
1
18-500 Final Project Report: 05/07/2019

ARioKart

Authors: Sourav Panda, Ranganath Selagamsetty, David Yang

Electrical and Computer Engineering, Carnegie Mellon University

Abstract​—An augmented reality racing game with networked
remote controlled vehicles. The basic concept of the game is
similar to Mario Kart, with a slalom-style user-specified race
track and various virtual items and power-ups to augment the
physical car race. The system consists of cars, gates, and
computers that run the game software and render the AR display
and interface. Compared to similar existing AR games, this game
would provide a more engaging AR experience with meaningful
interactions with the environment.

Index Terms​—Augmented Reality, Computer Game,

Computer Vision, Infrared Detection, Object Detection, Remote
Control

I. INTRODUCTION
A NEW FRONTIER in human-computer interaction, augmented
reality is a technology that uses an interactive display of the
physical environment to enhance the user's real-world
experience​[1]​. Augmented reality has the potential to transform
everyday scenery into an information rich environment for
new immersive gameplay experiences. Modern augmented
reality games fail to reach the potential of the medium as
many of them confine the user experience to static interactions
with the background. This often amounts to traditional games
simply being overlaid onto a video stream without taking
advantage of the visible features of the current environment.

The solution in this paper, ARioKart, aims to improve upon
existing AR games by unifying physical components that
interact with the surroundings and game software that
augments the display. ARioKart is a slalom-style racing game
with physical cars and gates and virtual items. Users interact
with game software on their laptops to operate remote
controlled cars and see an augmented video stream from the
cars’ perspective. Though related products, such as drones and
ordinary RC cars, exist, they have many shortcomings,
including their cost and battery life, and lack the AR aspect.
ARioKart provides all the fun of traditional RC cars with the
added immersion of the first-person Augmented Reality
component.

II. DESIGN REQUIREMENTS
In order to deliver a high-quality AR racing game

experience, the implementation should meet the following
software and hardware design requirements.

A. Software Requirements
Latency
The primary design requirement for the software component

of the project is to ensure a seamless user experience. As such,
the video streaming component should deliver a clear picture
with at least 30 fps and a latency of no more than 100 ms, and

controller input should be processed and acted upon by the
cars with a latency of less than 100 ms as well. This value was
derived from the related field of online gaming, where 100
milliseconds is considered the upper bound for acceptable
latency in gameplay. A delay greater than this could induce
nausea as well as frustration due to lack of responsiveness.
This will be tested by measuring round-trip time within the
user and the car, and extrapolating one-way latency from this.

B. Hardware Requirements
Battery Life
To meet the high-level design goal of having a higher

battery life than commercial drones, which can fly for around
10-20 minutes on a charge, the cars should be able to operate
for at least 30 minutes continuously.

Top Speed
The top speed of the cars should be at least 3 mph to ensure

that ARioKart can deliver a fast-paced first-person driving
experience without being too fast to control or follow on foot.

Motor Speed Control
Each car must must have a controller that can set the motor

speeds with enough accuracy to drive the car straight for 20
feet, the size of the demo space, with less than half a car width
of deviance from the center line. This allows for
standardization in speed control and ensures that no car has an
unfair advantage due to hardware discrepancies.

Turn Radius
The turn radius of the cars must be less than five feet at their

base speed so that the cars are able to make at least two 180
degree turns within the 20-foot demo area.

RFID Detection Speed
Each car will have an Radio Frequency Identification

scanner mounted to the bottom of the car that will be able to
detect a gate before the car completely passes over it at base
speed, i.e., a latency of no more than 121 ms (derived given
the size and the top speed of the car as well as the location of
the scanner on the car, 6.4 in before the rear bumper).

atency 21 msl = 6.4 in to rear

3 mph 63360 in/mi / 3600 s/hr* = 1

This allows the game software to accurately determine which
place each car is in after passing through a gate.

