
1
18-500 Final Project Report: 03/03/2019

ARio Kart

Authors: Sourav Panda, Ranganath Selagamsetty, David Yang

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—An augmented reality racing game with networked
remote controlled vehicles. The basic concept of the game is
similar to Mario Kart, with a slalom-style user-specified race
track and various virtual items and power-ups to augment the
physical car race. The system consists of cars, gates, and
computers that run the game software and render the AR display
and interface. Compared to similar existing AR games, this game
would provide a more engaging AR experience with meaningful
interactions with the environment.

Index Terms—Augmented Reality, Computer Game,

Computer Vision, Infrared Detection, Object Detection, Remote
Control

I. INTRODUCTION
A NEW FRONTIER in human-computer interaction, augmented
reality is a technology that uses an interactive display of the
physical environment to enhance the user's real-world
experience [1]. Augmented reality has the potential to
transform everyday scenery into an information rich
environment for new immersive gameplay experiences.
Modern augmented reality games fail to reach the potential of
the medium as many of them confine the user experience to
static interactions with the background. This often amounts to
traditional games simply being overlaid onto a video stream
without taking advantage of the visible features of the current
environment.

The solution proposed in this paper, ARio Kart, aims to
improve upon existing AR games by unifying physical
components that interact with the surroundings and game
software that augments the display. ARio Kart is a
slalom-style racing game with physical cars and gates and
virtual items. Users interact with game software on their
laptops to operate remote controlled cars and see an
augmented video stream from the cars’ perspective. Though
related products, such as drones and ordinary RC cars, exist,
they have many shortcomings, including their cost and battery
life, and lack the AR aspect. ARio Kart will provide all the fun
of traditional RC cars with the added immersion of the
first-person Augmented Reality component.

II. DESIGN REQUIREMENTS
In order to deliver a high-quality AR racing game

experience, the implementation should meet the following
software and hardware design requirements.

A. Software Requirements
The primary design requirement for the software component

of the project is to ensure a seamless user experience. As such,
the video streaming component should deliver at least 720p

30fps video with a latency of no more than 100 ms. This value
was derived from the related field of online gaming, where
100 milliseconds is considered the upper bound for acceptable
latency in gameplay. A delay greater than this could induce
nausea as well as frustration due to lack of responsiveness.
This will be tested by measuring round-trip time within the
user and the car, and extrapolating one-way latency from this.

An additional requirement is making the game robust to user
input, which will be tested with unit tests in the game
software. To test the overall quality of the experience, we will
play the game.

B. Hardware Requirements
To guarantee that the physical vehicles and gates can

provide system software information about the state of the
game, the following requirements must be met.
 Each car must must have a controller that can set the motor
speeds with ± 2 rpm (derived as an acceptable tolerance given
the size and the 4.5 mph top speed of the car) of a desired
value.

rror .34%e = 2 rpm 2.56π in/rev*

4.5 mph 63360 in/mi / 60 min/hr* = 0

This allows standardization in speed control and ensures that
no car has an unfair advantage due to hardware discrepancies.
This requirement will be verified by comparing the speed
measured from a motor encoder with the desired target speed.

Each car will have an Radio Frequency Identification
scanner mounted to the bottom of the car that will be able to
detect a gate before the car completely passes over it, a latency
of no more than 81 ms (derived given the size and the top
speed of the car as well as the location of the scanner on the
car, 6.4 in before the rear bumper).

atency 0.8 msl = 6.4 in to rear

4.5 mph 63360 in/mi / 3600 s/hr* = 8

This allows the game software to accurately determine which
place each car is in after passing through a gate.

Each car will have an Infrared Emitter that should be able to
detect an Infrared Receiver mounted on another car with
variable degrees of accuracy at different distances (must at
least meet the following profile: 99% at 2 m, 95% at 5m, 90%
at 7m, 85% at 10m). This will allow cars to detect opponents
ahead for using items. This requirement will be verified be
placing the receiver circuit at various distances and recording
how many times the receiver can successfully detect a pulse
from the emitter.

