
18-500 Team AA Design Review Report: Mar. 4, 2019 1/9

Ground Control to Major TOM

Cameron Mackintosh Zachary Pomper Stanley Zhang
18-500 ECE Design Experience, Team AA

Electrical and Computer Engineering, Carnegie Mellon University
{cmackint,zbp,szz}@andrew.cmu.edu

Abstract—In the process of building, testing, and
eventually competing, FSAE teams may benefit from the
ability to wirelessly relay signals from their race cars to
ground crews. In particular, commercial CAN streaming
solutions are often unsatisfactory for FSAE teams with
niche power, form factor, and range requirements. We
present our proposed design for an embedded system
accomplishing this task. Further, we outline the relevant
motivating factors, design considerations, and system
constraints.

Keywords—Automotive, CAN, embedded, PCB, racing,
SPI, telemetry, Wi-Fi, wireless, ZigBee, 802.15.4

I. INTRODUCTION

Carnegie Mellon Racing (CMR) is Carnegie Mellon
University’s chapter of the Society of Automotive Engineers
(SAE). Since the early 2000s, the team has participated
annually in the Formula SAE (FSAE) student design
competition. In 2014, the team began competing in FSAE
Electric events across North America; each year-long season
entails the design, manufacture, and testing of a new Formula-
style electric race car.

To aid each car’s development cycle, the team has long
desired a vehicle telemetry system, through which data could
be captured from various on-board sensors and modules.
During the 2018 season, a prototype system was created: a
“telemetry module” connected to the car’s Controller Area
Network (CAN) bus, with an Atmel AVR32 microcontroller
unit (MCU) and Digi XBee ZigBee radio to communicate with
an off-car laptop application (the “base station”). This system
unidirectionally relayed internal car state from the CAN bus to
the base station.

The ZigBee radio permitted a range of at least 2 km line-
of-sight, sufficient for receiving live data during track testing.
However, the radio’s maximum effective bandwidth was
approximately 80 kbps—insufficient for directly streaming the
car’s CAN bus. Thus, a custom delta-encoding scheme was
designed to exploit redundancy in the car’s CAN message
fields; often, these fields represent sensor values whose rates
of change were far slower than the message’s actual frequency.
Unfortunately, the encoding scheme’s tight coupling to the
car’s message format led to complexity when adding or
modifying messages. Furthermore, as the team transitioned in
2019 to a more advanced STMicroelectronics STM32-based
MCU, the need for bidirectional communication and more
complex base station-to-vehicle interaction became apparent.

CMR’s telemetry system goals now encompass all wireless
operations with the race car. General-purpose wireless
connectivity would not only provide the previous system’s
real-time data acquisition features, but also allow for remote
configuration management and over-the-air firmware updates.

Thus, our project aims to redesign the telemetry system as a
wireless CAN bridge, linking the car’s CAN bus with a remote
one. By adhering to the industry-standard CAN protocol, we
ensure compatibility with commercial tools and data analysis
applications; new client applications can also be easily created
for the reconfiguration and firmware features. Through this
novel wireless development platform, we hope to provide
CMR with new research and development opportunities,
ensuring the team remains on the cutting edge of racing
technology.

II. REQUIREMENTS

The telemetry system shall implement the following
required functionality:

 The system will wirelessly relay CAN messages.

 The system will interface with the car’s grounded low
voltage (GLV) system. This entails acceptance of 24 V
input, capabilities for transceiving on a 500 kbps CAN
bus, and power and space claims of 5 W and 10 in3,
respectively.

 The system will support persistent settings and a
separate, wired interface for configuring these settings.

 The system will function at a maximum effective
wireless bandwidth of 50 kbps at ranges under 1500
m, and at a maximum effective wireless bandwidth of
1 Mbps while ranging under 10 m.

The telemetry system shall not contravene any of the
following stipulations:

 The system must be resilient to man-in-the middle
attacks. This implies that the wireless data stream’s
contents cannot be trusted blindly, and incoming
message identifiers must be screened against known
lists of valid identifiers.

 While dropped packets are expected when modules go
offline or ranges are exceeded, communication
failures must not compromise system performance or
safety.

