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Abstract​—An augmented reality racing game with networked       
remote controlled vehicles. The basic concept of the game is          
similar to Mario Kart, with a slalom-style user-specified race         
track and various virtual items and power-ups to augment the          
physical car race. The system consists of cars, gates, and          
computers that run the game software and render the AR display           
and interface. Compared to similar existing AR games, this game          
would provide a more engaging AR experience with meaningful         
interactions with the environment. 

 
Index Terms​—Augmented Reality, Computer Game,     

Computer Vision, Infrared Detection, Object Detection, Remote       
Control  

I. INTRODUCTION 
A NEW FRONTIER in human-computer interaction, augmented       
reality is a technology that uses an interactive display of the           
physical environment to enhance the user's real-world       
experience​[1]​. Augmented reality has the potential to transform        
everyday scenery into an information rich environment for        
new immersive gameplay experiences. Modern augmented      
reality games fail to reach the potential of the medium as           
many of them confine the user experience to static interactions          
with the background. This often amounts to traditional games         
simply being overlaid onto a video stream without taking         
advantage of the visible features of the current environment. 

The solution in this paper, ARioKart, aims to improve upon          
existing AR games by unifying physical components that        
interact with the surroundings and game software that        
augments the display. ARioKart is a slalom-style racing game         
with physical cars and gates and virtual items. Users interact          
with game software on their laptops to operate remote         
controlled cars and see an augmented video stream from the          
cars’ perspective. Though related products, such as drones and         
ordinary RC cars, exist, they have many shortcomings,        
including their cost and battery life, and lack the AR aspect.           
ARioKart provides all the fun of traditional RC cars with the           
added immersion of the first-person Augmented Reality       
component. 

II. DESIGN REQUIREMENTS 
In order to deliver a high-quality AR racing game         

experience, the implementation should meet the following       
software and hardware design requirements. 

A. Software Requirements 
Latency 
The primary design requirement for the software component        

of the project is to ensure a seamless user experience. As such,            
the video streaming component should deliver a clear picture         
with at least 30 fps and a latency of no more than 100 ms, and               

controller input should be processed and acted upon by the          
cars with a latency of less than 100 ms as well. This value was              
derived from the related field of online gaming, where 100          
milliseconds is considered the upper bound for acceptable        
latency in gameplay. A delay greater than this could induce          
nausea as well as frustration due to lack of responsiveness.          
This will be tested by measuring round-trip time within the          
user and the car, and extrapolating one-way latency from this. 

B. Hardware Requirements 
Battery Life 
To meet the high-level design goal of having a higher          

battery life than commercial drones, which can fly for around          
10-20 minutes on a charge, the cars should be able to operate            
for at least 30 minutes continuously. 

Top Speed 
The top speed of the cars should be at least 3 mph to ensure              

that ARioKart can deliver a fast-paced first-person driving        
experience without being too fast to control or follow on foot. 

Motor Speed Control 
Each car must must have a controller that can set the motor            

speeds with enough accuracy to drive the car straight for 20           
feet, the size of the demo space, with less than half a car width              
of deviance from the center line. This allows for         
standardization in speed control and ensures that no car has an           
unfair advantage due to hardware discrepancies. 

Turn Radius 
The turn radius of the cars must be less than five feet at their              

base speed so that the cars are able to make at least two 180              
degree turns within the 20-foot demo area. 

RFID Detection Speed 
Each car will have an Radio Frequency Identification        

scanner mounted to the bottom of the car that will be able to             
detect a gate before the car completely passes over it at base            
speed, i.e., a latency of no more than 121 ms (derived given            
the size and the top speed of the car as well as the location of               
the scanner on the car, 6.4 in before the rear bumper).  

 
atency 21 msl = 6.4 in to rear

3 mph  63360 in/mi / 3600 s/hr* = 1  
 

This allows the game software to accurately determine which         
place each car is in after passing through a gate. 

