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Abstract—Our capstone project is a hardware emulator of the 

Nintendo Entertainment System (NES) synthesized on the DE2-

115 FPGA board. This system loads and runs NES game ROMs. 

It allows for up to two users to send inputs via the original NES 

controllers connected the FPGA’s GPIO pins. Visuals are 

displayed on a monitor using a VGA controller and audio is 

transmitted through the AUX port with the on-board audio codec. 

Up to 16 games can be loaded into SRAM and toggled between 

them with the board’s switches. 

 

I. INTRODUCTION 

ore than 30 years ago the NES made its debut and it 

became the bestselling video game console of its time. 

Fast-forward to present day and the NES is still very much 

loved. Most notably, it can be observed with Nintendo’s release 

of the NES Classic, a modern NES emulator, that was sold-out 

almost instantaneously. Still, this was a software emulator and 

many like these exist ready to be downloaded. We saw this as a 

call to design and implement a hardware NES emulator on an 

FPGA. We were motivated by our love for retro-gaming and 

our want to challenge ourselves with building and integrating a 

full system. Moreover, this was a perfect opportunity to 

familiarize ourselves with peripherals such as video and audio. 

But we wanted to do more than simply recreate the NES. These 

software emulators had the pleasant feature of save states and 

we wanted to add that as well. We wanted to see how the NES 

was made and make it our own.

 

II. DESIGN REQUIREMENTS 

• PPU - the Picture Processing Unit will be running at 5.36 

MHz 

o the PPU will render frames 100% pixel-accurate.  

o the PPU will have MMIO registers in the CPU’s 

address space to manage communication with the 

CPU.  

o The communication through the MMIO registers will 

also be cycle accurate, including the DMA of the 

OAM.  

o the PPU will have several internal memory blocks: 

256 bytes of OAM (stores sprites), 2KB of VRAM 

(stores background tiles), 32 bytes of palette RAM 

(stores color information).  

o As in the original hardware, our system will support a 

maximum of 8 sprites per scanline.  

o Static frame rendering based on a VRAM dump will 

match cycle accurate emulator (Mesen) 

 

 

• CPU - the Central Processing Unit will be running at 

1.78 MHz 

o The CPU will run all documented instructions 

correctly 

o The CPU will run instructions 100% cycle accurate 

o The CPU will support IRQ and NMI 

o The CPU does not need to implement undocumented 

instructions 

 

• APU - the Audio Processing Unit will be running at 1.78 

MHz 

o The APU will have the five channels: pulse 1 & 2 , 

triangle, noise, and data modulation 

o The APU will fire IRQ’s when the DMC finishes its 

samples 

o The APU will receive channel control signals from the 

APU in MMIO registers at addresses 0x4000-0x4017 

in shared RAM 

o The APU will use a non-linear mixer to create a final 

wave without distortion 

o The frame counter will generate the channel clocks to 

keep output waves in phase and in their corresponding 

frequency 
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• VGA 

o System will target the 640x480 @ 60Hz 

industry standard 

• Controllers 

o Our games will be controlled with two original 

NES controllers 

o Controllers will be mapped to specific MMIO 

addresses on the CPU’s address space 

• SD Card 

o The system will support loading ROMs from an 

SD card  

o The system will also support saving/loading 

game progress to/from an SD card  

• Save States 

o The save state module will be able to save the 

state of the system into memory and then load 

the data back into the system later such that the 

system will have the exact same state that it had 

before 

o The user will be able to save and load states 

with buttons on the FPGA 

From the list above, some of the requirements are worth 

noting. 

We required that the CPU should be 100% cycle accurate. 

The motivation for this is that the system is driven by the 

CPU, and many of the interactions (especially between the 

PPU and CPU) have very specific timing requirements. If 

these timing requirements are not held, it is much more likely 

that the game running on the system will deviate from the 

expected behavior. This could lead to glitches, and possibly 

even have the game freeze. 

The cycle accurate requirement for the PPU register 

interface is very important because it ensures timed events on 

the CPU are accurate. Keeping these requirements allows us to 

run more complex games such as F1 Race that update a 

scrolling background mid frame. This is a very time sensitive 

operation that could not be accomplished if the register 

interface was not cycle accurate.  

 

To stay true to the original NES’s specs, our system’s major 

parameters are summarized in the following table:  

Master Clock Speed 21.477272 MHz 

CPU Clock Speed 1.79 MHz  (Master / 12) 

APU Frame Counter Rate 60 Hz 

PPU Clock Speed 5.36 MHz (Master / 4) 

Height of Picture 240 Scanline (corresponds to 

240 pixels) 

Length of Vertical 

Blanking 

20 scanlines 

Total number of CPU 

cycles per frame 

89341.5 / 3 = 29780.5 

Vertical scan rate 60 Hz 

Horizontal scan rate 31 KHz 

 

At the very least our system should be able to: load the 

original Donkey Kong from an SD card, allow the player to 

use original NES controllers to play the game, let the player 

click a button on the FPGA to save their game state to the SD 

card, let the player click an alternate button on the FPGA to 

load their game state from the SD card.   
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

The overall system architecture is comprised of 3 major 

components: the CPU, the PPU and the APU.  

When a game ROM gets loaded, the CPU will start reading 

and executing instructions. The instructions could correspond 

to reading user input from the controller, modifying sprites or 

background tiles to make a change on screen, changing the 

audio levels of the APU or arithmetic operations for updating 

game state. Most games implement their game engine as an IRQ 

handler that runs whenever the PPU finishes rendering a frame. 

