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Abstract—In  the  process  of  building,  testing,  and
eventually competing, FSAE teams may benefit from the
ability to wirelessly relay signals from their race cars to
ground crews. In particular, commercial  CAN streaming
solutions  are  often  unsatisfactory  for  FSAE  teams  with
niche  power,  form  factor,  and  range  requirements.  We
present  our  proposed  design  for  an  embedded  system
accomplishing this task. Further, we outline the relevant
motivating  factors,  design  considerations,  and  system
constraints.
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I. INTRODUCTION

Carnegie  Mellon  Racing  (CMR)  is  Carnegie  Mellon
University’s chapter of the Society of Automotive Engineers
(SAE).  Since  the  early  2000s,  the  team  has  participated
annually  in  the  Formula  SAE  (FSAE)  student  design
competition.  In  2014,  the  team  began  competing  in  FSAE
Electric events across North America; each year-long season
entails the design, manufacture, and testing of a new Formula-
style electric race car.

To aid each car’s development  cycle,  the team has long
desired a vehicle telemetry system, through which data could
be  captured  from  various  on-board  sensors  and  modules.
During the 2018 season,  a  prototype  system was created:  a
“telemetry  module”  connected  to  the  car’s  Controller  Area
Network (CAN) bus,  with an Atmel AVR32 microcontroller
unit (MCU) and Digi XBee ZigBee radio to communicate with
an off-car laptop application (the “base station”). This system
unidirectionally relayed internal car state from the CAN bus to
the base station.

The ZigBee radio permitted a range of at least 2 km line-
of-sight, sufficient for receiving live data during track testing.
However,  the  radio’s  maximum  effective  bandwidth  was
approximately 80 kbps—insufficient for directly streaming the
car’s CAN bus. Thus, a custom delta-encoding scheme was
designed  to  exploit  redundancy  in  the  car’s  CAN  message
fields; often, these fields represent sensor values whose rates
of change were far slower than the message’s actual frequency.
Unfortunately,  the  encoding  scheme’s  tight  coupling  to  the
car’s  message  format  led  to  complexity  when  adding  or
modifying messages. Furthermore, as the team transitioned in
2019 to a more advanced STMicroelectronics STM32-based
MCU,  the  need  for  bidirectional  communication  and  more
complex base station-to-vehicle interaction became apparent.

CMR’s telemetry system goals now encompass all wireless
operations  with  the  race  car.  General-purpose  wireless
connectivity  would  not  only  provide  the  previous  system’s
real-time data acquisition features, but also allow for remote
configuration management and over-the-air firmware updates.

Thus, our project aims to redesign the telemetry system as a
wireless CAN bridge, linking the car’s CAN bus with a remote
one. By adhering to the industry-standard CAN protocol, we
ensure compatibility with commercial tools and data analysis
applications; new client applications can also be easily created
for  the  reconfiguration  and  firmware  features.  Through  this
novel  wireless  development  platform,  we  hope  to  provide
CMR  with  new  research  and  development  opportunities,
ensuring  the  team  remains  on  the  cutting  edge  of  racing
technology.

II. REQUIREMENTS

The  telemetry  system  shall  implement  the  following
required functionality:

 The system will wirelessly relay CAN messages.

 The system will interface with the car’s grounded low
voltage (GLV) system. This entails acceptance of 24 V
input, capabilities for transceiving on a 500 kbps CAN
bus, and power and space claims of 5 W and 10 in3,
respectively.

 The  system  will  support  persistent  settings  and  a
separate, wired interface for configuring these settings.

 The  system  will  function  at  a  maximum  effective
wireless bandwidth of 50 kbps at ranges under 1500
m, and at a maximum effective wireless bandwidth of
1 Mbps while ranging under 10 m.

The  telemetry  system  shall  not  contravene  any  of  the
following stipulations:

 The  system  must  be  resilient  to  man-in-the  middle
attacks.  This  implies  that  the  wireless  data  stream’s
contents  cannot  be  trusted  blindly,  and  incoming
message identifiers must be screened against  known
lists of valid identifiers.

 While dropped packets are expected when modules go
offline  or  ranges  are  exceeded,  communication
failures must not compromise system performance or
safety.