IR Range
Each car will have an infrared receiver that should be able to

detect an infrared blaster mounted on another car across the
demo area at a distance of 20 feet. This will allow cars to
detect opponents ahead for using items.

2
18-500 Final Project Report: 05/07/2019

III. SYSTEM ARCHITECTURE AND INTERACTIONS

Fig. 1. Overall system architecture block diagram

A. Overall Architecture
The general design of the system follows the architecture

depicted in Fig. 1. From the highest level to the lowest, the
physical components are PCs that run the game software and
display the AR overlay, Cars with Raspberry Pis that control
the motor, IR, RFID, and camera modules, and gates that are
scanned by the cars. Each PC is connected to one car and the
game host. There are four major communication pathways
between the physical components in the system as shown in
Fig. 1, with communications over Wifi in black, IR in red, and
RFID in blue:
1. Between two PCs​: Each PC runs an instance of the

game, with one acting as the game’s host and the others
as clients connected to the host. Communication
between PCs consists of game state updates with item
use and gate information from their respective cars.

2. Between a PC and a car​: Communication from the PC
to the car consists of player input with commands for
the physical components on the cars, such as commands
to set motor speed or commands to fire the IR blaster.
The car sends to the PC a constant stream of video and
discrete sensor data from the RFID and IR modules.

3. Between two cars​: A car following another car in a race
can fire its IR blaster at the IR receiver on the car in
front, causing it to stop if a valid item was used.

4. Between a car and a gate​: Cars passing over gates will
scan the gates to determine their position in the race and
on the course.

Detailed communication diagrams for the two major
interactions of item usage and gate scanning follow.

B. Item Interaction

Fig. 2. System interactions for item usage

The flow of interactions depicted above follows two
different paths depending generally on the type of item used:
instantaneous items and delayed items. Instantaneous items,
when fired by the user, take immediate action, sending a
command down to the car to fire a IR blast. This blast, if a hit,
will be registered by other Car. A delayed item flows in the
opposite direction. Some items require greater knowledge of
the game state, for instance place, and therefore must be
passed through the PC Host. These are then forwarded to the
target. The target PC then forwards the correct consequence to

3
18-500 Final Project Report: 05/07/2019

the car.

C. Gate Interaction

Fig. 3. System interactions for detecting passed gates

When the RFID Scanner in the car first passes over the gate,
the RFID Scanner will energize the tag and read the bit pattern
of the tag ID in the gate. This gate ID is then wired to the
onboard computer. The onboard computer pass this ID to the
the PC that it is networked with. The PC relays this
information, as well as as a timestamp of when the ID was
received to the other PCs running game instances to be able
determine what place the car is in. Since game-item
distribution happens only when a car passes over a gate, the
“host” PCs will provide the “client” PC an item, if that user
has earned a item.

IV. DESIGN TRADE STUDIES
In order to deliver a high-quality AR racing game

experience, the implementation should meet the following
software and hardware design requirements.

A. Software Requirements
Latency
For the latency requirements the primary target was 100 ms

end-to-end latency on the video stream with a clear picture
and infrequent lag spikes. Factors that influenced the latency
included video encoding time on the Raspberry Pi, network
transit latency, video decoding time on the PC, and rendering
time in Unity. Of these, the aspects we had control over were
the network latency, and rendering. We tested the latency by
displaying and recording a timestamp on the PC screen and
checking the time difference between the two while varying
the quality of the video stream and the rendering technique.
Our results are recorded in Table I.

TABLE I. LATENCY TEST RESULTS

Test Parameters Latency
Result Resolution (16:9

aspect ratio)
Frame

rate
Rendering

Engine

1080p 30 fps Vuforia 600 ms

720p 40 fps Vuforia 400 ms

720p 40 fps Unity 330 ms

576p 40 fps Vuforia 270 ms

576p 40 fps Unity 200 ms

Our final result was a latency of 200 ms with a resolution of

576p at 40 fps using Unity’s video rendering. We believe this
is close to the best video streaming latency we could achieve
with OpenCV as a test running a minimal OpenCV demo
application had a 170 ms latency with the same video quality.
We originally considered using a different library for video
decoding, but decided that it would be too difficult to
implement and unlikely that we would be able to achieve
better results than OpenCV.