 The system must not violate any FSAE Electric
competition rules.

18-500 Team AA Design Review Report: Mar. 4, 2019 2/9

III. SOLUTION APPROACH

A. System Components
The telemetry system is composed of at least one

“Telemetry Operations Module” (TOM) and optionally one
“Ground Control” laptop. The TOM is an embedded system
comprised of a custom printed circuit board (PCB) stack
physically connected to each CAN bus and is responsible for
bridging them together over a wireless link. The TOM uses a
custom PCB because it needs to be mechanically robust; form
factor requirements rule out commercial-off-the-shelf (COTS)
products. The Ground Control is a PC with software for
viewing CAN data and vehicle state; it also supports TOM
configuration via serial (UART) and CAN links.

The TOM’s primary PCB houses power filtering, an MCU,
a CAN transceiver, a JTAG programmer, and a UART header.
A secondary board breaks out the two radio transceivers,
which communicate with the MCU via two Serial Peripheral
Interface (SPI) links. This stacked PCB configuration reduces
footprint in the car’s trunk and manufacturing cost/time for
each revision.

The TOM uses an STMicroelectronics STM32F413RG
microcontroller [1]. It has all of the required communication
peripherals, provides a well-documented hardware abstraction
layer (HAL), and is the team’s chosen MCU for this and future
seasons. Via two SPI links, the TOM’s MCU communicates
with two radio transceivers: a high-bandwidth, short-range
Digi XBee S6B Wi-Fi module [2], as well as a low-bandwidth,
long-range XBee-PRO S3B ZigBee module [3]. These
modules were chosen as they theoretically fulfill our distance
and bandwidth requirements.

B. Range Estimation

The XBee ZigBee module specifies a maximum 6.5 km
range when operating at 200 kbps with a 2.1 dBi dipole
antenna [7]. However, the XBee Wi-Fi module does not
specify a maximum range. Thus, in order to estimate our
system’s feasibility, we compute the transmit power budget in
(1), where the TP is transmitter power in decibel-milliwatts
and TAG is transmit antenna gain in isotropic decibels. We
compute the receive power budget in (2) where RS is receive
sensitivity in decibel-milliwatts and RAG is receive antenna
gain in isotropic decibels. We consider the free space path loss
(FSPL) in (3), where f is the frequency in megahertz and d is
distance in kilometers. The power margin (PM) is defined in
(4), and represents the total losses and gains in the system. The
system operating margin (SOM) in (5) is an error margin.
These equations and terms are discussed further in [4] and [5].

TPB=TP+TAG (1)
RPB=|RS|+RAG (2)

FSPL=20 log10(f)+20 log10(d)+32.44 (3)
PM =TPB+RPB−FSPL (4)

SOM = PM
TPB

(5)

By solving (4) and (5) for FSPL and (3) for d, we arrive at
a maximum range estimation in terms of transmit/receive
power budgets (TPB and RPB) and operating margin (SOM):

FSPL=TPB(1−SOM)+RPL (6)
d=10(FSPL−20 log10(f)−32.44)/20 (7)

Fig. 1 summarizes our preliminary Wi-Fi range estimates.
We considered a 9 dBi whip antenna [6], and a 3 dBi multi-
band blade antenna [7]; these antennas are electromagnetically
compatible with the Wi-Fi XBee and had the highest gain for
their price range. The multi-band antenna is particularly
appealing due to its low profile and 900 MHz (ZigBee)
capability, reducing vehicle mounting complexity.

TABLE I. WI-FI RANGE ESTIMATES

Data Rate
(Mbps)

Ant. Gain
(dBi)

Tx. Pwr.
(dBm)

Rx. Sens.
(dBm)

Distance
(km)

6.5 9 15.0 -91 6.88
6.5 3 15.0 -91 2.13

65.0 9 8.5 -71 0.41
65.0 3 8.5 -71 0.13

Fig. 1. Ideal range estimates for 2.4 GHz Wi-Fi at the lowest and highest
802.11n data rates supported by the Wi-Fi XBee [6]. It is assumed that the
transmitter and receiver use symmetrical antenna systems.