The controllers will be connected to the FPGA via GPIO pins 

that the CPU will read and interpret accordingly.  

The PPU’s job is to look at VRAM and output the 

corresponding frame pixel-by-pixel. The pixel-by-pixel 

rendering is fed into a VGA module that converts the pixel’s 

color to RGB values to output to the display. Additionally, the 

PPU has to perform reads and writes of VRAM on behalf of the 

CPU. The PPU also provides status information via MMIO 

registers on the CPU’s address space so that the CPU knows 

when it is safe to continue execution.  The CPU restarts 

execution of the game code when the PPU raises the VBlank 

IRQ, which occurs when the PPU has finished rendering a 

frame and is no longer accessing VRAM so that CPU can 

modify it. Consequently, a game only has about 2273 CPU 

cycles to perform game updates before the PPU takes over 

control and starts rendering the updates.  

The APU is controlled by the CPU writes to memory mapped 

registers 0x4000-0x4017. These writes are intended to change 

the frequency, length, and volume of the APU channels. The 

APU channels that were implemented include the two pulse 

channels, noise, and triangle channel. The channels function 

independently from one another and are responsible for 

continuously generating their corresponding wave. The outputs 

of the channels are then passed into a non-linear mixer to 

determine the final audio. All the while, the frame counter is in 

charge of clocking and timing for the APU internals. It also 

raises IRQs under special circumstances. The DMC channel is 

the fifth channel in the APU, but it was not finalized and 

removed due to unwanted effects on audio. 

The ROM was originally going to be loaded from an SD card 

using the NIOS II softcore, however due to time constraints we 

decided to load games from SRAM instead. In the end we wrote 

a script that took several game ROMs and combined them into 

one hex file that we then loaded on the FPGA using Terasic’s 

control panel for the DE2-115. Once on the chip we used 

switches on the board to select what game to play and pressing 

one of the keys copied the game from SRAM to internal 

BRAMs used by the PPU and CPU. Initially we also wanted to 

support save states however we couldn’t meet this goal. 

  

 
(a) 

 

Fig. 1. System picture. (a) Block diagram 

IV. DESIGN TRADE STUDIES 

Since our goal for capstone was to recreate the NES, many 

of our design choices were limited. We needed to strictly follow 

the expected behavior of the three major subsystems: CPU, 

PPU, and APU. If we were to diverge from this, the likelihood 

of properly emulating the NES hardware would be slim. Still, 

due to some vagueness in the documentation we had the liberty 

of inferring our own designs. 

One of the more interesting choices we had to make was how 

to handle the clock inside of our CPU. The MOS 6502 has a 

two-phase clock, which means that is drives two clock signals, 

PHI1 and PHI2, which are mutually exclusive; one is high while 

the other is low. Most of the internal registers are clocked by 

the clock signal PHI1, but the memory bus signals are clocked 

on PHI2. In implementing the CPU, we could either use this 

two clock setup, or instead have one clock, and ensure that 

memory data arrives at the correct time relative to what the 

registered elements observe. This ended up being as simple as 

delaying memory by one cycle. While this wasn’t the true 

implementation of the original device, our system would not be 

able to tell any differences because of it, and it was far simpler 

to add this memory delay than to deal with two clock signals in 

a closely interconnected system.  

In the original system the PPU shared a memory bus with the 

CPU which meant that the CPU could use leftover values on the 

bus, however this behavior is only used by very few games and 

in order to simplify out design we had disjoint memory buses 

for the CPU and PPU this made the memory controllers simpler 

to manage and debug, while still being compatible with the vast 

majority of games.  

Initially the PPU read background data differently than the 

original. Specifically, it didn’t share the PPUADDR register 

between the background rendering and the register interface. 

This decoupling of the PPUADDR made it so that initial 

versions of the background rendering modules were easier to 

develop and debug. This decoupling of the register meant that 

scrolling games would not work because they rely on this exact 

behavior. Once the entire system was connected and non-

scrolling games worked, I went back and rewrote background 

rendering so that it more closely matched the original 

implementation. 

The CPU and PPU require strict cycle accuracy to achieve 

proper game rendering. Some games require communication 
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between these two units while the monitor is updating the 

image. Being one cycle off would result in noticeably incorrect 

pixel placement and color. However, the CPU and APU 

communication is significantly more lenient. The APU has a 

literal array of registers that hold the values written by the CPU 

before they are seen by the APU’s components. This means that 

the APU channels do not see the most recent changes until the 

next CPU cycle. 

This design choice is acceptable since it is essentially 

delaying the audio output for less than a millisecond so the 

difference would not be noticeable. Although having the CPU 

write directly into the APU’s channels was doable, at the time 

of implementation it was much easier to reason over and debug 

the system by having all the signals stored in this register array. 

It is worth noting that the frame counter interfaced directly with 

the CPU’s writes. The reason for this is because the frame 

counter could raise IRQ’s. Some games uses these IRQ’s for 

timing and synchronization so cycle accuracy was crucial for 

the frame counter. 

 A major difference between our implementation and the 

original was in the mixing scheme. The NES had 5 Digital to 

Analog Converters (DAC), one for each audio channel. The 

FPGA board we were synthesizing on only has one DAC that 

was part of 24-bit audio codec that could drive the audio jack. 

