. 

Index Terms—Distributed Systems, Edge Detection, High-Level 

Synthesis, FPGA, Hardware-Accelerated, Computer Networking, 

Video Processing. 

 

I. INTRODUCTION 

S augmented reality, self-driving cars, and other 

technologies become mainstream, having the ability to do 

real-time video processing will play a critical role in the 

adoption of these technologies. Our project will explore and 

analyze the implementation of hardware-accelerated real-time 

video streams with Canny edge detection in a security system 

context. We implemented a networked video streaming and 

processing system that receives a 720p30 H.264 video stream 

from a Raspberry Pi Zero W over Wi-Fi and performs 

hardware-accelerated Canny edge detection on the Ultra96’s 

Xilinx FPGA before routing the processed video stream to a 

laptop that displays the results similar to a security system’s 

central monitoring room. Before routing the stream to the 

monitoring room, the CPU offloads the computational steps of 

Canny edge detection to our custom implementation on FPGA 

fabric to reduce computational latency from approximately 1.25 

seconds to just 20 milliseconds. Our system reaches scalability 

limitations on server-side CPU due to lack of support for 

hardware-accelerated video encoding and decoding, which 

could be mitigated by sourcing Xilinx’s V-variant Zynq SoC 

that includes dedicated video processing functionality including 

hardware-accelerated video encode and decode. 

Our implementation and findings have the potential to be 

applied to a wide spectrum of video processing applications, 

especially the security, transportation, and telecommunication 

sectors. With new developments in video-based security 

systems, self-driving cars, and video conferencing systems, our 

work can really improve on the latency for all of these 

applications. This is the main advantage of our approach. 

Currently, Canny edge detection is accomplished mainly using 

software either on CPUs or on GPUs, which can take anywhere 

between 100s milliseconds to over 1 second to to go through 

the multi-step algorithm. Our system significantly reduces this 

latency, resulting in a much faster response time that opens up 

new possibilities in all of these sectors both in terms of 

functionality and scalability. Also, the networking and memory 

interfacing aspects of our system allow for a multiple feed 

approach to any problem that these sectors will inevitably 

encounter. Our main goal is to use our implementation as a 

proof of concept for an easily scalable, hardware-accelerated 

video processing system.  

 

II. DESIGN REQUIREMENTS 

Our main design requirements were that we can handle at 

least two Raspberry Pi streams simultaneously within our 

system, and communicate successfully across the entire 

architecture. Additionally, we must be able to accomplish the 

canny edge detection algorithm on our FPGA, while 

minimizing latency. Finally, we must be able to achieve a real-

time video stream, and demonstrate the scalability of the system 

as a whole. Qualitatively, most of this was verified by visual 

analysis, as we had the final output of the video feed displayed 

on a browser, such that we can both see the video feed and 

analyze the results of the canny edge detection process. 

Quantitatively, we were aiming for a goal of < 100 ms of 

latency throughout the entire system. In order to verify that our 

design met these specifications, we planned to and succeeded 

in conduct unit tests throughout the process, in order to isolate 

each component, and eventually, conducted integration tests. 

Aside from performance, there was also a scalability 

requirement for our system. Because we are targeting a network 

of security cameras, the ability to add an additional feed is 

crucial to our design. As such we need to be able to quantify 

how many resources a feed takes up in the form of FPGA fabric 

(LUTs, FFs, BRAMs, DSPs are the main metrics of interest), 

Wi-Fi bandwidth, and DRAM address space. With these 
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metrics we are able to extrapolate the cost of an additional 

stream if we were to add more to a larger FPGA. 

 

A. Success Metrics 

1) Software Networking 

 

TABLE I.   NETWORKING SUCCESS METRICS 
Metric Goal Result Pass/Fail 

Concurrent 

streams 

At least 2 1 for end-to-end 

3 for SoC-

exclusive pipeline 

Fail 

Resolution 1280x720 1280x720 Pass 

Framerate 30 FPS 5 FPS Fail 

Packet loss < 3% ~1% Pass 

Communication 

latency 

75 ms 50 ms Pass 

Visual analysis 

of result 

Compare to 

software 

implementation 

Visual inspection 

passed 

Pass 

  

