Team A9: ARioKart

Sourav Panda
David Yang
Bujji Setty

ARioKart

* A slalom-style racing game with physical cars and gates and virtual items
> Low production cost
> Extended battery life
> Lively multiplayer gameplay
$>$ Dynamic AR

System Architecture

Game

Personal Computer

RPi

Pi Controller

Complete Solution

ATRECMARG

Metrics

Function	Requirement	Results
Video Stream Latency	$<100 \mathrm{~ms}$	$170+30 \mathrm{~ms}=200 \mathrm{~ms}$
Control/Sensor Latency	$<100 \mathrm{~ms}$	$<16.5 \mathrm{~ms}$
Battery Life	$\geq 30 \mathrm{~min}$	7 h 14 min
Top Speed	$\geq 3 \mathrm{mph}$	3.81 mph
Motor Speed Control	<1 car width deviance over 20 ft	$5 \mathrm{in}=2 / 3^{\text {rd }}$ car width
Turn Radius	$<5 \mathrm{ft}$ @ base speed	5.5 ft
RFID Detection Speed	\geq base speed	$0.76 \mathrm{mph}=1 / 4^{\text {th }}$ base speed
IR Range	$\geq 20 \mathrm{ft}$ (demo size)	$7 \mathrm{ft} \mathrm{w} / \mathrm{width}$ of $\pm 4.5 \mathrm{in}$

Latency

	Video Stream Latency	Control and Sensor Latency
Requirement	$<100 \mathrm{~ms}$	$<100 \mathrm{~ms}$
Validation Method	Displaying and capturing a timestamp	Measuring round-trip time for controller input to pi
Results	170 ms streaming +30 ms rendering $=$ 200 ms	$<16.5 \mathrm{~ms}$

Motor Metrics

	Motor Speed Control	Top Speed	Turning Radius
Requirement	<1 car width over 20ft	$\geq 3 \mathrm{mph}$	$<5 \mathrm{ft}$ @ base speed
Validation Method	Measured deviance after driving 20 ft without turn input	Calculated with top RPM and wheel radius	Drive car at base speed and turn
Result	5 in $=2 / 3^{\text {rd }}$ car width	3.81 mph	5.5 ft

Power \& Peripheral Metrics

	RFID Detection Speed	IR Range	Battery Life
Requirement	\geq base speed (3 mph)	$\geq 20 \mathrm{ft}$ (demo size)	$\geq 30 \mathrm{~min}$
Validation Method	Drove car repeatedly over the gate and varied the speed of the car	Varied the distance of the receiver while firing the blaster	Charge battery to full and run car until drained
Result	$1 / 4^{\text {th }}$ base speed $(0.76 \mathrm{mph})$	$7 \mathrm{ft} \mathrm{w/} \mathrm{width} \mathrm{of} \mathrm{ \pm 4.5in}$	7 h 14 min

Management

Lessons Learned

1. Choose a project within budget
2. Never believe the posted hardware specs
3. Plan for setbacks