 The  system  must  not  violate  any  FSAE  Electric
competition rules.
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III. SOLUTION APPROACH

A. System Components
The  telemetry  system  is  composed  of  at  least  one

“Telemetry  Operations  Module”  (TOM)  and  optionally  one
“Ground Control” laptop. The TOM is an embedded system
comprised  of  a  custom  printed  circuit  board  (PCB)  stack
physically connected to each CAN bus and is responsible for
bridging them together over a wireless link. The TOM uses a
custom PCB because it needs to be mechanically robust; form
factor requirements rule out commercial-off-the-shelf (COTS)
products.  The  Ground  Control  is  a  PC  with  software  for
viewing CAN data  and vehicle  state;  it  also supports  TOM
configuration via serial (UART) and CAN links.

The TOM’s primary PCB houses power filtering, an MCU,
a CAN transceiver, a JTAG programmer, and a UART header.
A secondary  board  breaks  out  the  two  radio  transceivers,
which communicate with the MCU via two Serial Peripheral
Interface (SPI) links. This stacked PCB configuration reduces
footprint  in  the  car’s  trunk and  manufacturing cost/time for
each revision.

The  TOM  uses  an  STMicroelectronics  STM32F413RG
microcontroller [1]. It has all of the required communication
peripherals, provides a well-documented hardware abstraction
layer (HAL), and is the team’s chosen MCU for this and future
seasons. Via two SPI links, the TOM’s MCU communicates
with  two  radio  transceivers:  a  high-bandwidth,  short-range
Digi XBee S6B Wi-Fi module [2], as well as a low-bandwidth,
long-range  XBee-PRO  S3B  ZigBee  module  [3].  These
modules were chosen as they theoretically fulfill our distance
and bandwidth requirements.

B. Range Estimation

The XBee ZigBee module specifies a maximum 6.5 km
range  when  operating  at  200  kbps  with  a  2.1  dBi  dipole
antenna  [7].  However,  the  XBee  Wi-Fi  module  does  not
specify  a  maximum  range.  Thus,  in  order  to  estimate  our
system’s feasibility, we compute the transmit power budget in
(1),  where the TP is transmitter  power in decibel-milliwatts
and TAG is transmit  antenna gain in  isotropic decibels.  We
compute the receive power budget in (2) where RS is receive
sensitivity in decibel-milliwatts and RAG is receive antenna
gain in isotropic decibels. We consider the free space path loss
(FSPL) in (3), where f is the frequency in megahertz and d is
distance in kilometers. The power margin (PM) is defined in
(4), and represents the total losses and gains in the system. The
system  operating  margin  (SOM)  in  (5)  is  an  error  margin.
These equations and terms are discussed further in [4] and [5].

TPB=TP+TAG (1)
RPB=|RS|+RAG (2)

FSPL=20 log10( f )+20 log10(d )+32.44 (3)
PM =TPB+RPB−FSPL (4)

SOM = PM
TPB

(5)

By solving (4) and (5) for FSPL and (3) for d, we arrive at
a  maximum  range  estimation  in  terms  of  transmit/receive
power budgets (TPB and RPB) and operating margin (SOM):

FSPL=TPB(1−SOM )+RPL (6)
d=10( FSPL−20 log10( f )−32.44)/20 (7)

Fig. 1 summarizes our preliminary Wi-Fi range estimates.
We considered a 9 dBi whip antenna [6], and a 3 dBi multi-
band blade antenna [7]; these antennas are electromagnetically
compatible with the Wi-Fi XBee and had the highest gain for
their  price  range.  The  multi-band  antenna  is  particularly
appealing  due  to  its  low  profile  and  900  MHz  (ZigBee)
capability, reducing vehicle mounting complexity.

TABLE I. WI-FI RANGE ESTIMATES

Data Rate
(Mbps)

Ant. Gain
(dBi)

Tx. Pwr.
(dBm)

Rx. Sens.
(dBm)

Distance
(km)

6.5 9 15.0 -91 6.88
6.5 3 15.0 -91 2.13

65.0 9 8.5 -71 0.41
65.0 3 8.5 -71 0.13

Fig. 1. Ideal range estimates for 2.4 GHz Wi-Fi at the lowest and highest 
802.11n data rates supported by the Wi-Fi XBee [6]. It is assumed that the 
transmitter and receiver use symmetrical antenna systems.