2
18-500 Final Project Report: 03/03/2019

III. SYSTEM ARCHITECTURE AND INTERACTIONS

Fig. 1. Overall system architecture block diagram

A. Overall Architecture
The general design of the system follows the architecture

depicted in Fig. 1. From the highest level to the lowest, the
physical components are PCs that run the game software and
display the AR overlay, Cars with Raspberry Pis that control
the motor, IR, RFID, and camera modules, and gates that are
scanned by the cars. Each PC is connected to one car and the
game host. There are four major communication pathways
between the physical components in the system as shown in
Fig. 1, with communications over Wifi in black, IR in red, and
RFID in blue:

1. Between two PCs: Each PC runs an instance of the
game, with one acting as the game’s host and the
others as clients connected to the host.
Communication between PCs consists of game state
updates with item use and gate passage information
from their respective cars.

2. Between a PC and a car: Communication from the
PC to the car consists of player input with commands
for the physical components on the cars, such as
commands to set motor speed or commands to fire
the IR blaster. The car sends to the PC a constant
stream of video and discrete sensor data from the
RFID and IR modules.

3. Between two cars: A car following another car in a
race can fire its IR blaster at the IR receiver on the

car in front, causing it to stop if a valid item was
used.

4. Between a car and a gate: Cars passing over gates
will scan the gates to determine their position in the
race and on the course.

Detailed communication diagrams for the two major
interactions of item usage and gate scanning follow.

B. Item Interaction

Fig. 2. System interactions for item usage

The flow of interactions depicted above follows two
different paths depending generally on the type of item used:
instantaneous items and delayed items. Instantaneous items,
when fired by the user, take immediate action, sending a

3
18-500 Final Project Report: 03/03/2019

command down to the car to fire a IR blast. This blast, if a hit,
will be registered by other Car. A delayed item flows in the
opposite direction. Some items require greater knowledge of
the game state, for instance place, and therefore must be
passed through the PC Host. These are then forwarded to the
target. The target PC then forwards the correct consequence to
the car.

C. Gate Interaction

Fig. 3. System interactions for detecting passed gates

When the RFID Scanner in the car first passes over the gate,
the RFID Scanner will energize the tag and read the bit pattern
of the tag ID in the gate. This gate ID is then wired to the
onboard computer. The onboard computer pass this ID to the
the PC that it is networked with. The PC relays this
information, as well as as a timestamp of when the ID was
received to the other PCs running game instances to be able
determine what place the car is in. Since game-item
distribution happens only when a car passes over a gate, the
“host” PCs will provide the “client” PC an item, if that user
has earned a item.

IV. DESIGN TRADE STUDIES

A. Car Detection
Originally, we had planned for only using an assortment of

sensors to detect if an opponent car was directly in the line of
fire of a user’s car. To be able to do this, we would have
needed the sensor array to be able to transmit data related to
which car shot the item and what shot the item. This would
have allowed our PC servers to have knowledge of which cars
were affected by which items. This, in turn, would have
allowed our game to have more complex animations for item
usage (ie, seeking missiles, area-of-effect items). However, we
found that the circuit design for this type of data transmission
was far beyond what we had the time and resources to do. For
data transmission, we would’ve faced issued regarding clock
synchronization between two independent systems in motion

and require packet transfer occur extraordinarily fast.
Alternatively, we decided to simplify the interaction to the
point where a car simply needs to know if it was hit. We chose
to split car detection between an IR sensor array in addition to
computer vision on the video feed. IR is the preferred method
of transmission and detection as it is cheap, easy to design
circuitry around and is not a focus beam. These factors
mattered to us as our expenses push us very close to our limit,
we did not want to invest significant time in circuit design on
a sub-system of the project and so that we did not need to have
a large array of receivers on the cars. Since the cone of
transmission for an IR LED is very wide, we were allowed the
benefit of reducing the number of receiver photodiodes on
each car, thus reducing our cost and weight per car. Thus, we
believe that a combination of IR sensor and camera dependent
items would yield the best user experience.

B. Steering System
A trade-off was made between a more accurate Ackermann

steering system and a Differential System. For our project we
chose to go with a differential steering system, as the
Ackermann steering system added mechanical complexity to
an already mechanically complex project. Ackermann steering
kits were also much more expensive than their differential
counterparts. This, however, came at the cost of accuracy in
turning.