C. Firmware Features
In the Wi-Fi communication mode, the TOM supports full

CAN bridging and higher-bandwidth add-on applications, such
as car firmware flashing. However, these extensions are
outside of our project’s scope. On the other hand, the ZigBee
mode supports filtered CAN bridging, wherein a subset of the
full message stream is sampled for transmission. The Ground
Control is responsible for activating the desired radio mode in
the TOM’s configuration. The race car will typically use Wi-Fi
mode, with ZigBee mode manually selected as a fallback in
the event of Wi-Fi range issues.

The TOM firmware uses the FreeRTOS kernel [8], as it
ensures our timing requirements are met and is a well-
documented industry and CMR standard. The firmware is
primarily responsible for transcoding data between the CAN
transceiver and the selected XBee transceiver. It uses a CAN
firewall to ensure relayed messages are not sent to blacklisted
local devices. The firmware further uses a custom CAN codec
to better utilize the available transceiver bandwidth.

18-500 Team AA Design Review Report: Mar. 4, 2019 3/9

IV. ARCHITECTURE

As previously described, the TOM functions as a CAN
bridge. A full bridging setup relays CAN messages either
between two connected TOMs, or between a TOM and a
Ground Control laptop. Each TOM receives CAN messages,
encodes them via a custom compression scheme, and sends
encoded packets over SPI for wireless transmission by either
the ZigBee or the Wi-Fi radio. Through a UART port, a user
can configure the TOM’s settings and access debugging
facilities. These features are implemented by firmware
modules flashed onto the on-board MCU, including peripheral
interfaces, message codecs, and application programming
interfaces (APIs) for communicating with either of the two
radios. (See Appendix A for a system block diagram.)

Our firmware architecture (Fig. 2) makes use of message
queues, interrupts, and periodic tasks—all facilitated by
FreeRTOS [8]. CAN messages are received into a small,
memory-mapped hardware queue; the CAN receive task,
polling at the maximum frequency of 1 kHz, enqueues the
messages into a larger encoding queue. The message encoding
task uses the codec to format as many CAN messages as
possible into packets placed on the SPI transmit queue. (The
frequency of this task, 50 Hz, is governed by the worst-case
latency on the receiving side.) From there, an XBee transceive
task sends the packets to the radio module via SPI.

However, as soon as the XBee transceive task begins to
send to the radio, it must also receive data as part of the full-
duplex master-slave SPI protocol. While the receiving part of
the task could be periodic, the transceive task also needs to

activate when a radio has pending received data (i.e. in
response to radio interrupts). Thus, the transceive task
aperiodically places received packets in a decoding queue,
from which CAN messages are extracted using the codec by
the decoding task. This task runs at no more than 200 Hz,
where this frequency is determined by the tolerable latency
between a message arriving on the radio and its transmission
onto the CAN bus. Finally, the CAN transmit task, running at
the maximum frequency of 1 kHz, performs this transmission
of decoded CAN messages.

CAN’s arbitration protocol cannot resolve two nodes
transmitting a message with the same identifier (ID). By
accumulating a list of received IDs, a firewall prevents
transmissions with IDs known to originate from other nodes
on the bus. This provides security against an attacker
requesting transmissions with conflicting IDs, which could
cause a safety-critical message to miss its deadline. This
firewall, like the other settings available, can be configured
through UART; this serial link also allows the TOM to send
out debugging information while still interfacing with the
CAN bus.

Fig. 2. Microcontroller firmware block diagram.

18-500 Team AA Design Review Report: Mar. 4, 2019 4/9

V. IMPLEMENTATION

We divide our implementation into hardware, including
circuit design, PCB layout, and electrical verification, and
firmware, including programming the C code that will run on
the MCU, verification of said code, and system integration
with CAN networks.