Another latency requirement we had was that control and
sensor data be transmitted with a latency of less than 100 ms.
We measured this by recording the time for Xbox controller
inputs to be sent to the Pi and acknowledged and found that
our initial implementation with TCP sockets achieved a
round-trip latency of 16.5 ms, giving us a one-way latency of
~8ms, well within our targeted range of less than 100.

B. Hardware Requirements
Battery Life
Our requirement for the batteries for our cars were that

should allow the car to operate for at least 30 minutes. The
battery life of our cars depended on the following factors: max
current draw from the motors, max current draw from the
raspberry pi. Based on the specifications of the raspberry pi
we ordered, and the motors we chose, we expected the max
current draw out of the battery pack to be 5.25 Amps (1.25
Amps from the raspberry pi, and 2 Amps from each motor at
full power). To meet the our design goal of having of at least
30 minutes, we selected a 6000mAh battery pack that had
5V/12V dual supply ports. We tested the battery life by
running the motors at full power (100% duty cycle) and
running the pi with a full software workload (video server,
TCP connection to PC, continuous read from encoders) and
having a script on the pi write a timestamp to a log file. Upon
inspection of the log file after rebooting the pi (since the pi
shutdown once the battery ran out of power) we saw that
battery was able to provide 7 hours and 14 minutes of steady
power. While this is a significant improvement of what our
goal was, the test was conducted while the motors were free
spinning, and does not account for the motors drawing more
current if they running on the ground against friction. We
realize that this was not the most accurate way to observe the
battery life of the car, but we didn’t have an appropriate

4
18-500 Final Project Report: 05/07/2019

testing setup that allowed us to control the car while it drove
under load.

Top Speed
Our requirement for the top speed was that the cars should

be able to reach a top speed of no less than 3 mph. To be able
to meet this requirement, we purchased motors that were
advertised to be able to drive up to 600 rpm (potential top
speed of 4.5 mph). We tested these motor by reading the
maximum value from the encoders when driving a 100% duty
cycle to the motor. We saw that the motors were able to drive
at a maximum of 500 rpm. With 2.56in diameter wheels, this
gave our cars a top speed of 3.81 mph, thus meeting our initial
requirement.

Motor Speed Control
Our requirement for motor speed control was that the cars

deviate from the center line by less than one car width per 20
feet of driving straight. We attempted to mitigate deviance
errors by designing a 3D model of the car and using a precise
laser cutter to make the frame of the car and by tuning the PID
controller that controlled the motors. We tested this
requirement by driving the cars along a 20ft straight path, and
measuring how far the car deviated from the center-line it
started driving from. We saw that on average, maximum
deviation that cars drifted from the center-line was 5 in, which
is about ⅔ the width of a car, and thus meeting our
requirement.

Turn Radius
A trade-off was made between a more accurate Ackermann

steering system and a Differential System. For our project we
chose to go with a differential steering system, as the
Ackermann steering system added mechanical complexity to
an already mechanically complex project. Ackermann steering
kits were also much more expensive than their differential
counterparts. This choice, however, came at the cost of
accuracy in turning. We believe most of the issues with
turning came from a lack of traction, so we attempted to
increase traction by driving on carpeted surfaces. The end
result was that at full speed the car was able to turn with a
radius of about 5.5 feet, a marked improvement from the
greater than 10 foot turn radius on tiled floors. However, we
were unable to make the car turn at anything other than very
gentle angles, or in place, rotating around a point between the
front-wheel motors.