One option was to purchase some more DACs and drive them 

with the FPGA GPIO pins. This would require wiring some 

external components on a breadboard and then driving a 

speaker. Even though this would most closely capture the audio 

of the NES, we preferred if we could drive a speaker with a 

standard AUX cable. So, we opted to use a lookup table to 

approximate the non-linear mixing of the DACs and use the 

audio codec for its single DAC and capability to drive the AUX 

port. 

 One final design tradeoff we considered was how we 

would store our games and how where we would put the RAMs 

for our PPU and CPU. For our RAMs we had two options: 

Block RAM or SRAM. The advantages of BRAM is that we 

can use two BRAM blocks, so the CPU and PPU don’t need to 

worry about stealing the memory ports from each other’s. The 

advantage of using SRAM is that it is larger, and that the game 

ROM would likely be loaded into SRAM as well. The main 

drawback of using SRAM is that it only has one set of input 

wires, which means that the CPU and PPU could not use it 

simultaneously. It would still be possible to use SRAM in this 

way, since we could interleave these devices accesses to it on 

the cycles when each device is inactive. We decided against this 

since this interleaving would likely lead to problems, and the 

BRAM was more than large enough to fit our RAMs. 

For storing our games, we had three main options: store them 

in Block RAM, SRAM, or on an SD card. The BRAM would 

have been very easy to use since the game ROM can be 

synthesized directly into BRAM, and we were already familiar 

with using BRAM since our RAMs are also in BRAM. It is also 

good because it means that the CPU and PPU don’t have to 

worry about competing for any data lines since the ROM can 

be distributed into different BRAMs for program ROM and 

character ROM. The main drawback is that the overall capacity 

is small and would limit the number of games and save files we 

could store on the board at one time. This limitation is even 

worse if we were using games outside of mapper 0, since they 

tend to be larger. The SRAM is advantageous because we can 

fit more games in it since is has a 2MB capacity, but it is 

disadvantageous because it’s a little harder to program with 

Quartus, and because the CPU and PPU can’t access is 

simultaneously. The main advantage of the SD card is that is is 

persistent, which means we don’t need to reprogram it, and that 

it could even maintain save data. The drawback of the SD card 

is that there is a lot of overhead in communicating with it, and 

that the components of our system wouldn’t be able to 

communicate with it quickly enough for our games to run cycle 

accurately. In the end we ended up loading our games onto 

SRAM, and then selectively loading one active game at a time 

into the BRAM. 

V. TESTING AND VERIFICATION 

 

In order to test our overall system, we will first test our 

smaller subcomponents to ensure they work correctly. It will 

be crucial to do individual testing first because our overall 

system will likely not work if any of the individual 

components fail, especially the CPU and the PPU. Also the 

complexity of testing the system as a whole is much more 

complicated to do automatically. There are three major metrics 

we are going to benchmark: frame accuracy, cycle accuracy, 

and memory accuracy. 

Most of our PPU testing for frame accuracy will be heavily 

reliant on the Mesen emulator. We chose it because it has a 

very good debugger and it is cycle accurate. It allows you to 

analyze every component of the NES at runtime, set 

breakpoints and most importantly for us it lets you copy the 

entire PPU memory. This is how we generate static VRAM 

dumps which we then feed to our hardware implementation to 

generate a frame. To generate a frame in our hardware we 

have a testbench that uses SystemVerilog to write the color of 

every pixel in our frame to a text file. We then have a python 

script that takes in this text file and compares it with a 

reference frame generated by the Mesen emulator. This way 

we can create any number of test vectors by loading any game 

ROM to the emulator, pausing at a frame that has behavior we 

are testing, and copying the static VRAM to our hardware 

emulator. Some of the behavior we are looking to test: frames 

with no sprites, frames with sprites, frames with more than 8 

sprites on a scanline (this was a restriction on the original 

NES), frames with a scrolled background horizontally, frames 

with a scrolled background vertically. So far we have 5 tests 

of frames with sprites and no sprites we are using in 

development, but we plan on creating quite a few more when 

we get to more complicated parts of the PPU. In terms of PPU 

cycle accuracy, we plan on using counters and SystemVerilog 

assertions to ensure that all the signals get triggered on the 

correct cycle. We also need to ensure that our rendering 

process takes the exact number of cycles as in the original 

even if our implementation differs slightly. We will also 

ensure that every operation on the PPU’s registers takes the 

exact amount of cycles as in the original spec, again we will 
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use assertions to verify this. For instance, DMA for the PPU 

needs to take 513 cycles if on an even CPU cycle or 514 

cycles if on an odd CPU cycle.  

In terms of accuracy, for the CPU we will benchmark our 

implementation against a reference implementation of the 

6502. We will run a handpicked set of benchmark tests to 

verify that every instruction and addressing mode works 

adequately.  

For the APU we can also use the Mesen emulator to look at 

its registers and compare them to our own to ensure we are 

producing the correct sounds. Similar to the PPU testing we 

can load any game we would like and probe its values at a 

given cycle.  

 

Some of our frame accuracy results: 

Test Accuracy 

balloon_fight_trace0 99.99% 

balloon_fight_trace1 99.43% 

balloon_fight_trace2 100.00% 

donkey_kong_3_trace0 100.00% 

donkey_kong_3_trace1 100.00% 

donkey_kong_3_trace2 100.00% 

tag_team_wrestling0 100.00% 

tag_team_wrestling1 100.00% 

tag_team_wrestling2 100.00% 

super_mario_bros0 100.00% 

super_mario_bros1 100.00% 

super_mario_bros2 100.00% 

 

These results represent how closely our generated frames 

match a known cycle accurate emulator such as Mesen. Most 

games we reached the intended accuracy, however for some of 

our balloon fight traces we did not generate some pixels 

correctly. I did not look too deeply as to why this was 

occurring but I believe it was an issue with how I acquired the 

traces.  