IR Range 
Each car will have an infrared receiver that should be able to            

detect an infrared blaster mounted on another car across the          
demo area at a distance of 20 feet. This will allow cars to             
detect opponents ahead for using items.  
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III. SYSTEM ARCHITECTURE AND INTERACTIONS 

 
Fig. 1. Overall system architecture block diagram 

A. Overall Architecture 
The general design of the system follows the architecture         

depicted in Fig. 1. From the highest level to the lowest, the            
physical components are PCs that run the game software and          
display the AR overlay, Cars with Raspberry Pis that control          
the motor, IR, RFID, and camera modules, and gates that are           
scanned by the cars. Each PC is connected to one car and the             
game host. There are four major communication pathways        
between the physical components in the system as shown in          
Fig. 1, with communications over Wifi in black, IR in red, and            
RFID in blue: 
1. Between two PCs​: Each PC runs an instance of the          

game, with one acting as the game’s host and the others           
as clients connected to the host. Communication       
between PCs consists of game state updates with item         
use and gate information from their respective cars.  

2. Between a PC and a car​: Communication from the PC          
to the car consists of player input with commands for          
the physical components on the cars, such as commands         
to set motor speed or commands to fire the IR blaster.           
The car sends to the PC a constant stream of video and            
discrete sensor data from the RFID and IR modules. 

3. Between two cars​: A car following another car in a race           
can fire its IR blaster at the IR receiver on the car in             
front, causing it to stop if a valid item was used. 

4. Between a car and a gate​: Cars passing over gates will           
scan the gates to determine their position in the race and           
on the course. 

Detailed communication diagrams for the two major       
interactions of item usage and gate scanning follow. 

B. Item Interaction 
 

 
Fig. 2. System interactions for item usage 

The flow of interactions depicted above follows two        
different paths depending generally on the type of item used:          
instantaneous items and delayed items. Instantaneous items,       
when fired by the user, take immediate action, sending a          
command down to the car to fire a IR blast. This blast, if a hit,               
will be registered by other Car. A delayed item flows in the            
opposite direction. Some items require greater knowledge of        
the game state, for instance place, and therefore must be          
passed through the PC Host. These are then forwarded to the           
target. The target PC then forwards the correct consequence to          
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the car. 

 

C. Gate Interaction 

 
Fig. 3. System interactions for detecting passed gates 

When the RFID Scanner in the car first passes over the gate,            
the RFID Scanner will energize the tag and read the bit pattern            
of the tag ID in the gate. This gate ID is then wired to the               
onboard computer. The onboard computer pass this ID to the          
the PC that it is networked with. The PC relays this           
information, as well as as a timestamp of when the ID was            
received to the other PCs running game instances to be able           
determine what place the car is in. Since game-item         
distribution happens only when a car passes over a gate, the           
“host” PCs will provide the “client” PC an item, if that user            
has earned a item. 

IV. DESIGN TRADE STUDIES 
In order to deliver a high-quality AR racing game         

experience, the implementation should meet the following       
software and hardware design requirements. 

A. Software Requirements 
Latency 
For the latency requirements the primary target was 100 ms          

end-to-end latency on the video stream with a clear picture          
and infrequent lag spikes. Factors that influenced the latency         
included video encoding time on the Raspberry Pi, network         
transit latency, video decoding time on the PC, and rendering          
time in Unity. Of these, the aspects we had control over were            
the network latency, and rendering. We tested the latency by          
displaying and recording a timestamp on the PC screen and          
checking the time difference between the two while varying         
the quality of the video stream and the rendering technique.          
Our results are recorded in Table I. 

  

TABLE I. LATENCY TEST RESULTS 

Test Parameters Latency 
Result Resolution (16:9 

aspect ratio) 
Frame 

rate  
Rendering 

Engine 

1080p 30 fps Vuforia 600 ms 

720p 40 fps Vuforia 400 ms 

720p 40 fps Unity 330 ms 

576p 40 fps Vuforia 270 ms 

576p 40 fps Unity 200 ms 

 
Our final result was a latency of 200 ms with a resolution of             

576p at 40 fps using Unity’s video rendering. We believe this           
is close to the best video streaming latency we could achieve           
with OpenCV as a test running a minimal OpenCV demo          
application had a 170 ms latency with the same video quality.           
We originally considered using a different library for video         
decoding, but decided that it would be too difficult to          
implement and unlikely that we would be able to achieve          
better results than OpenCV. 