C. Firmware Features
In the Wi-Fi communication mode, the TOM supports full

CAN bridging and higher-bandwidth add-on applications, such
as  car  firmware  flashing.  However,  these  extensions  are
outside of our project’s scope. On the other hand, the ZigBee
mode supports filtered CAN bridging, wherein a subset of the
full message stream is sampled for transmission. The Ground
Control is responsible for activating the desired radio mode in
the TOM’s configuration. The race car will typically use Wi-Fi
mode, with ZigBee mode manually selected as a fallback in
the event of Wi-Fi range issues.

The TOM firmware uses the FreeRTOS kernel  [8],  as  it
ensures  our  timing  requirements  are  met  and  is  a  well-
documented  industry  and  CMR  standard.  The  firmware  is
primarily responsible for transcoding data between the CAN
transceiver and the selected XBee transceiver. It uses a CAN
firewall to ensure relayed messages are not sent to blacklisted
local devices. The firmware further uses a custom CAN codec
to better utilize the available transceiver bandwidth.
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IV. ARCHITECTURE

As previously  described,  the  TOM functions  as  a  CAN
bridge.  A full  bridging  setup  relays  CAN  messages  either
between  two  connected  TOMs,  or  between  a  TOM  and  a
Ground Control laptop. Each TOM receives CAN messages,
encodes them via a custom compression scheme,  and sends
encoded packets over SPI for wireless transmission by either
the ZigBee or the Wi-Fi radio. Through a UART port, a user
can  configure  the  TOM’s  settings  and  access  debugging
facilities.  These  features  are  implemented  by  firmware
modules flashed onto the on-board MCU, including peripheral
interfaces,  message  codecs,  and  application  programming
interfaces  (APIs)  for  communicating with either  of  the  two
radios. (See Appendix A for a system block diagram.)

Our firmware architecture (Fig. 2) makes use of message
queues,  interrupts,  and  periodic  tasks—all  facilitated  by
FreeRTOS  [8].  CAN  messages  are  received  into  a  small,
memory-mapped  hardware  queue;  the  CAN  receive  task,
polling  at  the  maximum frequency of  1  kHz,  enqueues  the
messages into a larger encoding queue. The message encoding
task  uses  the  codec  to  format  as  many  CAN  messages  as
possible into packets placed on the SPI transmit queue. (The
frequency of this task, 50 Hz, is governed by the worst-case
latency on the receiving side.) From there, an XBee transceive
task sends the packets to the radio module via SPI.

However,  as soon as the XBee transceive task begins to
send to the radio, it must also receive data as part of the full-
duplex master-slave SPI protocol. While the receiving part of
the task could be periodic, the transceive task also needs to

activate  when  a  radio  has  pending  received  data  (i.e.  in
response  to  radio  interrupts).  Thus,  the  transceive  task
aperiodically  places  received  packets  in  a  decoding  queue,
from which CAN messages are extracted using the codec by
the decoding task.  This  task runs at  no more than 200 Hz,
where this frequency is  determined by the tolerable latency
between a message arriving on the radio and its transmission
onto the CAN bus. Finally, the CAN transmit task, running at
the maximum frequency of 1 kHz, performs this transmission
of decoded CAN messages.

CAN’s  arbitration  protocol  cannot  resolve  two  nodes
transmitting  a  message  with  the  same  identifier  (ID).  By
accumulating  a  list  of  received  IDs,  a  firewall  prevents
transmissions with IDs known to originate from other nodes
on  the  bus.  This  provides  security  against  an  attacker
requesting  transmissions  with  conflicting  IDs,  which  could
cause  a  safety-critical  message  to  miss  its  deadline.  This
firewall,  like the other  settings available,  can be configured
through UART; this serial link also allows the TOM to send
out  debugging  information  while  still  interfacing  with  the
CAN bus.

Fig. 2. Microcontroller firmware block diagram.
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V. IMPLEMENTATION

We  divide  our  implementation  into  hardware,  including
circuit  design,  PCB  layout,  and  electrical  verification,  and
firmware, including programming the C code that will run on
the MCU,  verification of  said  code,  and  system integration
with CAN networks.