RFID Detection Speed
The requirement for the RFID readers was that they were

able to detect a gate before the car completely passed over it at
the base speed of 3 mph. The biggest factors for being able to
read an RFID tag at speed are how much power the reader can
source and the sizes of the reader and tags. Originally, we tried
a Raspberry Pi compatible HiLetgo RFID readers and NFC
stickers. Unfortunately, this pair was unable to meet our
requirements. We then tried larger area readers and credit-card
bit tags. We saw an improvement in performance, but still

were unable to meet our requirement. The reader we currently
have in our cars simply does not have enough power to be able
to energize the tags and read the bit pattern in under 120 ms
(our initial requirement). We tested this by driving the cars
over the gates multiple times at different rpm settings. Once
we were able to drive over a gate and detect the gate 10/10
times, that speed setting was noted to be reliable. We then
proceeded to increase the speed setting of the car to see what
the maximum speed we could drive the cars, yet still be able to
detect a gate underneath 10/10 times. We found that the fastest
we could drive the cars over the gates while still being able to
reliably detect the gates was at 100 rpm (0.76 mph). Faster
RFID readers similar to those used in RFID race timing
systems were too expensive for our project, and we
unfortunately did not have enough time to experiment with
making our own tags to improve performance.

IR Range
Our requirement for the IR subsystem was that a receiver

should be able to detect a pulse from another car’s blaster
from 20 feet away. The range of the IR is dependent on the on
the amount of current pumped through the IR LEDs. The
original circuit design allowed up to 0.5 Amp spikes to flow
through the IR LEDs. However, we found that at this current
and 1.38 kHz pulse setting, the drain resistor (R5 in Fig 7) was
unable to operate correctly (resistor meltdown). To
compensate, we increased the resistance of the drain resistor,
and dropped the current to spike at 150 mA when on. This
allowed the IR pulse to draw less power, but reduced the
distance the pulse could travel. If we had more time and
funding, we would look into purchasing a low-resistance
ceramic resistor to allow more power to be safely delivered to
the IR LEDs. We tested this by continuously firing the blaster
from one car and varying the distance of the car receiving the
direct blast. Once the maximum centerline distance that the
receiver car could reliably detect the blaster, the car was
moved horizontally to determine the cone of effect of the IR
pulse from the blaster. This test was conducted at night, when
there was as little interference from sunlight as possible. It was
found that the IR pulse was able to be detected up to a
centerline distance of 7ft, with a cone of effect of 4.5in. Given
more time, we would’ve liked to explore the possibility of
reducing the number of IR LEDs in parallel. The IR LEDs we
purchased where rated to allow up to 1 Amp spikes. If we
were able to procure a ceramic resistor, a circuit could be
designed to allow 1 Amp spikes through this resistor, while
delivering more current to the fewer IR LEDs. While there
would be fewer than seven LEDs, the range distance might
improve due to the increase in power delivered to each
individual IR LED.

5
18-500 Final Project Report: 05/07/2019

V. SYSTEM DESCRIPTION

A. PC Software

Fig. 4. Subsystem diagram for PC

The software run on the PCs can be separated into three
modules: game, video, and controller.

1. Game​: The game software manages state and
operations related to the race including information
about items and player place and progress. It is also
responsible for displaying a car’s video stream and
rendering an AR overlay with race and item
information. The game is implemented in C# using the
Unity game engine and Unity Multiplayer for
multiplayer communication between game instances.

2. Video​: The video module is responsible for receiving
the video stream from the Raspberry Pi on the car and
rendering it to the screen in a way compatible with the
AR engine. For this implementation, this module takes
the form of a C++ Directshow source filter, which uses
the Directshow Windows API to act as a virtual camera
device recognizable by Unity. The source filter receives
raw H.264 compressed video from the Pi through
TCP/IP over Wifi, decodes it with the OpenCV library,
then draws it to the screen.

3. Controller​: The controller software receives input from
the player, converts it to commands for the car, and
sends those commands through TCP sockets to the car,
which then controls its physical components. Players
interact with their PCs through Xbox controllers, which
interface with the controller software using Unity’s
Input module. The controller module also receives
RFID and IR sensor data from the Pis, which leads to
game state updates in the game software.