 

We wrote a testbench that tested specific registers in the PPU 

here are our results.  

 

Test Name Description Status 

OAMDMA Tests the OAMDMA register Passed 

OAMDATA Tests the OAMDATA register Passed 

OAMDMA timing Tests the timing of OAMDMA Passed 

PPUDATA Tests the PPUDATA register Passed 

 

We used tests from the NES wiki to verify that our sprite 0 hit 

was correct.  

 

Test Name Description Status 

01.basic Tests basic sprite 0 detection Passed 

02.alignment 

Tests alignment of the detection 

with cpu cycle Passed 

03.corners 

Ensures correct sprite 0 behavior 

in the corners Passed 

04.flip 

Ensures correct sprite 0 behavior 

when fliping a sprite Passed 

05.left_clip 

Ensures correct sprite 0 behavior 

when left side of the screen is 

clipped out Passed 

06.right_edge 

Ensures correct sprite 0 behavior 

in the right edge Passed 

07.screen_bottom 

Ensures correct sprite 0 behavior 

in the bottom of the screen Passed 

08.double_height 

Ensures correct sprite 0 when 

using 8x16 sprites Failed 

09.timing_basics 

Ensures sprite 0 hit timing to 

within 12 or so PPU clocks. Failed 

10.timing_order 

Tests sprite 0 hit timing in case 

where multiple sprites hit Failed 

11.edge_timing 

Tests sprite 0 hit timing for which 

pixel it first reports hit on when 

some pixels are under clip, or at or 

beyond right edge. Passed 

 

For the APU we used NES tests as well: 

 

Test 

Name Description Status 

reset Tests APU power and reset state Passed 

pulse div 

Tests frequency timer of pulse 

waves Passed 

env Tests envelopes Passed 

sweep 

Tests the overflow and cutoff of 

sweep unit Passed 

timers 

Tests the frequency of all 

channels 

Failed: noise, 

dmc 

tri lin Tests triangle linear counter Passed 

volume 

Tests the volume of all 5 

channels Failed 

apu test Array of tests Inconclusive 
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To verify the correctness of the CPU we decided to use a 

ROM that tested each instruction in the 6502 against a 

reference implementation. The test is called nestest.nes and 

can be found in the NES wiki. We passed the entire test.  

 

Here is a list of games that the CPU can run: 

 

Games that are 

playable 

Load but still have 

issues 

Don’t 

Load 

Balloon Fight B-Wings Galaxian 

Bomberman   

Donkey Kong   

Donkey Kong 3   

Donkey Kong Jr   

Donkey Kong Jr Math   

Ice-Hockey   

Galaga   

Mario Bros   

Pac-Land   

Pac-Man   

Space Invaders   

Super Mario Bros   

Soccer   

Spelunker   

Tennis   

Xevious   

Tag Team Wrestling   

Ice Climbers   

1942   

Baseball   

Excitebike   

Kung Fu   

F-1 Race   

 

 

 

 

 

 

VI. SYSTEM DESCRIPTION 

A. CPU 

Our CPU is a recreation of the MOS 6502, with some slight 

differences. The main differences from the MOS 6502 are that 

we will not support decimal mode addition, since this feature 

was removed on the NES, and we will not support 

undocumented opcodes, since only a small subset of games use 

these. 

The MOS 6502 is an 8-bit, microcoded processor, with a 16-

bit address space. The architectural state of the processor 

includes the 16-bit program counter (PC) and the following 8-

bit registers: the accumulator (A), two index registers (X and 

Y), stack pointer (SP), and status flags. The status flags include 

7 flags: the negative flag, overflow flag, break flag, decimal 

flag, interrupt flag, zero flag, and carry flag. 

To interface with memory, the MOS 6502 has a 16-bit 

memory address line (ADDR), a single bit read and write line, 

and an 8-bit data line, which we have split into a data_out line 

(for reads) and a data_in line (for writes). We also added an an 

internal register for the previously read value to the memory 

controller. The read line is active on every cycle, so the CPU 

either reads or writes on every cycle. The address is registered, 

but it is also write-through, so the memory address does not 

need to be reasserted to access the  don’t need to change the 

address if you want to keep accessing the same address in 

memory, and there is only a delay of one cycle per each read, 

even for new addresses. 

Our ALU is fairly straightforward. It takes in two 8-bit values 

(alu_src1 and alu_src2), a single bit source 2 invert signal 

(alu_src2_invert), a single bit carry-in (alu_c_in), and an 

operation (alu_op), and produces an 8-bit output (alu_out), a 

single bit carry-out signal (alu_c_out), a single bit zero-out 

signal (alu_z_out), and a single bit overflow signal (alu_v_out). 

The alu operations are add, xor, or, and, shift left, shift right, 

and hold. The alu does not operate combinationally, so all of 

the output signals are registered, which is necessary for some 

addressing modes. The hold operation just keeps the outputs of 

the alu steady. 