Another latency requirement we had was that control and         
sensor data be transmitted with a latency of less than 100 ms.            
We measured this by recording the time for Xbox controller          
inputs to be sent to the Pi and acknowledged and found that            
our initial implementation with TCP sockets achieved a        
round-trip latency of 16.5 ms, giving us a one-way latency of           
~8ms, well within our targeted range of less than 100. 

B. Hardware Requirements 
Battery Life 
Our requirement for the batteries for our cars were that          

should allow the car to operate for at least 30 minutes. The            
battery life of our cars depended on the following factors: max           
current draw from the motors, max current draw from the          
raspberry pi. Based on the specifications of the raspberry pi          
we ordered, and the motors we chose, we expected the max           
current draw out of the battery pack to be 5.25 Amps (1.25            
Amps from the raspberry pi, and 2 Amps from each motor at            
full power). To meet the our design goal of having of at least             
30 minutes, we selected a 6000mAh battery pack that had          
5V/12V dual supply ports. We tested the battery life by          
running the motors at full power (100% duty cycle) and          
running the pi with a full software workload (video server,          
TCP connection to PC, continuous read from encoders) and         
having a script on the pi write a timestamp to a log file. Upon              
inspection of the log file after rebooting the pi (since the pi            
shutdown once the battery ran out of power) we saw that           
battery was able to provide 7 hours and 14 minutes of steady            
power. While this is a significant improvement of what our          
goal was, the test was conducted while the motors were free           
spinning, and does not account for the motors drawing more          
current if they running on the ground against friction. We          
realize that this was not the most accurate way to observe the            
battery life of the car, but we didn’t have an appropriate           
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testing setup that allowed us to control the car while it drove            
under load.  

 
Top Speed 
Our requirement for the top speed was that the cars should           

be able to reach a top speed of no less than 3 mph. To be able                
to meet this requirement, we purchased motors that were         
advertised to be able to drive up to 600 rpm (potential top            
speed of 4.5 mph). We tested these motor by reading the           
maximum value from the encoders when driving a 100% duty          
cycle to the motor. We saw that the motors were able to drive             
at a maximum of 500 rpm. With 2.56in diameter wheels, this           
gave our cars a top speed of 3.81 mph, thus meeting our initial             
requirement. 
 

Motor Speed Control 
Our requirement for motor speed control was that the cars          

deviate from the center line by less than one car width per 20             
feet of driving straight. We attempted to mitigate deviance         
errors by designing a 3D model of the car and using a precise             
laser cutter to make the frame of the car and by tuning the PID              
controller that controlled the motors. We tested this        
requirement by driving the cars along a 20ft straight path, and           
measuring how far the car deviated from the center-line it          
started driving from. We saw that on average, maximum         
deviation that cars drifted from the center-line was 5 in, which           
is about ⅔ the width of a car, and thus meeting our            
requirement.  

 
Turn Radius 
A trade-off was made between a more accurate Ackermann         

steering system and a Differential System. For our project we          
chose to go with a differential steering system, as the          
Ackermann steering system added mechanical complexity to       
an already mechanically complex project. Ackermann steering       
kits were also much more expensive than their differential         
counterparts. This choice, however, came at the cost of         
accuracy in turning. We believe most of the issues with          
turning came from a lack of traction, so we attempted to           
increase traction by driving on carpeted surfaces. The end         
result was that at full speed the car was able to turn with a              
radius of about 5.5 feet, a marked improvement from the          
greater than 10 foot turn radius on tiled floors. However, we           
were unable to make the car turn at anything other than very            
gentle angles, or in place, rotating around a point between the           
front-wheel motors.  