B. Onboard Software

Fig. 5. Subsystem diagram for Onboard Controller

The software run by the onboard computer and hardware
components on the cars can be separated into five discrete
modules: Controller, IR, Motor, RFID, and Camera.

1. Controller Module​: Each Raspberry Pi has software
that receives data from the four other modules in the car
and transmits this data over a TCP connection on Wifi
to the PC that the onboard computer is networked with.
The controller software receives inputs to control the
movement and actions of the car and transmits whether
the IR receiver was triggered, the gate ID when passing
over a gate, the current speed from the motor encoders,
and the video stream from the camera.

2. IR Module​: The Raspberry Pi has IR sensor software
that interfaces with the IR circuits on the car. This
software will receive commands passed from the PC
through the controller software instructing the car to
fire the IR blaster. The IR sensor software will drive
voltage levels on the GPIO pins to pulse the IR blaster.
This software will also alert the controller software if
the IR receiver circuit has been triggered by an
opponent's IR blast.

3. Motor Module​: The Raspberry Pi will have software
that interfaces with the motor’s encoder chip as well as
the motor driver chip. It translates commands from the
PC into a PWM signal for the L298N motor driver
circuits. The controller software, motor driver circuits
and Hall-effect encoders create a feedback control loop
that allows the onboard computer to accurately set
speed through PID control.

4. RFID Module​: The Raspberry Pi has software that
interfaces with the RFID reader on the car. The
controller software interacts with the circuit via the
Linux input event device interface as the RFID reader
emulates a keyboard. The RFID reader continuously
reads and only alerts the controller software when the
scanner has successfully detected a NFC tag ID from a

6
18-500 Final Project Report: 05/07/2019

gate.
5. Camera Module​: The Raspberry Pi has software that

interfaces with a Pi Camera V2. The camera supports
live-streaming video in h.264 video encoding format.
The module is nothing more than a pipe for this video
to the controller to relay to the PC where it will be
processed.

To allow the simultaneous reading, receiving, and
transmitting, of data, the programs for the various modules
were run on four separate threads with data and commands
shared between them using mutexes (Fig. 6.). The control
thread runs part of the controller module, receiving commands
from the game and controlling the motor speed setting and IR
blaster. The motor thread and RFID threads run their
respective modules and make their data available to the data
stream thread, which sends sensor data to the PC over the
network and also reads the IR receivers.

Fig. 6. Thread organization on the cars

C. Hardware and Manufacturing
1. Mechanical Design​: The physical layout of the car was

designed to take into account the various mechanical
constraints of the modules described above. These
constraints included placing the RFID scanner close to
the bottom on the car to allow for more accurate gate
reading, evenly placing IR receiver circuits around the
car to allow item usage on three sides of the car,
distributing weight evenly from the center of mass to
prevent drift during normal use, and placing the motor
driver circuit in a location that has easy access to
air-cooling for better motor control performance. Seven
IR LEDs are used in a circular configuration in order to
improve the range that the IR blast can travel when
triggered. The camera was mounted at an elevated
position for two reasons. One, to prevent damage to the
camera in the event that a car would be driven into an
obstacle. Second, to give the user a better perspective of
where they need to drive their car in order to get ot the
next gate.

2. Analog Design​: Two circuits were designed using

analog components to achieve the specifications needed
for this project. These circuits were designed to
minimize power consumption, maximize range of use

and facilitate detection. With these design constraints in
mind, the transmitter circuit shown in Fig. 7 makes use
a resistor-capacitor configuration (resistors R1 and R2
and capacitor C1) to set the frequency of the NE555
Timer chip to 1.38kHz. This timer will drive a pulsing
signal to T1. When the IR software drives T4 with a
logic high, the pulsing signal is allowed to propagate to
the seven IR LEDs, allowing them to blast a signal
forward. C2 is simply used as a decoupling capacitor.
The IR receiver circuit shown in Fig 8 makes use of a
double gated input system to reduce power draw and
act as a low-cost analog to digital converter by driving
input signals to power rail voltages. The double-gated
system allows power to only be drawn when the
receiver photodiode is triggered, thus minimizing
power consumption.