A. Hardware
Our implementation is composed of two hardware systems,

namely, a primary board which houses the MCU, and a
secondary board with the two radios. The MCU board makes
use of an in-house standard component package to give the
MCU 3.3 V power from a 24 V input, and to support an
MCP2561 CAN transceiver. It adds MCU connections for two
SPI buses, three UART buses, and of course the CAN bus,
along with the relevant off-board connectors for those
connections. The radio breakout board comprises the radios
themselves, a connector to the MCU board, and user interface
switches and LEDs. Each board is connected over a 32-pin
ribbon cable. This cable has pins for two SPI and UART
buses, several pins dedicated to power rails, pins for radio
interfacing like the SPI message receive interrupt line, and
some floating pins to be wired if the need arises.

The boards themselves are realized with custom PCB
layouts. They use two power layers and no signal layers to cut
costs at the expense of signal integrity. This loss in signal
integrity is difficult to quantify within our production budget
and timeframe, but has been demonstrated to be acceptable via
the function of revision 0 of the MCU board, which is also
routed on two layers. Moreover, only a select few of the
components on either board implement functionality highly
sensitive to signal integrity loss, such as analog signals or
high-speed traces. To reduce impedance, copper pours are
used in place of power planes when necessary, namely for
higher current paths.

In terms of assembly, the radio board stacks on top of the
MCU board via plastic spacers between aligned mounting
holes. The radio board uses on-radio RP-SMA RF output
ports, to be wired either directly or via coaxial cable to a high-
gain antenna. The whole assembly will mount to the base of a
waterproof box not supplied by our project, given in the use
case of CMR’s 2019 electric vehicle.

Fig. 3. From top to bottom: primary MCU board layout; secondary radio transceiver board; 3D renders of the board layouts.

18-500 Team AA Design Review Report: Mar. 4, 2019 5/9

B. Firmware

As previously discussed in our system architecture, our
firmware’s main purpose is to interface between the CAN and
XBee transceivers. Thus, we have designed and implemented
a driver and supporting libraries for managing SPI-based
XBee communications. The most challenging aspect of
designing this driver was the full-duplex nature of SPI: the
XBee (i.e., the SPI slave) is permitted to transmit data
whenever the MCU (i.e., the SPI master) has asserted the
XBee’s slave-select line and is driving the clock. This
asynchrony is necessary, for example, when the XBee has
received a radio packet and wishes to present it to the MCU.

However, because of SPI’s master-slave architecture, slave
devices cannot directly that they have data pending for receive
by the MCU. To work around this, the XBees output a “SPI
attention” signal [2][3] that is asserted under such conditions.
We use this signal to trigger an interrupt on the MCU, which
proceeds to handle it by waking the XBee transceive task
when necessary. Notably, this task must handle both
communication directions to be correctly full-duplex. All
transmitted packets must be accompanied by an equally-sized
receive buffer; otherwise, a frame arriving in the middle of a
transmission would be dropped—significantly tarnishing our
link’s robustness.

Synchronization issues arise due to the arbitrary timing of
both transmitted and received messages. FreeRTOS queues [8]
are used throughout our implementation, as they are a
convenient abstraction for synchronized message passing
between tasks—a necessary feature in the producer-consumer
models we have chosen. Semaphores [8], both binary and
counting, are also used to wait for and signal various events
(typically, the completion of a message).

As for the CAN infrastructure, we have incidentally
performed much of the necessary driver implementation as
part of a general CMR firmware bring-up effort. However,
while most of the vehicle’s nodes are concerned with sending
and receiving periodic messages, we are taking a more generic
approach to CAN. Thus, we have added general-purpose
hooks for handling any type of received CAN message, and
have implemented a CAN transmission interface that supports
both periodic and aperiodic use cases. Furthermore, as shown
in our firmware block diagram in Fig. 1, our implementation
adds several new layers above the CAN driver for processing
messages.

The CAN codec is responsible for losslessly compressing
and decompressing CAN messages for better wireless
bandwidth utilization. It operates on blocks of CAN messages
for increased compression ratio. The block size is maximized
such that latency is still considered acceptable and the XBee
Wi-Fi module’s 1400 byte maximum transmission unit (MTU)
[2] is not exceeded in order to minimize packet header
overhead. The codec initially applied an augmented run-length
(ARL) algorithm that selectively encodes run-lengths greater
than a threshold. A run-length encoding is three bytes: a “start
command” that indicates the start of the encoding, a run-
length, and the running byte. “Transposed” start and escape
command bytes are also present in case these byte values
appear in the uncompressed block.