 
RFID Detection Speed 
The requirement for the RFID readers was that they were          

able to detect a gate before the car completely passed over it at             
the base speed of 3 mph. The biggest factors for being able to             
read an RFID tag at speed are how much power the reader can             
source and the sizes of the reader and tags. Originally, we tried            
a Raspberry Pi compatible HiLetgo RFID readers and NFC         
stickers. Unfortunately, this pair was unable to meet our         
requirements. We then tried larger area readers and credit-card         
bit tags. We saw an improvement in performance, but still          

were unable to meet our requirement. The reader we currently          
have in our cars simply does not have enough power to be able             
to energize the tags and read the bit pattern in under 120 ms             
(our initial requirement). We tested this by driving the cars          
over the gates multiple times at different rpm settings. Once          
we were able to drive over a gate and detect the gate 10/10             
times, that speed setting was noted to be reliable. We then           
proceeded to increase the speed setting of the car to see what            
the maximum speed we could drive the cars, yet still be able to             
detect a gate underneath 10/10 times. We found that the fastest           
we could drive the cars over the gates while still being able to             
reliably detect the gates was at 100 rpm (0.76 mph). Faster           
RFID readers similar to those used in RFID race timing          
systems were too expensive for our project, and we         
unfortunately did not have enough time to experiment with         
making our own tags to improve performance. 
 

IR Range 
Our requirement for the IR subsystem was that a receiver          

should be able to detect a pulse from another car’s blaster           
from 20 feet away. The range of the IR is dependent on the on              
the amount of current pumped through the IR LEDs. The          
original circuit design allowed up to 0.5 Amp spikes to flow           
through the IR LEDs. However, we found that at this current           
and 1.38 kHz pulse setting, the drain resistor (R5 in Fig 7) was             
unable to operate correctly (resistor meltdown). To       
compensate, we increased the resistance of the drain resistor,         
and dropped the current to spike at 150 mA when on. This            
allowed the IR pulse to draw less power, but reduced the           
distance the pulse could travel. If we had more time and           
funding, we would look into purchasing a low-resistance        
ceramic resistor to allow more power to be safely delivered to           
the IR LEDs. We tested this by continuously firing the blaster           
from one car and varying the distance of the car receiving the            
direct blast. Once the maximum centerline distance that the         
receiver car could reliably detect the blaster, the car was          
moved horizontally to determine the cone of effect of the IR           
pulse from the blaster. This test was conducted at night, when           
there was as little interference from sunlight as possible. It was           
found that the IR pulse was able to be detected up to a             
centerline distance of 7ft, with a cone of effect of 4.5in. Given            
more time, we would’ve liked to explore the possibility of          
reducing the number of IR LEDs in parallel. The IR LEDs we            
purchased where rated to allow up to 1 Amp spikes. If we            
were able to procure a ceramic resistor, a circuit could be           
designed to allow 1 Amp spikes through this resistor, while          
delivering more current to the fewer IR LEDs. While there          
would be fewer than seven LEDs, the range distance might          
improve due to the increase in power delivered to each          
individual IR LED. 
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V. SYSTEM DESCRIPTION 

 

A. PC Software 

 
Fig. 4. Subsystem diagram for PC 

The software run on the PCs can be separated into three           
modules: game, video, and controller. 

1. Game​: The game software manages state and       
operations related to the race including information       
about items and player place and progress. It is also          
responsible for displaying a car’s video stream and        
rendering an AR overlay with race and item        
information. The game is implemented in C# using the         
Unity game engine and Unity Multiplayer for       
multiplayer communication between game instances. 

2. Video​: The video module is responsible for receiving        
the video stream from the Raspberry Pi on the car and           
rendering it to the screen in a way compatible with the           
AR engine. For this implementation, this module takes        
the form of a C++ Directshow source filter, which uses          
the Directshow Windows API to act as a virtual camera          
device recognizable by Unity. The source filter receives        
raw H.264 compressed video from the Pi through        
TCP/IP over Wifi, decodes it with the OpenCV library,         
then draws it to the screen. 