A. Hardware
Our implementation is composed of two hardware systems,

namely,  a  primary  board  which  houses  the  MCU,  and  a
secondary board with the two radios. The MCU board makes
use of an in-house standard component package to give the
MCU  3.3  V power  from  a  24  V input,  and  to  support  an
MCP2561 CAN transceiver. It adds MCU connections for two
SPI buses,  three UART buses,  and of course the CAN bus,
along  with  the  relevant  off-board  connectors  for  those
connections.  The radio breakout  board comprises  the radios
themselves, a connector to the MCU board, and user interface
switches and LEDs. Each board is connected over a  32-pin
ribbon  cable.  This  cable  has  pins  for  two  SPI  and  UART
buses,  several  pins  dedicated  to  power  rails,  pins  for  radio
interfacing  like  the  SPI  message  receive  interrupt  line,  and
some floating pins to be wired if the need arises.

The  boards  themselves  are  realized  with  custom  PCB
layouts. They use two power layers and no signal layers to cut
costs  at  the  expense  of  signal  integrity.  This  loss  in  signal
integrity is difficult to quantify within our production budget
and timeframe, but has been demonstrated to be acceptable via
the function of revision 0 of the MCU board, which is also
routed  on  two  layers.  Moreover,  only  a  select  few  of  the
components  on  either  board  implement  functionality  highly
sensitive  to  signal  integrity  loss,  such  as  analog  signals  or
high-speed  traces.  To  reduce  impedance,  copper  pours  are
used  in  place  of  power  planes  when necessary,  namely  for
higher current paths.

In terms of assembly, the radio board stacks on top of the
MCU  board  via  plastic  spacers  between  aligned  mounting
holes.  The  radio  board  uses  on-radio  RP-SMA RF  output
ports, to be wired either directly or via coaxial cable to a high-
gain antenna. The whole assembly will mount to the base of a
waterproof box not supplied by our project, given in the use
case of CMR’s 2019 electric vehicle.

Fig. 3. From top to bottom: primary MCU board layout; secondary radio transceiver board; 3D renders of the board layouts.
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B. Firmware

As previously  discussed  in  our  system architecture,  our
firmware’s main purpose is to interface between the CAN and
XBee transceivers. Thus, we have designed and implemented
a  driver  and  supporting  libraries  for  managing  SPI-based
XBee  communications.  The  most  challenging  aspect  of
designing this driver  was the full-duplex nature of  SPI:  the
XBee  (i.e.,  the  SPI  slave)  is  permitted  to  transmit  data
whenever  the  MCU  (i.e.,  the  SPI  master)  has  asserted  the
XBee’s  slave-select  line  and  is  driving  the  clock.  This
asynchrony  is  necessary,  for  example,  when  the  XBee  has
received a radio packet and wishes to present it to the MCU.

However, because of SPI’s master-slave architecture, slave
devices cannot directly that they have data pending for receive
by the MCU. To work around this, the XBees output a “SPI
attention” signal [2][3] that is asserted under such conditions.
We use this signal to trigger an interrupt on the MCU, which
proceeds  to  handle  it  by  waking  the  XBee  transceive  task
when  necessary.  Notably,  this  task  must  handle  both
communication  directions  to  be  correctly  full-duplex.  All
transmitted packets must be accompanied by an equally-sized
receive buffer; otherwise, a frame arriving in the middle of a
transmission would be dropped—significantly tarnishing our
link’s robustness.

Synchronization issues arise due to the arbitrary timing of
both transmitted and received messages. FreeRTOS queues [8]
are  used  throughout  our  implementation,  as  they  are  a
convenient  abstraction  for  synchronized  message  passing
between tasks—a necessary feature in the producer-consumer
models  we  have  chosen.  Semaphores  [8],  both  binary  and
counting, are also used to wait for and signal various events
(typically, the completion of a message).

As  for  the  CAN  infrastructure,  we  have  incidentally
performed  much  of  the  necessary  driver  implementation  as
part  of  a  general  CMR firmware  bring-up  effort.  However,
while most of the vehicle’s nodes are concerned with sending
and receiving periodic messages, we are taking a more generic
approach  to  CAN.  Thus,  we  have  added  general-purpose
hooks for handling any type of received CAN message, and
have implemented a CAN transmission interface that supports
both periodic and aperiodic use cases. Furthermore, as shown
in our firmware block diagram in Fig. 1, our implementation
adds several new layers above the CAN driver for processing
messages.