In order to demonstrate the scalability of the system, we 

originally aimed for at least two streams, which we actually 

achieved on the Pis (we demonstrated three streams, and those 

streams all exceeded our metrics of 30 FPS and ~50 ms latency, 

which achieved real-time streams). Unfortunately, when 

sending the streams through the ARM core, we realized that 

because of the lack of dedicated video encode and decode 

functionality, we could not support more than one stream (we 

could not even support one at our target metrics) since the 

H.264 decode and encode maxed out CPU and memory 

utilization. Additionally, this limited our FPS on the send side, 

as we ended up receiving from the Pis at 30 FPS, but sending 

out at 5 FPS. While all of our other metrics pa ssed - resolution 

at 1280x720, ~1% packet loss due to TCP, and a 

communication latency of 50 ms - this FPS bottleneck resulted 

in a jittery, delayed result stream. Thus, we were unsuccessful 

in achieving an end-to-end real-time video stream, and we did 

not have enough time to source and integrate a dedicated H.264 

IP block. However, our solution could easily be migrated to use 

Xilinx’s V-variant SoC with dedicated hardware 

encode/decode functionality or hardware-accelerated 

encode/decode as part of our overall edge detection compute 

pipeline. 

 

2) Hardware-accelerated Computation 

 

TABLE II.    HARDWARE SUCCESS METRICS 
Metric Goal Result Pass/Fail 

Scalable with 

more streams 

2 streams > 7 supported 

streams 

Pass 

High resolution 

and framerate 

720p30 720p60 stream 

processing 

Pass 

High pipeline 

throughput 

320 MHz clock 

frequency 

333 MHz clock 

frequency 

Pass 

Computation 

latency 

25 ms/frame 15ms/frame Pass 

 

We initially targeted 2 streams as a proof-of-concept, and 

since we were working with a smaller FPGA that might be 

limited if the pipeline proved to use all of the 128 DSP 

slices/edge detection pipeline that we originally estimated. 

However, we were able to optimize many of the operations to 

either not use DSP slices at all while still maintaining good 

performance or to use look-up tables and other workaround 

functionality. Our design was also further optimized from initial 

experimentation and estimates and used significantly less fabric 

per edge detection pipeline. Regarding the timing metrics, we 

are able to achieve nearly double the 30 FPS target frame rate 

since our design is both pipelined within each stage as well as 

between stages. This yields higher throughput by sacrificing a 

small amount of register-transfer latency, but our computation 

latency still remains about 1.67x our original estimate. Our 

target clock frequency was also surpassed after some 

optimization of the compute pipeline. We were not able to push 

this clock frequency any higher due to AXI port clock 

frequency limitations. 

 

3) Final Hardware Resource Utilization Metrics 

 

TABLE III.    HARDWARE UTILIZATION METRICS 

 

Here we show the final hardware resource utilization metrics, 

with a breakdown between base components and the per-

compute pipeline components. We can see that the base 

components use a negligible amount of resources, and each 

pipeline uses approximately ~10% of the FPGAs LUTs after a 

moderate amount of optimization. This is how we come to our 

conclusion of being able to support over 7 simultaneous streams 

in hardware. Aside from hardware resource utilization, memory 

bandwidth is the other factor to consider. Note that we pivoted 

from a main memory buffering scheme to a streaming 

computation design, which yields much lower memory and 

bandwidth utilization. The AXI port’s bandwidth is also on the 

order of gigabits/second, so it is not a limiting factor. As a 

result, we conclude that we could support a much higher 

number of streams, likely between 7-8 depending on place-and-

route results and optimization tweaks to fit in this SoC’s FPGA 

fabric. 

 

B. Testing and Validation Plan 

Testing and validation is a critical step in ensuring that any 

project’s implementation works correctly and meets the 
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requirements set forth during the design, and this is no different 