3. Controller​: The controller software receives input from       
the player, converts it to commands for the car, and          
sends those commands through TCP sockets to the car,         
which then controls its physical components. Players       
interact with their PCs through Xbox controllers, which        
interface with the controller software using Unity’s       
Input module. The controller module also receives       
RFID and IR sensor data from the Pis, which leads to           
game state updates in the game software. 

B. Onboard Software 

 
Fig. 5. Subsystem diagram for Onboard Controller 

The software run by the onboard computer and hardware         
components on the cars can be separated into five discrete          
modules: Controller, IR, Motor, RFID, and Camera.  

1. Controller Module​: Each Raspberry Pi has software       
that receives data from the four other modules in the car           
and transmits this data over a TCP connection on Wifi          
to the PC that the onboard computer is networked with.          
The controller software receives inputs to control the        
movement and actions of the car and transmits whether         
the IR receiver was triggered, the gate ID when passing          
over a gate, the current speed from the motor encoders,          
and the video stream from the camera. 

2. IR Module​: The Raspberry Pi has IR sensor software         
that interfaces with the IR circuits on the car. This          
software will receive commands passed from the PC        
through the controller software instructing the car to        
fire the IR blaster. The IR sensor software will drive          
voltage levels on the GPIO pins to pulse the IR blaster.           
This software will also alert the controller software if         
the IR receiver circuit has been triggered by an         
opponent's IR blast.  

3. Motor Module​: The Raspberry Pi will have software        
that interfaces with the motor’s encoder chip as well as          
the motor driver chip. It translates commands from the         
PC into a PWM signal for the L298N motor driver          
circuits. The controller software, motor driver circuits       
and Hall-effect encoders create a feedback control loop        
that allows the onboard computer to accurately set        
speed through PID control. 

4. RFID Module​: The Raspberry Pi has software that        
interfaces with the RFID reader on the car. The         
controller software interacts with the circuit via the        
Linux input event device interface as the RFID reader         
emulates a keyboard. The RFID reader continuously       
reads and only alerts the controller software when the         
scanner has successfully detected a NFC tag ID from a          
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gate. 
5. Camera Module​: The Raspberry Pi has software that        

interfaces with a Pi Camera V2. The camera supports         
live-streaming video in h.264 video encoding format.       
The module is nothing more than a pipe for this video           
to the controller to relay to the PC where it will be            
processed.  

To allow the simultaneous reading, receiving, and       
transmitting, of data, the programs for the various modules         
were run on four separate threads with data and commands          
shared between them using mutexes (Fig. 6.). The control         
thread runs part of the controller module, receiving commands         
from the game and controlling the motor speed setting and IR           
blaster. The motor thread and RFID threads run their         
respective modules and make their data available to the data          
stream thread, which sends sensor data to the PC over the           
network and also reads the IR receivers. 

 

 
Fig. 6. Thread organization on the cars 

C. Hardware and Manufacturing  
1. Mechanical Design​: The physical layout of the car was         

designed to take into account the various mechanical        
constraints of the modules described above. These       
constraints included placing the RFID scanner close to        
the bottom on the car to allow for more accurate gate           
reading, evenly placing IR receiver circuits around the        
car to allow item usage on three sides of the car,           
distributing weight evenly from the center of mass to         
prevent drift during normal use, and placing the motor         
driver circuit in a location that has easy access to          
air-cooling for better motor control performance. Seven       
IR LEDs are used in a circular configuration in order to           
improve the range that the IR blast can travel when          
triggered. The camera was mounted at an elevated        
position for two reasons. One, to prevent damage to the          
camera in the event that a car would be driven into an            
obstacle. Second, to give the user a better perspective of          
where they need to drive their car in order to get ot the             
next gate. 