These are the main elements of the datapath. The registers 

primarily interact with each other and memory through the 

ALU. To move a value from A to X, for example, A is moved 

to alu_src1 and 0 is moved to alu_src2, 0 to alu_c_in, and add 

to alu_op. The alu_output would then be moved into Y on the 

following cycle. An 8-bit value can be moved directly into the 

status register, or individual flags can be set, cleared, or set 

based on the outputs of the alu. The PC has a special 16-bit 

incrementor, so its value can be updated without needing to use 

the ALU. Also note that PC and ADDR can be split into 

separate 8-bit halves, since it is necessary in many cases to 

move an 8-bit value into just one half of these two addresses. 

To manage the datapath, we need our control signals. The 

control signals are dictated by each instruction. Every 

instruction has the same first two steps: fetch and decode. At 

the beginning of each instruction, the only known is the PC, or 
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the address of the instruction, so fetch just issues a read to 

memory at the address of the PC and increments the PC. In 

decode, we have the actual opcode of the instruction available, 

but we still need to interpret it to figure out what actually needs 

to be done. Each opcode specifies an instruction and an 

addressing mode. 

Many opcodes have a vector of control signals associated 

with them. These signals can specify ALU sources, ALU output 

destinations, ALU operations, branch conditions, flag setting 

conditions, etc. It is expected that the alu operation happens 

prior to the register write back and flag setting. The control 

signal vector does not specify when each operation needs to be 

performed, but rather, that these operations need to be done 

during the instruction’s lifetime. 

 Every addressing mode has a specific sequence of control 

vectors (the microcode) that are used to manage which reads, 

writes, alu operations, and register writes happen, and when. 

The control vector can specify what values to move into the 

address line, the read signal, what values to move into the PC, 

whether or not to skip a line in the microcode, whether or not to 

halt the microcode, when to begin fetching the next instruction, 

etc. 

 A link to the CPU’s microcode that we’ve written so far 

has been included in our references. 

 Although the MOS 6502 is a relatively simple CPU, it still 

has some instruction level parallelism. The CPU can fetch the 

next instruction, even if it still finishing up an instruction, if the 

instruction if it is still working on will not use memory for the 

duration of its execution. Some instructions which only read 

from memory, such as logical operations, loads, and 

comparisons fit this category. In many cases an instruction will 

run for two cycles while the succeeding instruction is in fetch 

and decode, though this doesn’t create any data hazards since 

none of the registers are accessed in fetch or decode. In decode, 

we need to figure out what the vector of control signals should 

be, what line of microcode to jump to, whether we need to 

increment the PC again, and whether to start fetching the next 

instruction on the following cycle. The decoder module is 

meant to take in an opcode and figure out all of these. Note that 

some addressing modes specify operands, and in these cases we 

need to increment the PC while still in decode. The uCode ROM 

is just a memory that stores vectors of microcode control 

signals. 

The CPU also has two interrupt signals, which are the 

interrupt request (IRQ) and non-maskable interrupt (NMI). 

These interrupts can trigger an interrupt handler to be run in the 

CPU in place of an instruction. These interrupts can come from 

the APU and PPU when they need to communicate to the CPU. 

In addition to the interrupts, the CPU can share information 

with the APU and PPU with shared memory. The CPU shares 

8 8-bit register with the PPU as part of its address space, and it 

shares an additional 24 8-bit registers with the APU as well. The 

first two Kilo-Bytes of the address space are reserved as the 

CPU’s RAM, and will be implemented with block RAMs. The 

top 48 Kilo-Bytes of the CPU’s address space is the cartridge 

space, which is where the games’ instructions live. We will use 

the FPGA’s SRAM to implement the cartridge space. The 

remaining space in the address space just maps to the same 

portions listed previously, so multiple different addresses will 

map to identical portions of memory. 

 

B. PPU 

The PPU (Picture Processing Unit, is responsible of 

rendering the game’s frames and displaying them on a monitor 
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via VGA cable. The PPU has two main roles: create an 

interface to interact with the CPU in memory and display the 

appropriate frames on screen. 

First a brief overview of the memory layout and how sprites 

are represented internally. The pixel information to display on-

screen is not kept on a pixel by pixel basis, instead pixels are 

grouped into tiles which correspond to an 8x8 pixel area. 

These tiles are kept in the game’s ROM. From the PPU’s 

perspective, however, the tiles are kept in the first 8KB of the 

PPU’s address space. These 8KB are split into two tables 

called Pattern Tables, one holds tile information for sprites 

and the other for backgrounds. The layout of backgrounds is 

kept in the Nametable, and it is on a tile basis. In other words, 

an entry in the Nametable corresponds to a tile index which is 

an address in the Pattern Table. Sprite information is kept in a 

table called OAM, there are 4 bytes per sprite corresponding 

to the x position, y position, the tile index, and sprite attributes 

(such as vertical or horizontal flipping). Finally, there is the 

Palette RAM which holds 4 palettes (sets of colors) tiles. 

Communicating with the CPU is done through a set of 

registers that allow it to write to VRAM and OAM, which 

control background tiles and sprite tiles respectively. By 

writing to these, the CPU can modify what gets rendered. 

Other registers let the CPU specify an X and Y scroll so that 

tiles on screen give the illusion of scrolling. 

The controller register (PPUCTRL) is at address 0x2000 

(of CPU’s address space). This is a write only register that 

allows the CPU to set the following attributes: base nametable 

address (where in VRAM the background tile information is 

read from),  set the stride for how to access the PPUs VRAM 

either +1 or +32, specify what pattern table to use for sprites, 

specify what pattern table to use for background tiles, and 

whether the PPU should generate a Non Maskable Interrupt to 

the CPU at the start of the vertical blanking interval. 