The codec was updated to apply an embedded
implementation of the Lempel–Ziv–Storer–Szymanski (LZSS)

[9] dictionary encoding algorithm. The combined ARL and
LZSS strategy achieves a compression ratio of 0.15 to 0.22,
depending on the size and contents of the uncompressed
message block. Fig. 4a shows statistics for several codec
algorithms using a CAN message trace from CMR’s 2018
vehicle. The number of CAN messages per block may be
increased above the Wi-Fi MTU for improved compression
ratios. Fig. 4b shows the ARL+LZSS and LZSS compression
ratios at various block sizes. LZSS is slightly more efficient
than ARL+LZSS for all block sizes, as it implicitly run length
encodes. The ARL compression ratio is omitted, as it is
independent of block size and does not perform well compared
to the other techniques.

TABLE II. CODEC ALGORITHM COMPARISON

Mean Std. Dev. Max. Compression Ratio
ARL

170 msg/block
1357 11.5 1387 0.895

LZSS
800 msg/block

1144 83.4 1373 0.1699

ARL+LZSS
800 msg/block

1147 88.4 1382 0.1702

Fig. 4. Statistics of several compression algorithms. The number of CAN
messages per block is chosen such that the maximum compressed block size is
less than the Wi-Fi 1400-byte MTU.

Fig. 5. Comparison of compression ratios for ARL+LZSS and LZSS.

The firewall is responsible for ensuring the safety and
security of the CAN bus attached to the TOM. The firewall
supports an implicit blacklist, a temporal blacklist, and an
explicit blacklist. The firewall monitors the local CAN bus and
populates the implicit blacklist with CAN IDs. It blocks all
remote CAN messages that have an ID on this blacklist, as
duplicate IDs across the bridge imply either a spoofing attempt
or an unsafe configuration. The firewall may be configured
with a temporal blacklist to block all remote CAN messages
for a brief period to ensure it has fully populated the implicit
blacklist; this functionality is particularly useful when all CAN
messages are periodic. The firewall may also be configured
with an explicit blacklist that blocks specified local CAN
messages from bridging to the remote CAN bus.

The configuration system manages persistent settings
stored in the TOM MCU’s on-chip flash memory. This system
is general-purpose, allowing the lower-level settings and flash
management drivers to be used on other CMR boards that

18-500 Team AA Design Review Report: Mar. 4, 2019 6/9

require persistent settings. However, whereas most boards
manage their settings solely through their CAN interfaces, the
TOM also uses a UART link for this purpose. Through this
link, the Ground Control software configures and monitors the
TOM. Configurable settings include the firewall blacklist, the
codec block size, the codec algorithm, the code algorithm-
specific configuration (such as LZSS’s number of lookahead
bits), the radio communication mode, the radio-specific
configuration (such as Wi-Fi MCS index). The system also has
provisions for extension by future revisions.

VI. TESTING

In order to measure our telemetry system’s fulfillment of
the previously specified requirements, we indicate the
following metrics and methods of validation.

A. Metrics

The following table presents our most important metrics
and targets.

TABLE III. SUCCESS METRICS

Metric Target
CAN data rate 500 kbps, matching vehicle CAN bus

RF data rate @ 10 m 1.00 Mbps, full CAN bus
RF data rate @ 1500 m 0.05 Mbps, downsampled

Message spoofing robustness Messages never sent with same-side IDs
Power consumption < 5 W, passively cooled

Package size < 10 in3, fits in GLV trunk
Board and BOM costs < $250 per module

Fig. 6. Important success metrics and our targets for the system.

These metrics have been derived from our requirements
and anticipated use cases.

B. Validation

To verify that the TOM’s CAN interface is compatible with
a 500 kbps CAN bus, we will use CAN interfacing software to
send and receive messages at that baud rate. To verify that the
TOM can stream the entire 500 kbps bus, we will fully load
each side of the bus using this aforementioned software, and
verify that messages are received with no or minimal dropped
messages on the other side.