 
2. Analog Design​: Two circuits were designed using       

analog components to achieve the specifications needed       
for this project. These circuits were designed to        
minimize power consumption, maximize range of use       

and facilitate detection. With these design constraints in        
mind, the transmitter circuit shown in Fig. 7 makes use          
a resistor-capacitor configuration (resistors R1 and R2       
and capacitor C1) to set the frequency of the NE555          
Timer chip to 1.38kHz. This timer will drive a pulsing          
signal to T1. When the IR software drives T4 with a           
logic high, the pulsing signal is allowed to propagate to          
the seven IR LEDs, allowing them to blast a signal          
forward. C2 is simply used as a decoupling capacitor.         
The IR receiver circuit shown in Fig 8 makes use of a            
double gated input system to reduce power draw and         
act as a low-cost analog to digital converter by driving          
input signals to power rail voltages. The double-gated        
system allows power to only be drawn when the         
receiver photodiode is triggered, thus minimizing      
power consumption. 

 
Fig. 7. 3D model for the frame of the car. 

 
Fig. 8. Circuit diagram for IR blaster 
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Fig. 9. Circuit Diagram for IR receiver  

VI. PROJECT MANAGEMENT 

A. Schedule 
Refer to the end of the report for a full schedule. 

B. Team Member Responsibilities 
Broadly speaking, David was responsible for software       

related to the game and PCs, Sourav was responsible for          
software related to the Pi and its hardware, and Bujji was           
responsible for hardware including the physical design of the         
cars and circuit design, though of course we will work          
together when we begin integrating our components. Refer to         
the attached schedule for a detailed breakdown of tasks and          
responsibilities—David’s tasks are in yellow, Sourav’s in       
blue, and Bujji’s in green. 

C. Budget 
Refer to end of report for budget details and bill of           

materials. 

D. Risk Management  
1. Camera Turbulence: It was discovered that video feed        

stream from a small vehicle often suffers from        
micro-jitters. After investigating into solutions to this       
problem, we were unable to find affordable hardware        
solutions and effective real-time software to repair the        
blur seen in the video feed. To mitigate this risk, we           
designed a low-cost camera housing with rubber bands        
for suspension. However, in our final design we        
replaced the housing with a simpler one because camera         
turbulence was not as much of an issue as we had           
imagined. 

2. Video-Streaming Latency and Jitter: A possible risk       
with our project was the latency in the stream of the           
video and frame rate jitter. In particular, this risk was          
exacerbated by conditions of high network traffic on the         
router the cars and PCs were connected to. At Professor          
Mai’s suggestion, we requested a router from Professor        
Nace to use a LAN connection with our devices only          
instead of CMU’s network, which greatly reduced       
frame drops in the video stream. 

3. The Sun: In areas with too much sunlight or other          

bright lights, the IR receivers could be falsely triggered         
without a corresponding item use, causing players to be         
falsely hit. Our solution to this was to wrap the IR so            
they would only be triggered by IR blasts directed at          
them. This was only somewhat effective, but luckily the         
demo space in Weigand gym had sufficiently diffuse        
lighting to not activate the receivers. 

4. Budget: Since our project had a wide variety of         
physical components, the budget was a big risk factor.         
Although our budget for all three cars and all the gates           
fit within the $600 allotted, we were forced by our          
limited budget to purchase parts that did not meet our          
requirements, namely the RFID readers. To mitigate       
this risk, we originally planned to purchase only two         
cars’ worth of parts, giving us around $200 of slack to           
account for any problems that may have arisen with our          
parts, but we eventually opted to build all three cars          
instead of faster RFID readers. 

5. Personal schedules: Since two of the members of our         
team are booth chairs, we scheduled our working weeks         
around build-week. This meant that there were two        
weeks (spring break and build-week) that members of        
our team were not able to work. Our original schedule          
left slack during those weeks, but we eventually fell         
behind schedule nonetheless and had to redistribute       
tasks between us each week to whomever had fewer         
assignments due at the time. 

VII. RELATED WORK 
Though we could not find a product in the marketplace that           

approached the issue of AR in physical games quite like          
ARioKart, there were several projects that gave us inspiration         
when we were brainstorming.  