The mask register (PPUMASK) is at address 0x2001. This 

is a write only register that allows the CPU to control how the 

PPU renders sprites, backgrounds, and colors. Specifically, 

there are bits to control: greyscale (give pixels a greyer look), 

whether the PPU should render backgrounds or sprites on the 

leftmost 8 pixels of the screen, hide background, hide sprites, 

and change RGB color intensities.  

The status register (PPUSTATUS) is at address 0x2002. 

This is a read only register that allows the CPU to know what 

the state of the PPU is. This register is often used for timed 

events, specifically by knowing when the PPU has reached a 

specific pixel on the screen. The most important flags in this 

register are the Sprite 0 hit, which gets triggered when a 

special background tile overlaps another special sprite tile, and 

the Vblank flag, which gets triggered when vertical blanking 

phase begins.  

The OAM address register (OAMADDR) is at address 

0x2003. This is a write only register that specifies at what 

location of the OAM (memory that holds sprite information) 

the CPU wants to write to.  

The OAM data register (OAMDATA) is at address 0x2004. 

This is a read and write register that specifies the data you 

want to write to address in OAMADDR. OAMADDR is 

incremented after each write to OAMDATA. 

The scroll register (PPUSCROLL) is at address 0x2005. 

This is a write only register that allows the CPU to specify 

what the top left corner pixel should get rendered. This allows 

pixel-granular scrolling to work and was a great feature of the 

NES at the time.  
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The address register (PPUADDR) is at address 0x2006. 

This is a write only register that allows the CPU to specify at 

what address in VRAM to write data to. This register is used 

in conjunction with the PPUDATA register to fill in the 

PPU’s VRAM with background tile layouts.  

The data register (PPUDATA) is at address 0x2007. This is 

a read and write register which allows the CPU to specify the 

data to write to VRAM. After each write the PPUADDR 

register is incremented by 1 or 32 depending on the stride bit 

specified in the PPUCTRL register. 

The OAM DMA (OAMDMA) is at address 0x4014. This is 

a write register that allows the CPU to perform DMA on the 

PPU’s VRAM. The CPU only has to write one byte YY to this 

address and the PPU will copy the data from range 0xYY00 -

YYFF of the CPU’s memory into the PPU’s internal OAM.   

The PPU will display pixels on a monitor through VGA. 

Depending on your geographic location, the original NES was 

engineered to display images on the NTSC or PAL video 

standards. The two video standards have distinct frequencies 

they run at. The original NTSC video standard has a horizontal 

refresh rate of 15KHz, that is horizontal scan lines are fed to 

the display at 15000 per second. However, modern VGA has a 

horizontal refresh rate of 31KHz, so we have designed our 

system to render frames at the original 15KHz but output them 

at 31KHz. This is done by running the VGA module at twice 

the frequency of the PPU, and either: outputting the same 

scanline twice at double the speed or outputting the scanline at 

double the speed followed by a black scanline. The latter 

option will give our games a retro CRT-like look, so we will 

be opting for this initially. If we notice that the image is too 

dark, and we don’t like how it looks we will revert to the first 

option. In order to accommodate the VGA interface and to use 

the resources we have on the FPGA more effectively we 

modified the rendering process of the original NES, while 

keeping the overall cycle counts the same. 

From the PPU’s perspective the rendering process takes 262 

scanlines, each one outputting 341 ‘dots’ (can think of them as 

pixels but only the first 256 ‘dots’ will be visible on screen) 

one per cycle. The first 240 scan lines are in charge of 

rendering the visible pixels, this is accomplished by rendering 

pixels into a buffer that is passed to the VGA module after a 

scanline. For each pixel at a particular position (x,y) we 

calculate its color by looking up the tile and color information 

in VRAM, OAM, and palette RAM based on x and y. We then 

write this color value into the previously mentioned buffer and 

we move on to the next pixel. For each scanline the first 256 

cycles correspond to visible pixels and the remaining 85 

cycles are used for the VGA’s horizontal sync. The 241st and 

242nd scan lines will be idle scanlines. They maintain the 

same cycle counts as in the original NES. Scanlines 243 - 262 

will correspond to the VGA’s vertical sync.  

From the VGA’s perspective, the process is similar. However, 

instead of having 262 scanlines, we will have 512 to 

compensate for twice the PPU’s frequency. Each scanline will 

also have 341 ‘dots’. After a PPU scanline is done rendering, 

we will pipeline it to another buffer in the VGA which will 

start outputting the pixels. Because of their different clocks, 

one PPU scanline corresponds to two VGA scanlines, thus the 

VGA will display the PPU’s rendered scanline twice or once 

followed by a black scanline, depending on the look we want. 

Since the VGA will output scanlines at double the frequency 

of the PPU we will achieve the 31KHz horizontal refresh rate 

needed for VGA protocol.  