Range testing includes both proof-of-concept tests with
XBees attached to development setups (primarily laptop PCs
with USB-UART adapters), as well as approximate recreations
of the competition environment with the system’s hardware
mounted on the race car at track testing. Some initial testing
has already been performed with a preliminary set of antennas;
several locations have already been identified for further
validation.

To characterize our RF data rate, we will make use of the
fact that the SPI-to-radio link has a much higher bandwidth
than each wireless link, and flood the SPI bus with outgoing
messages while monitoring packet loss on the other side. We
will sweep our packet size to determine the optimal packet
size for each of {50, 1500} meter ranges.

To verify the TOM’s robustness to spoofed messages, we
will send a variety of messages conflicting with those
previously sent on the other side of the wireless link and
ensure that said messages are filtered by the TOM.

To test our power consumption, we will measure the
current over an on-board shunt resistor at a known input
voltage, and attempt to fully load the transmit bandwidth of
both radios. We will assume that this power measurement
encapsulates the TOM’s worst-case power consumption, and,
provided nothing is erroneous, we will not enforce or even
monitor power consumption in software. In the even that this
test exceeds our power budget, faulty circuitry is most likely
the problem, so the solution will probably be to do hardware
debugging and not software enforcement.

Verifying our package size and project cost metrics will be
trivial; the TOM will be test-fitted into the trunk, and the final
budget will be calculated for the last revision.

VII. PROJECT MANAGEMENT

A. Schedule

Appendix B contains a Gantt chart outlining our project’s
timeline. The top-level tasks are TOM PCB creation, firmware
implementation, and Ground Control development. Each of
these tasks are split into modules corresponding to logical
components in the system architecture. Our development has
largely proceeded according to this schedule; we hope to
remain on track with our implementation and testing cycles for
the upcoming PCB revision.

B. Responsibilities
Cameron Mackintosh is in charge of writing the

communication protocol firmware, i.e. packetization and
transcoding of CAN messages. Zachary Pomper is in charge of
PCB design and layout, as well as electrical verification.
Stanley Zhang is in charge of writing firmware interfaces for
communication between the MCU and the radios, between the
MCU and user-facing UART, and for communicating between
the MCU and each side of the CAN bus. We assume joint
responsibility for RF design (namely antenna selection and
range testing), integration, and manufacturing.

C. Budget

The following are allocations out of our $600 project
budget. Some of these allocations have already been
purchased from this budget, some have been funded
externally, and some were given to us free of charge. In other
words, the following table estimates the combined value of
components used by our project upon completion.

TABLE III. SUCCESS METRICS

Item Cost (USD)
Radio boards (x4) 44.00
MCU boards (x4) 44.00
Omni-directional antenna 20.00
SMD components 200.00
Directional antenna 50.00
Misc. RF components 10.00
ZigBee RF modules (x4) 60.00
Wi-Fi RF modules (x4) 60.00

Total 488.00

Fig. 7. Important success metrics and our targets for the system.

Board manufacturing cost quoted from PCBway, where
there are two revisions of each board being budgeted. Each of
these purchases comes with four free bonus PCB copies. SMD

18-500 Team AA Design Review Report: Mar. 4, 2019 7/9

component costs are aggregated across four module instances,
allowing us to make two modules within each revision (as the
extra boards are themselves free). While component BOMs
may be transferable by salvaging a revision’s parts, we assume
that this transfer would incur an infeasible time overhead. RF
modules, on the other hand, do not have to be soldered to the
PCB, and are thus accounted for across only one revision.

VIII. RISK MANAGEMENT

In order to mitigate risks of not meeting the success targets
we have outlined, we consider several fallback strategies for
each metric. In case the CAN message rate exceeds our radio
link’s supported bandwidth, we expect that downsampling
periodic, lower-priority messages will permit a meaningful,
gracefully-degraded approximation of the full CAN bus
traffic. As for range issues, the ZigBee mode allows us to
provide this downsampled stream at a sufficiently long line-of-
sight range.