Chief amongst these was Anki Overdrive​[2]​. Anki Overdrive        
is a low-power bluetooth application that networks phones        
with physical HotWheels-esque cars. The cars themselves       
have AI that drive the car in a portable map, as a circuit mat              
that can be laid down. The inspiration was having real mobile           
vehicles networked into a game that was controlled through a          
general purpose computing device like a phone or a laptop.          
Anki Overdrive diverges technically from our project in that it          
lacks an AR component, and the cars are not controlled          
directly by the user but through AI.  

A more similar product which we researched was Hado         
Kart​[3]​, an augmented reality version of the game of Mario          
Kart that allows people to be seated in the kart they drive. This             
game, while having features from Mario Kart like items and          
coins, was not actually a race. Players compete to collect as           
many coins as they can in an arena of sorts. The product more             
brings Mario Kart into the world of bumper cars, than bumper           
cars into the world of Mario Kart.  

VIII. SUMMARY 
For the most part, our system met our most important           

requirements. ARioKart is a fun gaming experience that can         
be used for hours. Users enjoy playing a multiplayer game          
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with their friends where they get to drive physical cars over a            
completely customizable track. However, while ARioKart is       
an entertaining gaming system, it does have a few issues.  

One of the biggest problems our cars have is that they aren’t             
very easy to drive. While implementing differential steering        
was easier, and saved us from dealing with a lot of mechanical            
challenges, our cars suffer in their ability to turn. If we had            
more time, an obvious solution would to have simply chosen          
rear-wheel drive for the cars, with front wheel Ackerman         
steering. 

Additionally, the limited performance of the RFID scanner         
is a great hindrance to users during gameplay. Originally we          
had thought that we would be able to scan gates from the cars             
while they drove at top speed. We tried two different RFID           
readers and two different types of RFID tags, yet were unable           
to meet this specification. The cars need to be slowed down to            
a “scanning speed” to be able to reliably detect the gates as            
they drive over them. If we had more money allocated to us in             
our budget, we would’ve been able to purchase a high speed           
RFID reader, or if we have more time, we could’ve designed           
our own high speed RFID reader. 

A. Future work 
If we were to continue work on this project, more time           

alone would not be sufficient. Many of the issues we ran into            
over the course of the semester were due to budget constraints.           
As such, to truly keep working on our project we would need            
to have an expanded budget. Given such, there are a few           
important improvements we have already pinpointed.  

1. PCBs: The cars could very much benefit from PCBs,         
which would reduce clutter of circuits, reducing the        
possibility of wiring disconnects due to use. The PCB         
would also be valuable in ensuring the replicability of         
the IR circuits. As all three would have the same          
design, there would be no variation, as opposed to the          
current method in which errors in soldering could cause         
differences between each car.  

2. Ackermann Steering - The steering apparatus of the car,         
as previously mentioned, currently utilizes torque      
vectoring and differential steering. This form of       
steering, while widely used, is almost always       
supplemental to Ackermann steering, which provides      
finer control of direction. This would involve a slight         
re-design of the car to accommodate the physical        
implementation of Ackermann Steering, as well as a        
complete rework of the steering software. 

3. Data Transfer Through IR: Gameplay interactions could       
be enhanced if we were able to send data via the IR            
blaster, and receive that data on the various receivers on          
the cars. This would’ve also helped mitigate the issues         
with ambient sunlight in the demo area, and maybe our          
IR system more robust. 

B. Lessons Learned 
○ Never believe the posted hardware specs  

Several of the hardware parts that we purchased for our          
project did not meet the hardware specifications listed        

on the website. This applied to our motors and RFID          
scanners. We’d recommend that students buy hardware       
parts that surpass the minimum specification that they        
desire.  

○ Plan for setbacks 
While wrote and cliche, this advice is really the most          
important. Several times in our project we were forced         
to go back and redo an entire part as it did not perform             
as expected. It is important to allocate the time for          
things like this in your schedule. 

○ Choose a project within budget 
A lot of sacrifices in our project were made so that we            
could have the budget to manufacture three cars. We         
recommend that students research the price of all of the          
parts so they can better understand what they can really          
do with the budget allocated with them.  
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