The CAN codec is responsible for losslessly compressing
and  decompressing  CAN  messages  for  better  wireless
bandwidth utilization. It operates on blocks of CAN messages
for increased compression ratio. The block size is maximized
such that latency is still considered acceptable and the XBee
Wi-Fi module’s 1400 byte maximum transmission unit (MTU)
[2]  is  not  exceeded  in  order  to  minimize  packet  header
overhead. The codec initially applied an augmented run-length
(ARL) algorithm that selectively encodes run-lengths greater
than a threshold. A run-length encoding is three bytes: a “start
command”  that  indicates  the  start  of  the  encoding,  a  run-
length, and the running byte.  “Transposed” start  and escape
command  bytes  are  also  present  in  case  these  byte  values
appear in the uncompressed block.

The  codec  was  updated  to  apply  an  embedded
implementation of the Lempel–Ziv–Storer–Szymanski (LZSS)

[9]  dictionary  encoding  algorithm.  The  combined  ARL and
LZSS strategy achieves a compression ratio of 0.15 to 0.22,
depending  on  the  size  and  contents  of  the  uncompressed
message  block.  Fig.  4a  shows  statistics  for  several  codec
algorithms  using  a  CAN  message  trace  from CMR’s  2018
vehicle.  The  number  of  CAN  messages  per  block  may  be
increased  above the Wi-Fi  MTU for  improved compression
ratios. Fig. 4b shows the ARL+LZSS and LZSS compression
ratios at various block sizes. LZSS is slightly more efficient
than ARL+LZSS for all block sizes, as it implicitly run length
encodes.  The  ARL  compression  ratio  is  omitted,  as  it  is
independent of block size and does not perform well compared
to the other techniques.

TABLE II. CODEC ALGORITHM COMPARISON

Mean Std. Dev. Max. Compression Ratio
ARL

170 msg/block
1357 11.5 1387 0.895

LZSS
800 msg/block

1144 83.4 1373 0.1699

ARL+LZSS
800 msg/block

1147 88.4 1382 0.1702

Fig. 4. Statistics of several compression algorithms. The number of CAN 
messages per block is chosen such that the maximum compressed block size is
less than the Wi-Fi 1400-byte MTU.

Fig. 5. Comparison of compression ratios for ARL+LZSS and LZSS.

The  firewall  is  responsible  for  ensuring  the  safety  and
security of the CAN bus attached to the TOM. The firewall
supports  an  implicit  blacklist,  a  temporal  blacklist,  and  an
explicit blacklist. The firewall monitors the local CAN bus and
populates  the implicit  blacklist  with CAN IDs.  It  blocks all
remote CAN messages that  have an ID on this blacklist,  as
duplicate IDs across the bridge imply either a spoofing attempt
or an unsafe configuration.  The firewall  may be configured
with a temporal blacklist to block all remote CAN messages
for a brief period to ensure it has fully populated the implicit
blacklist; this functionality is particularly useful when all CAN
messages are periodic.  The firewall  may also be configured
with  an  explicit  blacklist  that  blocks  specified  local  CAN
messages from bridging to the remote CAN bus.

The  configuration  system  manages  persistent  settings
stored in the TOM MCU’s on-chip flash memory. This system
is general-purpose, allowing the lower-level settings and flash
management  drivers  to  be  used  on  other  CMR boards  that
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require  persistent  settings.  However,  whereas  most  boards
manage their settings solely through their CAN interfaces, the
TOM also uses a UART link for this purpose. Through this
link, the Ground Control software configures and monitors the
TOM. Configurable settings include the firewall blacklist, the
codec  block  size,  the  codec  algorithm,  the  code  algorithm-
specific configuration (such as LZSS’s number of lookahead
bits),  the  radio  communication  mode,  the  radio-specific
configuration (such as Wi-Fi MCS index). The system also has
provisions for extension by future revisions.

VI. TESTING

In order to measure our telemetry system’s fulfillment of
the  previously  specified  requirements,  we  indicate  the
following metrics and methods of validation.

A. Metrics

The following table presents our most important  metrics
and targets.

TABLE III. SUCCESS METRICS

Metric Target
CAN data rate 500 kbps, matching vehicle CAN bus

RF data rate @ 10 m 1.00 Mbps, full CAN bus
RF data rate @ 1500 m 0.05 Mbps, downsampled

Message spoofing robustness Messages never sent with same-side IDs
Power consumption < 5 W, passively cooled

Package size < 10 in3, fits in GLV trunk
Board and BOM costs < $250 per module

Fig. 6. Important success metrics and our targets for the system.