The firewall is only as secure as the interfaces present to
configure it; thus, we do not allow any configuration over the
wireless link, and only trust the wired UART and CAN
interfaces. Power diagnostics, other statistics, and debugging
aids are also available over the UART link and in a
configurable CAN heartbeat, providing ample support for
validating correct operation. Finally, the stacked board layout
was specifically chosen to fit in the vehicle’s low-voltage
trunk; their small nature and two-layer layout also helps in
reducing our hardware costs.

IX. RELATED WORK

CAN bus streaming solutions are not abundant on the open
market, but they do exist. Among the most relevant for FSAE
teams that we were able to find would be the PEAK CAN to
WLAN Gateway [10], the ESD CAN-CBX-AIR/2 [11], and
HRI’s Vehicle Safety Controller (VSC) [12]. PEAK’s solution
houses an internal antenna with unspecified output power,
making it unsuited for our range specification. ESD’s CAN-
CBX-AIR/2 has an external antenna connector, but has a
transmit power of 0 dBm, limiting its maximum range. HRI’s
VSC was the most promising option on the market we found,
meeting our range and bandwidth requirements; it is also
IP66-rated, obviating the need for an enclosure on the car. A
talk with HRI revealed that their CAN bridging solution runs
at a price point of $1250 per module (no sales information is
on their website); this puts it out of contention for CMR’s
purposes, but the device’s features are still quite noteworthy.
Additionally, a closed-source solution like any of the above is
probably unsuited to the FSAE space, where limited product
runs being met with ends-of-life can leave teams floundering.

X. SUMMARY

The TOM platform is designed to fill a niche for FSAE
teams using CAN bus who would like a wireless interface into
their car while testing and during competitions. The platform
iterates on functionality provided by the existing telemetry
system in use by CMR, and adds functionality by way of CAN
bridging at higher bandwidths. Its design is realized by way of
custom hardware and firmware implementations which
interface with an STM32F4 MCU. Users can make use of the
TOM in one of two configurations: either as a CAN bridge
between two TOM’s, or between a single TOM and a Ground

Control station. The former allows for system integration out
of the hardware loop of a CAN bus, and the latter allows for
users to view and modify the state of a CAN bus remotely.

The application package running on the Ground Control
station can greatly enhance user experience. While we likely
will be contributing to this package in anticipation of the 2019
FSAE season, and it is an important part of our system’s
overall design, the software itself is not in scope for our
project. The addition of a Web-based view into data streaming
over the TOM could prove useful and interesting to team
members present at races.

Range limitations over Wi-Fi are largely a product of our
choice of radio. These limitations could be increased
significantly through the usage of RF amplifiers, either
mounted in-line or on the transceiver board. We decided
against the former on account of unit costs, and against the
later on account of our collective inexperience with RF PCB
design practices.

ACKNOWLEDGMENT

Thanks to all Carnegie Mellon Racing team members who
have supported this project, not only throughout the course of
this semester, but also since its inception during the 2015
season. Our appreciation goes especially to Sam Westenberg,
Deepak Pallerla, Bolaji Bankole, and Ben Yates for their
invaluable feedback, support, and mentorship.

REFERENCES

[1] STMicroelectronics, N.V. “STM32F413xG STM32F413xH.” Internet:
https://www.st.com/resource/en/datasheet/stm32f413rg.pdf, [Feb. 1,
2019].

[2] Digi International. “XBee Wi-Fi RF Module User Guide.” Internet:
https://www.digi.com/resources/documentation/digidocs/PDFs/9000218
0.pdf, [Feb. 5, 2019].

[3] Digi International. “XBee-PRO 900HP/XSC RF Modules.” Internet:
https://www.digi.com/resources/documentation/digidocs/pdfs/90002173.
pdf, [Feb. 5, 2019].

[4] ZyTrax, Inc. “Tech Stuff – Wireless Overview.” Internet:
http://www.zytrax.com/tech/wireless/intro.htm, Oct. 23, 2015 [Feb. 5,
2019].

[5] “Free Space Path Loss | Details & Calculator.” Internet:
https://www.electronics-notes.com/articles/antennas-propagation/propag
ation-overview/free-space-path-loss.php, [Feb. 5, 2019].