C. Communication Protocol
To meet our latency requirements for data transfers between

the PCs and Pis, we considered various communication
protocols, including TCP, UDP, and RTSP. TCP is something
we all had experience with, and its reliability and ubiquity
make it easy to work with. However, our research showed that
most modern live video streaming applications use some form
of UDP-based protocol due to its faster transmission with less
error correction overhead. Among the UDP-based alternatives,
the Real Time Streaming Protocol (RTSP) looked promising,
but we were unable to find high quality libraries that
supported it. UDP on its own would require us to write our
own error detection and correction, which would be difficult
because the video stream is compressed. We chose TCP
because of its fast development time and our experience with
it, but we could potentially switch to a faster protocol if we are
unable to meet our latency requirement with TCP.

D. Workload balance
As our project includes Raspberry Pis in every car as well as

PCs, naturally there were two places that we could have done
our computing. We decided that most of the compute would
be done on the more powerful PC’s, and the Raspberry Pi
would solely act as a slave device. This was done due to the
large difference in compute capability between the two
devices, however at the cost of higher network traffic and a
more complicated server structure.

4
18-500 Final Project Report: 03/03/2019

V. SYSTEM DESCRIPTION

A. PC Software

Fig. 4. Subsystem diagram for PC

The software run on the PCs can be separated into three
modules: game, video, and controller.

1. Game: The game software will manage state and
operations related to the race including information
about items and player place and progress. It is also
responsible for displaying a car’s video stream and
rendering an AR overlay with race and item
information. The game will be implemented in C#
using the Unity game engine, with the integrated
Vuforia engine for AR support, and Unity
Multiplayer for multiplayer matchmaking and
communication between game instances.

2. Video: The video module is responsible for receiving
the video stream from the Raspberry Pi on the car and
rendering it to the screen in a way compatible with
the AR engine. For this implementation, this module
takes the form of a C++ Directshow source filter,
which uses the Directshow Windows API to act as a
virtual camera device recognizable by Vuforia. The
source filter receives raw H.264 compressed video
from the Pi through TCP/IP over Wifi, decodes it
with the OpenH264 library, then draws it to the
screen.

3. Controller: The controller software receives input
from the player, converts it to commands for the car,
and sends those commands through TCP sockets to
the car, which then controls its physical components.
Players interact with their PCs through Xbox
controllers, which interface with the controller
software using the XInput.NET C# library. The
controller module also receives RFID and IR sensor
data from the Pis, which leads to game state updates
in the game software.

B. Onboard Software

Fig. 5. Subsystem diagram for Onboard Controller

The software run by the onboard computer and hardware
components on the cars can be separated into five discrete
modules: Controller, IR, Motor, RFID, and Camera.

1. Controller Module: Each Raspberry Pi will have
software that receives data from the four other
modules in the car and transmits this data over Wifi
to the PC that the onboard computer is networked
with. The controller software will receive inputs to
control the movement and actions of the car, whether
the IR receiver was triggered, the speed from the
motor encoder, the gate ID when passing over a gate
and the video stream from the camera. The controller
software will transmit whether the IR receiver was
triggered, the gate ID when passing over a gate and
the video stream from the camera to the PC it is
networked.

2. IR Module: The Raspberry Pi will have IR sensor
software that interfaces with the IR circuits on the
car. This software will receive commands passed
from the PC through the controller software
instructing the car to fire the IR blaster. The IR
sensor software will drive voltages to pulse the IR
blaster. This software will also alert the controller
software if the IR receiver circuit has been triggered
by an opponent's IR blast.

3. Motor Module: The Raspberry Pi will have software
that interfaces with the motor’s encoder chip as well
as the motor driver chip. It translates commands from
the PC into voltage levels for the L298N motor driver
circuits. The controller software, motor driver circuits
and Hall-effect encoders create a feedback control
loop that allows the onboard computer to accurately
set speed by modifying the PWM signal given to the
motor driver circuit.

4. RFID Module: The Raspberry Pi will have software
that interfaces with the RFID scanner on the car. The
controller software will interact with the circuit via
the SPI protocol. This protocol allows for high speed

5
18-500 Final Project Report: 03/03/2019

data transmission and is directly applicable as the
system follows a typical master-slave configuration.
The RFID scanner will be continuously reading and
will only alert the controller software when the
scanner has successfully detected a NFC tag ID from
a gate.