Fig. 7. 3D model for the frame of the car.

Fig. 8. Circuit diagram for IR blaster

7
18-500 Final Project Report: 05/07/2019

Fig. 9. Circuit Diagram for IR receiver

VI. PROJECT MANAGEMENT

A. Schedule
Refer to the end of the report for a full schedule.

B. Team Member Responsibilities
Broadly speaking, David was responsible for software

related to the game and PCs, Sourav was responsible for
software related to the Pi and its hardware, and Bujji was
responsible for hardware including the physical design of the
cars and circuit design, though of course we will work
together when we begin integrating our components. Refer to
the attached schedule for a detailed breakdown of tasks and
responsibilities—David’s tasks are in yellow, Sourav’s in
blue, and Bujji’s in green.

C. Budget
Refer to end of report for budget details and bill of

materials.

D. Risk Management
1. Camera Turbulence: It was discovered that video feed

stream from a small vehicle often suffers from
micro-jitters. After investigating into solutions to this
problem, we were unable to find affordable hardware
solutions and effective real-time software to repair the
blur seen in the video feed. To mitigate this risk, we
designed a low-cost camera housing with rubber bands
for suspension. However, in our final design we
replaced the housing with a simpler one because camera
turbulence was not as much of an issue as we had
imagined.

2. Video-Streaming Latency and Jitter: A possible risk
with our project was the latency in the stream of the
video and frame rate jitter. In particular, this risk was
exacerbated by conditions of high network traffic on the
router the cars and PCs were connected to. At Professor
Mai’s suggestion, we requested a router from Professor
Nace to use a LAN connection with our devices only
instead of CMU’s network, which greatly reduced
frame drops in the video stream.

3. The Sun: In areas with too much sunlight or other

bright lights, the IR receivers could be falsely triggered
without a corresponding item use, causing players to be
falsely hit. Our solution to this was to wrap the IR so
they would only be triggered by IR blasts directed at
them. This was only somewhat effective, but luckily the
demo space in Weigand gym had sufficiently diffuse
lighting to not activate the receivers.

4. Budget: Since our project had a wide variety of
physical components, the budget was a big risk factor.
Although our budget for all three cars and all the gates
fit within the $600 allotted, we were forced by our
limited budget to purchase parts that did not meet our
requirements, namely the RFID readers. To mitigate
this risk, we originally planned to purchase only two
cars’ worth of parts, giving us around $200 of slack to
account for any problems that may have arisen with our
parts, but we eventually opted to build all three cars
instead of faster RFID readers.

5. Personal schedules: Since two of the members of our
team are booth chairs, we scheduled our working weeks
around build-week. This meant that there were two
weeks (spring break and build-week) that members of
our team were not able to work. Our original schedule
left slack during those weeks, but we eventually fell
behind schedule nonetheless and had to redistribute
tasks between us each week to whomever had fewer
assignments due at the time.

VII. RELATED WORK
Though we could not find a product in the marketplace that

approached the issue of AR in physical games quite like
ARioKart, there were several projects that gave us inspiration
when we were brainstorming.

Chief amongst these was Anki Overdrive​[2]​. Anki Overdrive
is a low-power bluetooth application that networks phones
with physical HotWheels-esque cars. The cars themselves
have AI that drive the car in a portable map, as a circuit mat
that can be laid down. The inspiration was having real mobile
vehicles networked into a game that was controlled through a
general purpose computing device like a phone or a laptop.
Anki Overdrive diverges technically from our project in that it
lacks an AR component, and the cars are not controlled
directly by the user but through AI.