These  metrics  have  been derived  from our requirements
and anticipated use cases.

B. Validation

To verify that the TOM’s CAN interface is compatible with
a 500 kbps CAN bus, we will use CAN interfacing software to
send and receive messages at that baud rate. To verify that the
TOM can stream the entire 500 kbps bus, we will fully load
each side of the bus using this aforementioned software, and
verify that messages are received with no or minimal dropped
messages on the other side.

Range  testing  includes  both  proof-of-concept  tests  with
XBees attached to development setups (primarily laptop PCs
with USB-UART adapters), as well as approximate recreations
of the  competition environment  with the  system’s hardware
mounted on the race car at track testing. Some initial testing
has already been performed with a preliminary set of antennas;
several  locations  have  already  been  identified  for  further
validation.

To characterize our RF data rate, we will make use of the
fact  that the SPI-to-radio link has a much higher bandwidth
than each wireless link, and flood the SPI bus with outgoing
messages while monitoring packet loss on the other side. We
will  sweep our packet  size to  determine the optimal  packet
size for each of {50, 1500} meter ranges.

To verify the TOM’s robustness to spoofed messages, we
will  send  a  variety  of  messages  conflicting  with  those
previously  sent  on  the  other  side  of  the  wireless  link  and
ensure that said messages are filtered by the TOM.

To  test  our  power  consumption,  we  will  measure  the
current  over  an  on-board  shunt  resistor  at  a  known  input
voltage, and attempt to fully load the transmit bandwidth of
both  radios.  We  will  assume  that  this  power  measurement
encapsulates the TOM’s worst-case power consumption, and,
provided  nothing is  erroneous,  we will  not  enforce or  even
monitor power consumption in software. In the even that this
test exceeds our power budget, faulty circuitry is most likely
the problem, so the solution will probably be to do hardware
debugging and not software enforcement.

Verifying our package size and project cost metrics will be
trivial; the TOM will be test-fitted into the trunk, and the final
budget will be calculated for the last revision.

VII. PROJECT MANAGEMENT

A. Schedule

Appendix B contains a Gantt chart outlining our project’s
timeline. The top-level tasks are TOM PCB creation, firmware
implementation,  and  Ground  Control  development.  Each  of
these  tasks  are  split  into  modules  corresponding  to  logical
components in the system architecture. Our development has
largely  proceeded  according  to  this  schedule;  we  hope  to
remain on track with our implementation and testing cycles for
the upcoming PCB revision.

B. Responsibilities
Cameron  Mackintosh  is  in  charge  of  writing  the

communication  protocol  firmware,  i.e.  packetization  and
transcoding of CAN messages. Zachary Pomper is in charge of
PCB  design  and  layout,  as  well  as  electrical  verification.
Stanley Zhang is in charge of writing firmware interfaces for
communication between the MCU and the radios, between the
MCU and user-facing UART, and for communicating between
the MCU and each  side of  the  CAN bus.  We assume joint
responsibility  for  RF design  (namely  antenna  selection  and
range testing), integration, and manufacturing.

C. Budget

The  following  are  allocations  out  of  our  $600  project
budget.  Some  of  these  allocations  have  already  been
purchased  from  this  budget,  some  have  been  funded
externally, and some were given to us free of charge. In other
words,  the following table estimates  the combined  value of
components used by our project upon completion.

TABLE III. SUCCESS METRICS

Item Cost (USD)
Radio boards (x4) 44.00
MCU boards (x4) 44.00
Omni-directional antenna 20.00
SMD components 200.00
Directional antenna 50.00
Misc. RF components 10.00
ZigBee RF modules (x4) 60.00
Wi-Fi RF modules (x4) 60.00

Total 488.00

Fig. 7. Important success metrics and our targets for the system.

Board  manufacturing  cost  quoted  from  PCBway,  where
there are two revisions of each board being budgeted. Each of
these purchases comes with four free bonus PCB copies. SMD
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component costs are aggregated across four module instances,
allowing us to make two modules within each revision (as the
extra  boards  are  themselves  free).  While  component  BOMs
may be transferable by salvaging a revision’s parts, we assume
that this transfer would incur an infeasible time overhead. RF
modules, on the other hand, do not have to be soldered to the
PCB, and are thus accounted for across only one revision.