for this project. On the software side, many components were 

unit tested and mocked out to easily test the implementation 

along the way. Methods such as dummy and random frame 

generation for sending and receiving video frames allowed us 

to easily test our implementation, as well as visual inspection 

when using images and actual video streams. Packet loss is also 

both easily visually inspected as well as programmatically 

measured, since any dropped packets are observed as missing 

data and incomplete frames. On the hardware side, our compute 

pipeline design is fully testable in simulation, and as such time 

has been allocated for testbenches to be developed that will test 

both correctness and reliability of our hardware 

implementation. Our testbenches will again use dummy and 

randomized data generation to feasibly test as much of our 

design as we can without requiring a significant amount of time 

creating test cases. At the integration stage, most of work will 

be testable by visual inspection as well as by verifying against 

a software library implementation. Our interfaces are the least 

testable, and as such we will mainly be focusing on testing these 

interfaces and verifying realistic actual bandwidth and 

throughput numbers based on their theoretical values. Our 

memory interaction between the ARM core and FPGA is tested 

through the use of  a starter Vivado HLS block that is known to 

be functional and performs a Gaussian blur. Throughout the 

development process, these testbenches were used to quickly 

root cause bugs and unwanted behavior during bring-up, 

development, and integration. As always, avoiding integration 

failures and failing earlier during the component and module 

implementation phase is preferable, so our integration tests are 

mostly for the purpose of testing before other components of 

the system are ready, and they also act as simulated, controlled 

functional testing that will prove helpful for simulating actual 

bugs during the integration process. 

 

III. DESIGN TRADE STUDIES 

A. Software 

 On the software side, there were two main decisions that 

were analyzed for design tradeoffs and ultimately determined 

the major design of the software system. These two decisions 

were UDP vs TCP and format transmission protocol (raw 

arrays vs JPEG vs H.264 compressed encoded stream). 

 For the UDP vs TCP decision, we implemented and tested 

both protocols early on, and compiled some latency numbers. 

While UDP was significantly lower latency than TCP (~3x), 

in packet loss testing, it resulted in enough packet loss to 

significantly negatively affect the quality of the video (based 

on visual inspection). Even though our project was highly 

focused on minimizing latency, we felt that the quality of the 

video must reach a certain standard (<3% packet loss), and 

that UDP wasn’t achieving this. Thus, we decided to pivot to 

TCP, and accept the higher latency. Fortunately, we were still 

able to satisfy our software communication latency 

requirement. 

 For the format transmission protocol decision, most of the 

semester was spent on this decision. Initially, we started with 

raw grayscale array transmission, which is extremely 

inefficient, and not very realistic in achieving the low latency 

and high FPS in our goals. However, sending arrays is a much 

simpler task, and these arrays are therefore much more 

accessible than the other options. Our first pivot was into an 

H.264 stream, which we implemented by the interim demo. 

Unfortunately, with bandwidth issues in the Pis, we weren’t 

able to observe a significant increase in FPS, and it was a 

fairly complex process to extract individual frames from the 

stream, so we pivoted a second time into JPEGs. This method 

was less efficient than the H.264 stream, but still much more 

efficient than raw grayscale arrays. However, even with a 

threading system implemented, and after fixing the bandwidth 

issues on the Pis, we were still failing to achieve the FPS goals 

that we were hoping for. We finally pivoted for a third time 

back to H.264 streams, but using a different transmission 

method to allow for frame extraction, and this method worked 

very well overall. The differences in these qualities, along 

with ease of visualization, is demonstrated in Table IV below. 

 

TABLE IV.   VIDEO STREAM FORMAT TRADEOFFS 
Format Accessibility Efficiency Visualization 

Raw arrays 1 3 2 

H.264 3 1 1 

JPEG 2 2 3 
*Qualities are ranked from 1 (best) to 3 (worst). 

 

B. Hardware 

 On the hardware side, the bulk of the design tradeoffs were 

made in 1) the passing of data through the pipeline, and 2) the 

interfaces between each phase. 

 

1) Pixel Data 

We decided early on that we would be using 8-bit pixel values 

as edge detection doesn’t require much, if any granularity with 

pixel color values. There was an issue around having to use 

floats for the Sobel phase’s gradient calculation, but we 

noticed that the HLS built-in arctangent function conveniently 

rounds values to integers. Thus we were able to keep an 8-bit 

stream throughout the pipeline. 

 

2) Memory Interfacing 

 

TABLE V.   MEMORY INTERFACING TRADEOFFS 
Interface Advantages Disadvantages 

DRAM Default interface, and 
extremely easy to 

implement. 

Extremely slow to access 
values, and convolution 

access patterns are low in 

locality, thus burst reads 
are not possible. 

BRAM Also easy to implement, 

and is much faster than 

DRAM. 

Not enough BRAM on the 

Ultra96 to buffer the entire 

frame. Too expensive to 
scale up for multiple 

streams. 

AXI streams Very low BRAM 
utilization, streamed 

accesses have high 

throughput, leading to 
lower overall latency. 

More complicated to 
implement. Unable to 

access values already read 

without something like 
line buffers. 