C. APU 

The Audio Processing Unit (APU) is responsible for 

generating the sound for the NES. The audio output is non -

linear combination of the five channels: pulse1, pulse2, triangle, 

noise and the DMC. Each one these channels work 

independently and continuously output amplitudes that are then 

joined by the non-linear mixer to output its final value. Our 

system does not have the DMC. It was removed before demo 

because it was failing to reliably produce its audio signals and 

began to interfere with the overall quality of the sound. By 

removing it, the four remaining channels were clearly heard 

without being drowned out by the DMC.  
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 As for the channels that were implemented, a brief 

description of each is provided below. The pulse channels basic 

functionality was to produce a square wave. Additionally, it had 

a sweep and envelope unit. The sweep unit helped vary the 

frequency and the envelope varied the volume to produce waves 

that resembled as sawtooth wave. The only difference between 

pulse1 and pulse2 was the addresses the registers were mapped 

to and how the seep unit calculated its target frequency.  The 

triangle channel, as the name suggests, produced a triangle 

wave. Finally, the noise channel created pseudorandom noise. 

 All these channels can be written to individually. The 

signals that are controlled in all these channels are the frequency 

and the length. The frequency is represented with a timer that is 

essentially a variable clock divider. When the timer reaches 

zero it attempts to clock the channel’s sequencer. It is the 

sequencer that determines what is the next value for the channel 

to output. Note, I mentioned that when the timer is zero it 

attempts to clock the sequencer. Any timer pulse must go 

through gates. When the gates are activated, they allow for the 

value to go through, otherwise they force the output to zero. 

Whether these gates are activated or not are most often 

controlled by the length and linear counters. If the counts are 

non-zero then the gate is activated and allows for the channel 

output to change. Otherwise, zero is outputted and thus the 

channel is muted. 

 Then there is the frame counter that clocks the five 

channels. More specifically, it produces the clock for their 

linear and length counters. Furthermore, it clocks the envelope 

and sweep unit. The frame counter controls how often channels 

need to be updated and when they are to be updated. In addition 

to timing, the frame counter is also responsible of raising IRQs. 

This interrupt is connected directly to the CPU and must be 

handled immediately. 

 The outputs of the channels are then passed into a non-linear 

mixer. It is a lookup table that converts the outputs of the many 

channels into a single amplitude. This table is meant to mimic 

the weights given to the channels in the NES.  

VII. PROJECT MANAGEMENT 

A. Schedule 

The final schedule can be found on the last page of the report 

 

The schedule shifted dramatically due to the rearrangement 

of responsibilities. Originally, Oscar and Diego were meant to 

work together on developing the PPU under the assumption that 

it could be done concurrently and that the APU was much 

simpler. Early on it became clear to see that working side-by-

side on the PPU was inefficient and that the APU could be 

crucial for the system’s timing so Diego switched to work 

solely on the APU. 

Originally all three team members had slack in the final 

weeks of the schedule. Difficulties with using the on-board 

audio codec put testing of the APU behind schedule. Thus, 

development of the APU was stalled significantly and Diego’s 

slack disappeared. As a result, Nikolai was then placed in 

charge of handling save states, but the late finalization of the 

subsystems left too little time to setup all registers for loading 

and saving. Finally, Oscar struggled with a combination of 

version control issues and game scrolling bugs which extended 

his expected schedules into the final weeks. His slack time was 

replaced with setting up SRAM to boot 16 games for demo. 

B. Team Member Responsibilities 

Nikolai – Responsible for the development of the CPU 
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including a software simulation and hardware implementation, 

and their verification. Nikolai worked with Oscar to integrate 

the CPU and the PPU. He also led the interfacing of the system 

with the controllers. His final task was adding the save states. 

 

Diego – Oscar and Diego shared the workload during the 

earlier stages of the PPU development, but Diego shifted to 

APU development. Diego also assumed the responsibility of 

integrating the APU with the CPU. He was also responsible for 

creating the interface to setup and use the audio codec for 

driving the DAC and AUX port. 

 

Oscar - Oscar oversaw the PPU design and implementation, 

though Diego helped him during the earlier phases of research 

and development. Oscar and Nikolai worked together to 

integrate the CPU and the PPU once both were completed. 

Oscar also created the VGA interface for the design. It was also 

his responsibility to load game ROMs into the SRAM and 

transfer it into BRAM to run multiple game ROMs. 

 

All – All three members worked together on the various 

reports and presentations throughout the semester. 

 

C. Budget 

The Bill of Materials can be found after the References 

shown in Table 1. 

D. Risk Management 

For the CPU, the greatest Risk that exists is not properly 

implementing interrupts. The NES has two crucial interrupts: 

the VGA VBLANK and the APU IRQ. The former signals to 

the CPU that it is time for PPU memory to be before it is time 

to the PPU to render the next frame. If the CPU is unable to 

handle this interrupt, then essentially nothing on the display will 

be updated. Thus, the NES would be unusable. As for the APU 

IRQ, it is fired whenever the DCM finishes playing its sample. 

Although this is related to audio, some NES titles play 

“nothing” to transform the IRQ into a timer to setoff events in 

the game. The latter interrupt is not as fatal for the project but 

can limit the number of games that can be ran on our emulator.  

Furthermore, both interrupts require appropriate context 

switching. Even if the CPU manages to handle the interrupts 

correctly it must be able to return to the process that was 

originally interrupted. If this process context is not properly 

saved or restored then the game can crash or lead to some 

undefined behavior. To avoid this risk, Nikolai will prioritize 

implementing and testing interrupts using small benchmarks to 

verify that the running process can be interrupted, the handler 

is triggered, and context is correctly restored. As for Oscar and 

Diego, they will prioritize the DMC channel implementation to 

have the IRQ fire. Moreover, the VGA controller will produce 

dummy images and require refreshing the image to create the 

VBLANK signal. 