A more similar product which we researched was Hado
Kart​[3]​, an augmented reality version of the game of Mario
Kart that allows people to be seated in the kart they drive. This
game, while having features from Mario Kart like items and
coins, was not actually a race. Players compete to collect as
many coins as they can in an arena of sorts. The product more
brings Mario Kart into the world of bumper cars, than bumper
cars into the world of Mario Kart.

VIII. SUMMARY
For the most part, our system met our most important

requirements. ARioKart is a fun gaming experience that can
be used for hours. Users enjoy playing a multiplayer game

8
18-500 Final Project Report: 05/07/2019

with their friends where they get to drive physical cars over a
completely customizable track. However, while ARioKart is
an entertaining gaming system, it does have a few issues.

One of the biggest problems our cars have is that they aren’t
very easy to drive. While implementing differential steering
was easier, and saved us from dealing with a lot of mechanical
challenges, our cars suffer in their ability to turn. If we had
more time, an obvious solution would to have simply chosen
rear-wheel drive for the cars, with front wheel Ackerman
steering.

Additionally, the limited performance of the RFID scanner
is a great hindrance to users during gameplay. Originally we
had thought that we would be able to scan gates from the cars
while they drove at top speed. We tried two different RFID
readers and two different types of RFID tags, yet were unable
to meet this specification. The cars need to be slowed down to
a “scanning speed” to be able to reliably detect the gates as
they drive over them. If we had more money allocated to us in
our budget, we would’ve been able to purchase a high speed
RFID reader, or if we have more time, we could’ve designed
our own high speed RFID reader.

A. Future work
If we were to continue work on this project, more time

alone would not be sufficient. Many of the issues we ran into
over the course of the semester were due to budget constraints.
As such, to truly keep working on our project we would need
to have an expanded budget. Given such, there are a few
important improvements we have already pinpointed.

1. PCBs: The cars could very much benefit from PCBs,
which would reduce clutter of circuits, reducing the
possibility of wiring disconnects due to use. The PCB
would also be valuable in ensuring the replicability of
the IR circuits. As all three would have the same
design, there would be no variation, as opposed to the
current method in which errors in soldering could cause
differences between each car.

2. Ackermann Steering - The steering apparatus of the car,
as previously mentioned, currently utilizes torque
vectoring and differential steering. This form of
steering, while widely used, is almost always
supplemental to Ackermann steering, which provides
finer control of direction. This would involve a slight
re-design of the car to accommodate the physical
implementation of Ackermann Steering, as well as a
complete rework of the steering software.

3. Data Transfer Through IR: Gameplay interactions could
be enhanced if we were able to send data via the IR
blaster, and receive that data on the various receivers on
the cars. This would’ve also helped mitigate the issues
with ambient sunlight in the demo area, and maybe our
IR system more robust.

B. Lessons Learned
○ Never believe the posted hardware specs

Several of the hardware parts that we purchased for our
project did not meet the hardware specifications listed

on the website. This applied to our motors and RFID
scanners. We’d recommend that students buy hardware
parts that surpass the minimum specification that they
desire.

○ Plan for setbacks
While wrote and cliche, this advice is really the most
important. Several times in our project we were forced
to go back and redo an entire part as it did not perform
as expected. It is important to allocate the time for
things like this in your schedule.

○ Choose a project within budget
A lot of sacrifices in our project were made so that we
could have the budget to manufacture three cars. We
recommend that students research the price of all of the
parts so they can better understand what they can really
do with the budget allocated with them.

REFERENCES
[1] Techopedia. “What is Augmented Reality?”,

https://www.techopedia.com/definition/4776/augmented-reality-ar
[2] Anki. “Anki OVERDRIVE - Intelligent Racing Robot System”,

https://anki.com/en-us/overdrive.html
[3] Hado Asia. “HADO - Augmented Reality Techno Sports in

Signapore”,
https://www.hado-asia.com/games/hado-kart/

https://www.techopedia.com/definition/4776/augmented-reality-ar

9
18-500 Final Project Report: 05/07/2019

10
18-500 Final Project Report: 05/07/2019