5. Camera Module: The Raspberry Pi will have
software that interfaces with a Pi Camera V2. The
camera supports live-streaming video in h.264 video
encoding format. The module is nothing more than a
pipe for this video to the controller to relay to the PC
where it will be processed.

C. Hardware and Manufacturing
1. Mechanical Design: The physical layout of the car

was designed to take into account the various
mechanical constraints of the modules described
above. These constraints included placing the RFID
scanner close to the bottom on the car to allow for
more accurate gate reading, evenly placing IR
receiver circuits around the car to allow item usage
on three sides of the car, designing an anti-shake
housing for the camera to prevent minor turbulence to
the video feed, distributing weight evenly from the
center of mass to prevent drift during normal use and
placing the motor driver circuit in a location that has
easy access to air-cooling for better motor control
performance. Seven IR LEDs are used in a circular
configuration in order to improve the range that the
IR blast can travel with triggered.

2. Analog Design: Two circuits were designed using

analog components to achieve the specifications
needed for this project. These circuits were designed
to minimize power consumption, maximize range of
use and facilitate detection. With these design
constraints in mind, the transmitter circuit shown in
Fig. 7 makes use a resistor-capacitor configuration
(resistors R1 and R2 and capacitor C1) to set the
frequency of the NE555 Timer chip to 1kHz. This
timer will drive a pulsing signal to T1. When the IR
software drives T4 with a logic high, the pulsing
signal is allowed to propagate to the seven IR LEDs,
allowing them to blast a signal forward. C2 is simply
used as a decoupling capacitor. The IR receiver
circuit shown in Fig 8 makes use of a double gated
input system to reduce power draw and act as a
low-cost analog to digital converter by driving input
signals to power rail voltages. The double-gated
system allows power to only be drawn when the
receiver photodiode is triggered, thus minimizing
power consumption.

Fig. 6. 3D model for the frame of the car.

Fig. 7. Circuit diagram for IR blaster

Fig. 8. Circuit Diagram for IR receiver

6
18-500 Final Project Report: 03/03/2019

VI. PROJECT MANAGEMENT

A. Schedule
Refer to end of report full schedule. Some reordering of

tasks occurred but the general content of the schedule has not
changed since the proposal.

B. Team Member Responsibilities
Broadly speaking, David is responsible for software related

to the game and PCs, Sourav is responsible for software
related to the Pi and its hardware, and Bujji is responsible for
hardware including the physical design of the cars and circuit
design, though of course we will work together when we begin
integrating our components. Refer to the attached schedule for
a detailed breakdown of tasks and responsibilities—David’s
tasks are in yellow, Sourav’s in blue, and Bujji’s in green.

C. Budget
Refer to end of report for budget details and bill of

materials.

D. Risk Management
1. Camera Turbulence: It was discovered that video

feed stream from a small vehicle often suffers from
micro-jitters. After investigating into solutions to this
problem, we were unable to find affordable hardware
solutions and effective real-time software to repair
the blur seen in the video feed. To mitigate this risk,
we have designed a low-cost camera housing that
should remove minute pitch turbulence.

2. Video-Streaming Latency: A possible risk with our
project is the latency in the stream of the video.
Between the Raspberry Pi and the CMU Device
Network, latency might be introduced simply through
the artifacts of the hardware we use.

3. Budget: Since our project has a wide variety of
physical components, the budget is a big risk factor.
Although our current budget for all three cars and all
the gates fits in the $600 allotted, we have basically
no slack for broken parts or components we may not
have accounted for. To mitigate this risk, we are
planning to buy parts for only two cars until all other
parts have been implemented. This would give us
around $200 of slack to account for any problems
that might arise with our parts.

4. Personal schedules: Since two of the members of our
team are booth chairs, we have scheduled our
working weeks around build-week. This means that
there are two weeks (spring break and build-week)
that members of our team will not be able to work.
To mitigate this risk, we have reordered the tasks in
our schedule accordingly.

REFERENCES
[1] Techopedia. “What is Augmented Reality?”,

https://www.techopedia.com/definition/4776/augmented-reality-ar

https://www.techopedia.com/definition/4776/augmented-reality-ar

7
18-500 Final Project Report: 03/03/2019

8
18-500 Final Project Report: 03/03/2019