One component of our project that ended up being a much 

higher risk factor than initially anticipated was the save state 

feature. This feature seemed simple enough to add, as it 

essentially just required us to stream data from our system into 

SRAM, or from SRAM into our system. The tricking part was 

routing data throughout our system. We maintained a 

spreadsheet listing where every single registered value in our 

system was (we need to know every single value to preserve, or 

else the state of the NES would be incorrect when reloaded), 

and used this to generate a Verilog Header file that assigns each 

registered signal an address. When streaming data to or from 

the system, we use this address to choose which register’s data 

we read, or which register we right data to. The reason this was 

a challenge is because this meant we had to crawl through the 

entire system, and modify every sequential logic block to allow 

values to take values from an external source. Additionally, we 

had to add ports to almost every module in the system so that 

each sequential logic block could see the signals coming out of 

the save state module. This becomes painful when he have over 

a dozen modules and over a hundred registered signals. 

The two main reasons we were unable to implement save 

states is because when fell behind schedule and couldn’t find 

the time to catch up, and because it required all members of the 

group to be active participants. Since each leg of the project was 

written by a different person, that section of the project had to 

be updated by that person for save states, which meant that 

everyone needed to set aside time to work on this one feature 

while we had other things to work on in our project. A safer 

option would have been a feature that someone could have done 

without as much active participation from the other members, 

such as an additional Mapper to showcase more impressive 

games. 

VIII. SUMMARY 

By the project deadline, we were able to meet many of our 

requirements, but not all. Our CPU seemed to meet the 

correctness and timing requirements we laid out, though our 

testing framework was not robust enough to prove this. Our 

PPU had rare issue where the screen would suddenly flash =, 

most likely caused by a Sprite 0 bug. As demonstrated in the 

metrics and validation section the APU passed several tests 

hosted on NESDEV. Still, it failed some cycle accuracy test for 

the frame counter which may have been the cause for some 

noticeable glitches, such as sustained sound effect and missing 

short length sounds, Despite these deviations, we were still able 

to play more than 20 games without any game breaking glitches 

(this number is likely higher, but we didn’t test the whole 

library). 

 The most noticeable requirements that we did not reach 

were our SD card and save state requirements. The SD card was 

mainly intended to facilitate loading the game ROMs onto the 

FPGA. We were able to load multiple game together onto the 

board’s SRAM. Another goal of using the SD card was to keep 

save data, but this point is moot since we didn’t have any save 

data. As for the save data, while we had a save state module 

written that worked in simulation for saving and loading the 

CPU’s data, we were not able to extend this feature to the APU 

and PPU as well, which is critical for the state of the game. 

Overall, our NES emulator matched the original the vast 

majority of the time with some small rare glitches and was 
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missing some additional features. 

 

A. Future work 

For the time being there are no concrete plans for future 

development of the emulator. If we were to continue with the 

project, we would finish adding save states. Also, correct the 

edge case tests that were being failed to resolve the strange and 

rare glitches. The most exciting prospect would be to add 

support for other Mappers beside Mapper-0. It would be 

rewarding to have iconic and impressive titles such as the 

Legend of Zelda and Super Mario bros 2 with the addition of  

support for Mapper-1 and Mapper-4 games. 

B. Lessons Learned 

Throughout our time working on this project we learned a 

few lessons. There are some of the more obvious lessons, such 

as plan your overall design from the start. This means 

answering questions about what the different parts in the system 

need to do, and exactly how they need to communicate with 

each other. We learned that simulators can be helpful tools 

when trying to understand how a design is supposed to work, 

especially when you have a test framework for the simulator, 

but they can take longer than expected to develop; while a 

simulator may take a long time to develop, it may still be 

worthwhile, since it means you have a better understanding of 

your design at an earlier point, and it can make the development 

of the actual RTL very quick. 

For FPGA projects, it is a good idea to budget a lot of time 

for getting IPs to work. They may be advertised as “plug and 

play”, but they often take an unreasonable amount of effort to 

get working. It is also a good idea to try and debug in simulation 

as much as you can. Synthesis is a very slow process, so 

spending time on a testing framework can save you the time 

you’d waste waiting for a design to compile and synthesize. 

One lesson that is more specific to this project is that save 

states can be surprisingly hard to implement. The main reason 

for this is because it requires you to crawl through your whole 

system and make changes at every level so that every registered 

value can “see” the save state module. This requires a lot of 

effort from every team member and cannot be rushed in at the 

end. It may be fruitful to design your modules around adding 

this feature, so you don’t need to crawl through later. 
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Table 1: Project Bill of Materials 

  

Item Price Quantity Shipping
Did we 

use it?
Total Paid

(3rd Party)

Nes Controller

(1st Party)

Nes Controller

8-bit 2 pin

Speaker

Controller Adapter $9.99 3 $0.00 Only 1 $29.97 

DE2-115 $590.00 1 $0.00 Yes
Supplied by our 

Department

VGA Monitor ~$100.00 1 $0.00 Yes Personal Item

Stereo Speakers ~~$50.00 1 $0.00 Yes Personal Item

Synopsis VCS ~25,000 1 $0.00 Yes
Supplied by our 

Department

Quartus Prime $3,995 1 $0.00 Yes
Supplied by our 

Department

$3.95 2 $7.81 No $15.71 

$7.99 2 $2.99 No $18.97 

$8.78 2 $0.00 Yes
Found in a bin in 

1307
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