 

The table above summarizes our experiences with each of the 

interface types we tried. In the end we decided to use AXI 
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streams as they were most in line with our requirements of low 

utilization and low latency. Our entire code had to be 

overhauled to adhere to the streaming access pattern, but the 

gains from doing so were well warranted. 

IV. ARCHITECTURE AND SYSTEM DESCRIPTION 

The RPis with cameras act as clients, streaming their video 

via Wi-Fi with TCP to the Ultra96 SoC. The server Ultra96’s 

ARM core is then utilized to handle the receiving, decoding, 

and storing of input frames to the edge detection pipeline and 

re-encoding and sending of the processed frames. Due to the 

memory requirement of storing an entire frame, we decide to 

store frame data in DRAM as a contiguous array of pixels. We 

note that adding more streams to the system will reduce the 

space allowed for each stream; however, DRAM has become 

relatively inexpensive and is not the limiting factor in cost 

scalability of this system, as we will later go in detail. 

 

 
Fig. 1. Example system architecture 

 

A. Software System/Video Transmission 

After numerous instances of trial and error where we 

implemented raw array frame transmission, H.264 stream 

transmission, and JPEG transmission, we decided to revert to 

the H.264 stream transmission protocol to minimize network 

bandwidth consumption. The Raspberry Pi Camera feeds were 

recorded using the Raspivid framework, and then piped into 

an FFmpeg TCP transmission block on the RPi. On the 

Ultra96’s ARM core, an FFmpeg receive and decode block is 

used to convert the incoming TCP stream to a raw array of 24-

bit RGB pixel data. This image is then converted to grayscale 

on the ARM core before being stored into contiguous memory 

blocks for the fabric to access and process. The resulting 

processed frames are outputted back into the ARM core into a 

dedicated contiguous receive buffer. These frames are 

encoded back into an H.264 stream and sent using FFmpeg 

over TCP to the laptop “monitoring room”. The stream is 

received and displayed using Mplayer, which allowed for real-

time visualization. H.264 as a streaming and compression 

system really helped us attempt to maximize the FPS of our 

video stream, as in our tests with JPEG and raw arrays, the 

amount of data being sent and the inherent computational 

overhead of producing this data really limited the FPS of the 

resulting video. We also decided to use TCP vs UDP because 

of the packet loss we were experiencing through UDP. Finally, 

Mplayer was the easiest media visualizer that was compatible 

with H.264 streams, so it was the natural choice for video 

stream visualization. 

 

 

 
Fig. 2.  Software video stream flow 

 

B. Server Architecture 

 

 
Fig. 3.  High-level receive-side and compute server architecture 
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Fig. 4.  PS/PL memory interface 

 

Our server architecture diagrams mainly focus on the 

communication portion of the system, since this is somewhat 

isolated from the compute pipeline in functionality (aside from 

data widths, packing schemes, etc.). Here we focus on the 

receive-side of the system, since the send-side communication 

is simply to display the processed video streams on a 

monitoring computer and is quite straightforward. The Ultra96 

has a built-in TI WL1831MOD Wi-Fi chip that in practice 

yielded approximately 40 Mbps throughput, which will be more 

than sufficient for two streams and leaves a small amount of 

room for future scalability depending on the exact bitrates used 

for the H.264 streams. All data is transmitted over Wi-Fi, and 

the ARM core is responsible for allocating contiguous memory 

for pre-processed and post-processed frames. Our memory 

interface starts by receiving 32-bit streaming grayscale pixel 

data, with the lower 8 bits of each data beat containing 1 8-bit 

pixel value. This is the simplest approach and we did not 

anticipate memory bandwidth being the initial bottleneck, so we 

left this unoptimized. The DRAM memory interface on the 

Ultra96 supports 1066 Mbps and the AXI port interface 

supports a theoretical maximum of 42.6 Gbps. Both of these 

interfaces will again be more than sufficient for two streams 

while still having room to scale. Once the frames are in DRAM, 

the ARM core will communicate with the hardware 

implementation in FPGA fabric with a producer consumer 

handshake. The FPGA fabric itself will stream and convert the 

32-bit pixel data from the contiguous memory buffer through 

the compute pipeline since each frame is too large to store in 

block RAM or distributed RAM. Once processing is done, the 

ARM core will push out the processed frames over Wi-Fi to the 

monitoring computer, which will display the streams for users. 