[6] “ANT-2WHIP9-SMARP RF Solutions.” Internet:
https://www.digikey.com/product-detail/en/rf-solutions/ANT-2WHIP9-
SMARP/ANT-2WHIP9-SMARP-ND/9555705, [Feb. 5, 2019].

[7] “MAF94300 Laird Technologies IAS.” Internet:
https://www.digikey.com/product-detail/en/laird-technologies-ias/MAF9
4300/994-1125-ND/3511618, [Feb. 20, 2019].

[8] Amazon Web Services, Inc. “The FreeRTOS™ Reference Manual.”
Internet:
https://freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.
0.0.pdf [Feb. 1, 2019].

[9] Atomic Object. “heatshrink: An Embedded Data Compression Library.”
Internet: https://spin.atomicobject.com/2013/03/14/heatshrink-
embedded-data-compression/, [Mar. 14, 2013]

[10] PEAK-System Technik GmbH, “PCAN-Wireless Gateway.” Internet:
https://www.peak-system.com/PCAN-Wireless-Gateway.331.0.html,
[Mar. 2, 2019].

[11] esd electronics. “CAN-CBX-AIR/2 | Wireless CAN Bridge with USB
Interface.” Internet: https://esd.eu/en/products/can-cbx-air2, [Mar. 2,
2019].

[12] Humanistic Robotics, Inc. “Vehicle Safety Controller.” Internet:
http://humanisticrobotics.com/vehicle-safety-controller/, [Feb. 17, 2019].

https://esd.eu/en/products/can-cbx-air2
https://www.peak-system.com/PCAN-Wireless-Gateway.331.0.html
https://spin.atomicobject.com/2013/03/14/heatshrink-embedded-data-compression/
https://spin.atomicobject.com/2013/03/14/heatshrink-embedded-data-compression/
https://freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.digikey.com/product-detail/en/laird-technologies-ias/MAF94300/994-1125-ND/3511618
https://www.digikey.com/product-detail/en/laird-technologies-ias/MAF94300/994-1125-ND/3511618
https://www.digikey.com/product-detail/en/rf-solutions/ANT-2WHIP9-SMARP/ANT-2WHIP9-SMARP-ND/9555705
https://www.digikey.com/product-detail/en/rf-solutions/ANT-2WHIP9-SMARP/ANT-2WHIP9-SMARP-ND/9555705
https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/free-space-path-loss.php
https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/free-space-path-loss.php
http://www.zytrax.com/tech/wireless/intro.htm
https://www.digi.com/resources/documentation/digidocs/pdfs/90002173.pdf
https://www.digi.com/resources/documentation/digidocs/pdfs/90002173.pdf
https://www.digi.com/resources/documentation/digidocs/PDFs/90002180.pdf
https://www.digi.com/resources/documentation/digidocs/PDFs/90002180.pdf
https://www.st.com/resource/en/datasheet/stm32f413rg.pdf
http://humanisticrobotics.com/vehicle-safety-controller/

18-500 Team AA Design Review Report: Mar. 4, 2019 8/9

Appendix A: System Block Diagram

18-500 Team AA Design Review Report: Mar. 4, 2019 9/9

Appendix B: Gantt Chart

https://prod.teamgantt.com/gantt/schedule/?ids=1461709&public_keys=7bto8Suui8dg&zoom=w110&font_size=&estimated_hours=0&assigned_resources=0&percent_complete=0&documents=0&comments=0&col_width=255&hide_header_tabs=0&menu_view=0&resource_filter=1&name_in_bar=0&name_next_to_bar=0&resource_names=1#user=&company=&custom=&date_filter=&hide_completed=false&color_filter=

	I. Introduction
	II. Requirements
	III. Solution Approach
	A. System Components
	B. Range Estimation
	C. Firmware Features

	IV. Architecture
	V. Implementation
	A. Hardware
	B. Firmware

	VI. Testing
	A. Metrics
	B. Validation

	VII. Project Management
	A. Schedule
	B. Responsibilities
	C. Budget

	VIII. Risk Management
	IX. Related Work
	X. Summary
	Acknowledgment
	References