VIII. RISK MANAGEMENT

In order to mitigate risks of not meeting the success targets
we have outlined, we consider several fallback strategies for
each metric. In case the CAN message rate exceeds our radio
link’s  supported  bandwidth,  we  expect  that  downsampling
periodic,  lower-priority  messages  will  permit  a  meaningful,
gracefully-degraded  approximation  of  the  full  CAN  bus
traffic.  As  for  range  issues,  the  ZigBee  mode  allows  us  to
provide this downsampled stream at a sufficiently long line-of-
sight range.

The firewall is only as secure as the interfaces present to
configure it; thus, we do not allow any configuration over the
wireless  link,  and  only  trust  the  wired  UART  and  CAN
interfaces. Power diagnostics, other statistics, and debugging
aids  are  also  available  over  the  UART  link  and  in  a
configurable  CAN  heartbeat,  providing  ample  support  for
validating correct operation. Finally, the stacked board layout
was  specifically  chosen  to  fit  in  the  vehicle’s  low-voltage
trunk;  their  small  nature and  two-layer  layout  also helps  in
reducing our hardware costs.

IX. RELATED WORK

CAN bus streaming solutions are not abundant on the open
market, but they do exist. Among the most relevant for FSAE
teams that we were able to find would be the PEAK CAN to
WLAN Gateway [10],  the ESD CAN-CBX-AIR/2 [11],  and
HRI’s Vehicle Safety Controller (VSC) [12]. PEAK’s solution
houses  an  internal  antenna  with  unspecified  output  power,
making it unsuited for our range specification. ESD’s CAN-
CBX-AIR/2  has  an  external  antenna  connector,  but  has  a
transmit power of 0 dBm, limiting its maximum range. HRI’s
VSC was the most promising option on the market we found,
meeting  our  range  and  bandwidth  requirements;  it  is  also
IP66-rated, obviating the need for an enclosure on the car. A
talk with HRI revealed that their CAN bridging solution runs
at a price point of $1250 per module (no sales information is
on their  website);  this  puts  it  out  of  contention  for  CMR’s
purposes, but the device’s features are still quite noteworthy.
Additionally, a closed-source solution like any of the above is
probably unsuited to the FSAE space, where limited product
runs being met with ends-of-life can leave teams floundering.

X. SUMMARY

The TOM platform is designed to fill  a niche for FSAE
teams using CAN bus who would like a wireless interface into
their car while testing and during competitions. The platform
iterates  on  functionality  provided  by  the  existing  telemetry
system in use by CMR, and adds functionality by way of CAN
bridging at higher bandwidths. Its design is realized by way of
custom  hardware  and  firmware  implementations  which
interface with an STM32F4 MCU. Users can make use of the
TOM in one of two configurations:  either as a CAN bridge
between two TOM’s, or between a single TOM and a Ground

Control station. The former allows for system integration out
of the hardware loop of a CAN bus, and the latter allows for
users to view and modify the state of a CAN bus remotely.

The application package running on the Ground Control
station can greatly enhance user experience. While we likely
will be contributing to this package in anticipation of the 2019
FSAE  season,  and  it  is  an  important  part  of  our  system’s
overall  design,  the  software  itself  is  not  in  scope  for  our
project. The addition of a Web-based view into data streaming
over  the  TOM  could  prove  useful  and  interesting  to  team
members present at races. 

Range limitations over Wi-Fi are largely a product of our
choice  of  radio.  These  limitations  could  be  increased
significantly  through  the  usage  of  RF  amplifiers,  either
mounted  in-line  or  on  the  transceiver  board.  We  decided
against the former on account of unit costs, and against  the
later on account of our collective inexperience with RF PCB
design practices.
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Appendix A: System Block Diagram
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Appendix B: Gantt Chart

https://prod.teamgantt.com/gantt/schedule/?ids=1461709&public_keys=7bto8Suui8dg&zoom=w110&font_size=&estimated_hours=0&assigned_resources=0&percent_complete=0&documents=0&comments=0&col_width=255&hide_header_tabs=0&menu_view=0&resource_filter=1&name_in_bar=0&name_next_to_bar=0&resource_names=1#user=&company=&custom=&date_filter=&hide_completed=false&color_filter=
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