 

C. Compute Block Architecture 

 When a frame is ready to be processed, the ARM core will 

signal the compute block with a ready signal and a starting 

address. From there the frame is pulled from DRAM and the 

processing can begin. 

Because the convolution operation requires the values of 

surrounding pixels, we are unable to process a frame and 

modify its value in-place. Moreover, because each phase is 

dependent on the output of the previous, we would require a 

significant amount of memory to store a copy of every 

processed frame. Doing so in DRAM is unacceptable, as the 

latency around pulling from DRAM would be too high for our 

requirements. To account for this limitation, we decided to 

stream the frame data through the pipeline using 8-bit AXI 

streams. As edge detection pixels are either black or white there 

is no need to waste bandwidth on higher-bit streams. Due to the 

nature of the convolution operation which requires accessing 

previously used pixels, we use a line buffer to keep temporary 

copies of the surrounding pixels. We find that through using 

streams and line buffers we are able to both remove the 

excessive latency involving DRAM accesses while keeping our 

overall utilization low. Once a phase is complete the next phase 

in the pipeline takes in the streaming output of the previous and 

operates on it, whereby this process repeats until completion.  

In implementing the Canny compute pipeline, we decided to 

do the entirety of it in Vivado’s High-Level Synthesis (HLS) 

suite. Doing so gave us the following benefits: removing the 

development time needed to implement an AXI interface and 

interface with other Vivado IP blocks, use of convenient 

utilities like line buffers and complex math functions, detailed 

synthesis reports with both timing and utilization summaries, 

and the convenient use of C++ testbenches for behavioral 

validation. 

 In the Gaussian blur, Sobel, Non-maximum Suppression 

and edge tracking phase, a 3x3 convolution is necessary. To do 

this we utilized three line buffers which are shifted down the 

frame once an entire row is finished processing. This allows us 

to access pixel values that we would normally be unable to use 

given our streaming data access pattern. While the operations 

performed for each phase’s convolution were different, the 

usage of this line buffer structure stayed the same. This made 

implementation of each phase quite simple once we got past the 

learning curve of using HLS’s built-in utilities. 

 We can see during the Intensity Gradient Phase that two 

separate operations need to be performed: calculating pixel 

magnitude and gradient. Initially we attempted to write to two 

Fig. 5.  Canny compute pipeline 
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concurrent AXI streams, which were successful in the C 

simulation but ended up being too out of sync with each other 

going into the non-max suppression block and deadlocked 

when run on the RTL simulator and on the FPGA. In the end 

we decided to output a single 16-bit stream where the 

magnitude and gradient results are concatenated together. The 

NMS phase is then responsible for extracting these values. It is 

worth noting that thresholding does not require the use of 

neighboring pixel data, so we managed to include this in the 

NMS phase. This reduced the overall latency of the pipeline. 

 Once a frame is complete the compute block signals the 

ARM core that it is finished. It is then up to the core to pull the 

frame from DRAM and transmit it to the monitor. This includes 

encoding the frame data back to H.264 before sending it out. 

V. PROJECT MANAGEMENT 

A. Schedule 

Since our schedule is not readable as an inline image here, 

we have included it at the end of the report. The overall 

schedule has not changed noticeably with respect to the tasks to 

do, however there were a number of delays that had to be made. 

For the software side, we spent so much time fixing the 

bandwidth issues on the Pis, that we were delayed up until the 

demo with a lot of backed up work. Without accurate FPS 

numbers on the video feeds, it was extremely difficult to work 

on integration, visualization and concurrent streams. Thus, that 

work got pushed back as we explored the various transmission 

formats and bandwidth fixes. Once we were able to get the 

bandwidth fixed on the Pis, we accelerated intensely to 

complete integration and visualization for the demo. 

Unfortunately, due to the lack of dedicated video processing 

functionality on the ARM core, our system was unable to 

accommodate multiple streams. However, we were still able to 

implement them separately, just to demonstrate the real-time, 

reasonably high FPS that we were able to achieve without the 

ARM core bottleneck. At the end of the day, we were satisfied 

with our results considering what was under our control, what 

was out of our hands, and the numerous delays caused by such 

intertwined issues. 

Hardware interfacing was originally planned to be finished 

just after the start of the realization phase after spring break, but 

significantly more time was needed to fully understand how to 

use Vivado’s block diagram, AXI interconnects, DMA cores, 

and other components to make the interface work. Additionally, 

the initial start with Vivado HLS was slow, and considering our 

whole hardware focus relied on significantly accelerating a 

heavyweight algorithm, we decided to devote more time to this 

initially. However, this proved to be both good and bad, since 

the compute pipeline’s memory interface was modified a few 

times since the overall memory interface was not solidified until 

quite late in the realization phase. 

The delays with the compute pipeline stem from two parts: 

understanding the operations done in each phase of the Canny 

algorithm, and the learning curve with using HLS. The former 

was not a significant issue, as there were plenty of resources 

online that were simple to understand. The slack we had 

originally put in place for implementing the pipeline absorbed 

all of this. The latter issue however proved to be quite an 

obstacle. Our pains with HLS are detailed more in the 

“Summary” section. 

 

B. Team Member Responsibilities 

Broadly, our project is split into two main areas, hardware 

design and software systems (signal processing is still present 

through the video processing algorithm theory, but it is not a 

core focus of this project). As such, our team is composed of 

three qualified individuals specializing in these two areas. 

Brandon focused on the software system, while Edric and Ilan 

on the hardware design and component interfacing and system 

integration, respectively. Within the software system, Brandon 

implemented client code on the Raspberry Pis, server code on 

the ARM core, and the communication protocol between these 

devices. His work mainly focused on the low-level networking 

between these devices and ensuring that frame data is 

efficiently and reliably transmitted. Additionaly, Brandon and 

Ilan worked together on the revamping the transmission 

pipeline to use FFmpeg video processing offloading between 

the ARM core and the FPGA fabric. Edric focused on 

hardware design, implementation, and verification for the 

FPGA’s Canny compute pipeline. He and Ilan worked 

together to design the communication between software, 

hardware, and DRAM and the high-level interfacing for the 

edge detection algorithm’s DSP pipeline. Ilan worked on 

hardware interfaces at the beginning to support both Brandon 

and Edric (Wi-Fi, Raspberry Pi bring-up, ARM core bring-up, 

FPGA bring-up), and transitioned in the middle to support 

Edric in the implementation and verification of some of the 

pipeline’s stages. Finally, Ilan transitioned back to 

implementing the memory interface between PS and PL, 

helping Edric integrate the pipeline into the design and debug 

any issues, and working with Brandon to switch to FFmpeg 

for increase streaming throughput from the RPis. Budget 

Since most of our project’s cost is the Ultra96 board, which 

is provided by the 18-500 course staff, our project comes in well 

under the $600 budget with just under $400 remaining. 

However, it is worth noting that for a commercial 

implementation the total cost would still likely differ from our 

bill of materials since the Ultra96 is a development kit and not 

ideal for commercial applications. 

 

C. Budget 

Since most of our project’s cost is the Ultra96 board, which 

is provided by the 18-500 course staff, our project comes in well 

under the $600 budget with just under $300 remaining. The 

increase in cost led from our attempts to improve the video 

stream bandwidth via antennae. It is worth noting that for a 

commercial implementation the total cost would still likely 

differ from our bill of materials since the Ultra96 is a 

development kit and not ideal for commercial applications. 

The final, itemized Bill of Materials can be found on the next 

page. 
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D. Risk Management 

In terms of software system design, many aspects of our 

system were flexible and did not carry a large amount of risk. 

We mitigated packet loss risk by leaving TCP open as an option 

for the transmission protocol. We expected very little risk in the 

software component of our system, and thus didn’t have a lot in 

place against this. We unfortunately didn’t anticipate the 

bandwidth issue, since it was such an obscure issue, so it took 

us a long time to develop a solution. Our hardware component 

of the system carried much more risk for the following reasons: 

(1) difficulty of algorithm implementation, (2) longer time-to-

completion, (3) fewer support resources. The Canny edge 

detection algorithm involves multiple stages, with many parts 

of the algorithm having data dependences on adjacent pixels. 

This did not lend itself to simple, easy-to-implement RTL 

implementations in the time allotted. We ended up utilizing 

HLS, peer resources, and Xilinx documentation to mitigate 

against the hardware risk overall. Finally, our project had a 

significant amount of unallocated budget, and so we could 

easily afford to order replacements or additional parts in case of 

any issues. This helped with our Wi-Fi antenna purchases as a 

potential solution to our Pi bandwidth issue.  

 

VI. RELATED WORK 

On the software side, we found a paper by Chi-Fai Wong, 

Wai-Lam Fung, Jack T. Chi-Fai, and S.H. Gary Chan, entitled 

TCP Streaming for Low Delay Wireless Video. This paper 

debates the usage of TCP over UDP for video transmission, and 

cites the following reasons against UDP: unreliable complex 

error handling, network unfriendliness, unselective data loss, 

and firewall penetration. For TCP, they cite reliable 

transmission, network fairness, and ease of deployment. We 

experienced almost all of these qualities for both, and thus 

concluded TCP as superior similar to the writers of this paper. 

 On the hardware side, we found a paper by Qian Xu, 

Chaitali Chakrabarti, and Lina J. Karam, entitled A distributed 

Canny edge detector and its implementation on FPGA. This 

paper similarly investigates and exploits the parallelism and 

pipelining of the canny edge detection algorithm, and yielded a 

16x decrease in processing time compared to the software 

implementation using a Xilinx Virtex-5 FPGA. 

 Finally, we found a paper by Calliope-Louisa 

Sotiropoulou, Christos Gentsos and Spiridon Nikolaidis, 

entitled FPGA-based Canny Edge Detection for Real-Time 

Applications. This paper is almost identical to the hardware side 

of our project, but involved much more optimization by hand 

that couldn’t be achieved by us due to time-constraints. They 

achieved ~300 FPS while we achieved ~60 FPS on the 

hardware. 

 

VII. SUMMARY 

In the end, our system was able to perform the Canny edge 

detection algorithm on an incoming video stream, and stream 

this result to a client. While our functionality requirements were 

met, our performance requirements were not. Due to the 

bottleneck caused by the ARM core’s lack of dedicated video 

decoding/encoding hardware we were unable to achieve our 

success metrics. The camera streams were each 720p30 

streams, and we demonstrated that without the ARM core 

bottleneck we could send three concurrent streams to the 

monitor computer. On the hardware side, the Canny compute 

pipeline was able to completely process video at around 60 FPS, 

far above our target. Moreover the utilization came in at just 

over 10%, so we are fairly confident that barring the addition of 

routing logic for multiple streams we can achieve 7-8 

concurrent video feeds. 

 

Fig. 6.  Project bill of materials 
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A. Future Work 

Because we realized our true bottleneck far too late in the 

project, any future work would likely tackle that issue. With 

some searching, there is a variant of the chip used by the 

Ultra96 that has the dedicated hardware necessary for video 

encoding with 8k streams, but this solution may be unnecessary 

for the processing intensity of our project. Instead, with more 

time we would likely look into offloading the stream 

decoding/encoding to the fabric itself, effectively implementing 

our own custom hardware. 

 On the compute side, there is further work to be done in 

HLS. Referencing the Sotiropoulou paper, clearly it is possible 

to push the Canny algorithm’s latency much further. For now 

the critical path remains in the arctan and square root functions. 

No obvious solutions come to mind for this, although there are 

likely resources out there that discuss better ways to perform 

these operations in hardware. It is unlikely that the built-in HLS 

implementation is the fastest. We also received a fair number of 

warnings in HLS regarding the lack of memory ports, so 

improving memory management and this memory port limit by 

duplicating memory will lead to significant improvements. On 

the memory interface side, we found out that keeping the pixel 

data in discrete 8-bit values led to a significant amount of 

overhead in the streams. Packing multiple pixel data in larger 

blocks will amortize said overhead and improve our memory 

access latency. 

 

B. Lessons Learned 

Apart from the usual “start early” advice, we found too late 

that better initial research on existing designs and protocols 

leads to less pains in implementation. Knowing what is and isn’t 

possible before development is something that would have been 

incredibly helpful. This particularly came up when looking into 

the video stream formatting, as we flipped back and forth 

between JPEG, h264, and raw video far more often than we 

should have. Another lesson learned is to commit to a design 

early and deal with the problems later. When we discussed the 

different hardware interfaces, we made the mistake of delaying 

the decision until after the implementation. Once we decided on 

AXI streams, we then found out that the entire implementation 

had to be overhauled to adhere to the interface, leading to 

further delays. Committing to AXI much earlier would have 

alleviated this. Finally, set aside time for learning a tool set if it 

is not a familiar one. HLS certainly had its issues when we 

started using it, and the learning curve proved to be a significant 

obstacle in the first half of the semester. 
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Fig. 7.  Final Gantt chart 

Fig. 8.  Vivado block diagram for the Ultra96 


