
18-500 Final Project Report: 05/09/2019

1

Abstract—Our capstone project is a hardware emulator of the

Nintendo Entertainment System (NES) synthesized on the DE2-

115 FPGA board. This system loads and runs NES game ROMs.

It allows for up to two users to send inputs via the original NES

controllers connected the FPGA’s GPIO pins. Visuals are

displayed on a monitor using a VGA controller and audio is

transmitted through the AUX port with the on-board audio codec.

Up to 16 games can be loaded into SRAM and toggled between

them with the board’s switches.

I. INTRODUCTION

ore than 30 years ago the NES made its debut and it

became the bestselling video game console of its time.

Fast-forward to present day and the NES is still very much

loved. Most notably, it can be observed with Nintendo’s release

of the NES Classic, a modern NES emulator, that was sold-out

almost instantaneously. Still, this was a software emulator and

many like these exist ready to be downloaded. We saw this as a

call to design and implement a hardware NES emulator on an

FPGA. We were motivated by our love for retro-gaming and

our want to challenge ourselves with building and integrating a

full system. Moreover, this was a perfect opportunity to

familiarize ourselves with peripherals such as video and audio.

But we wanted to do more than simply recreate the NES. These

software emulators had the pleasant feature of save states and

we wanted to add that as well. We wanted to see how the NES

was made and make it our own.

II. DESIGN REQUIREMENTS

• PPU - the Picture Processing Unit will be running at 5.36

MHz

o the PPU will render frames 100% pixel-accurate.

o the PPU will have MMIO registers in the CPU’s

address space to manage communication with the

CPU.

o The communication through the MMIO registers will

also be cycle accurate, including the DMA of the

OAM.

o the PPU will have several internal memory blocks:

256 bytes of OAM (stores sprites), 2KB of VRAM

(stores background tiles), 32 bytes of palette RAM

(stores color information).

o As in the original hardware, our system will support a

maximum of 8 sprites per scanline.

o Static frame rendering based on a VRAM dump will

match cycle accurate emulator (Mesen)

• CPU - the Central Processing Unit will be running at

1.78 MHz

o The CPU will run all documented instructions

correctly

o The CPU will run instructions 100% cycle accurate

o The CPU will support IRQ and NMI

o The CPU does not need to implement undocumented

instructions

• APU - the Audio Processing Unit will be running at 1.78

MHz

o The APU will have the five channels: pulse 1 & 2 ,

triangle, noise, and data modulation

o The APU will fire IRQ’s when the DMC finishes its

samples

o The APU will receive channel control signals from the

APU in MMIO registers at addresses 0x4000-0x4017

in shared RAM

o The APU will use a non-linear mixer to create a final

wave without distortion

o The frame counter will generate the channel clocks to

keep output waves in phase and in their corresponding

frequency

S

NES Emulation on FPGA

Author: Oscar A Ramirez Poulat: Electrical and Computer Engineering, Carnegie Mellon University,

Diego Rodriguez: Electrical and Computer Engineering, Carnegie Mellon University,

 Nikolai Lenney: Electrical and Computer Engineering, Carnegie Mellon University

M

18-500 Final Project Report: 05/09/2019

2

• VGA

o System will target the 640x480 @ 60Hz

industry standard

• Controllers

o Our games will be controlled with two original

NES controllers

o Controllers will be mapped to specific MMIO

addresses on the CPU’s address space

• SD Card

o The system will support loading ROMs from an

SD card

o The system will also support saving/loading

game progress to/from an SD card

• Save States

o The save state module will be able to save the

state of the system into memory and then load

the data back into the system later such that the

system will have the exact same state that it had

before

o The user will be able to save and load states

with buttons on the FPGA

From the list above, some of the requirements are worth

noting.

We required that the CPU should be 100% cycle accurate.

The motivation for this is that the system is driven by the

CPU, and many of the interactions (especially between the

PPU and CPU) have very specific timing requirements. If

these timing requirements are not held, it is much more likely

that the game running on the system will deviate from the

expected behavior. This could lead to glitches, and possibly

even have the game freeze.

The cycle accurate requirement for the PPU register

interface is very important because it ensures timed events on

the CPU are accurate. Keeping these requirements allows us to

run more complex games such as F1 Race that update a

scrolling background mid frame. This is a very time sensitive

operation that could not be accomplished if the register

interface was not cycle accurate.

To stay true to the original NES’s specs, our system’s major

parameters are summarized in the following table:

Master Clock Speed 21.477272 MHz

CPU Clock Speed 1.79 MHz (Master / 12)

APU Frame Counter Rate 60 Hz

PPU Clock Speed 5.36 MHz (Master / 4)

Height of Picture 240 Scanline (corresponds to

240 pixels)

Length of Vertical

Blanking

20 scanlines

Total number of CPU

cycles per frame

89341.5 / 3 = 29780.5

Vertical scan rate 60 Hz

Horizontal scan rate 31 KHz

At the very least our system should be able to: load the

original Donkey Kong from an SD card, allow the player to

use original NES controllers to play the game, let the player

click a button on the FPGA to save their game state to the SD

card, let the player click an alternate button on the FPGA to

load their game state from the SD card.

18-500 Final Project Report: 05/09/2019

3

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The overall system architecture is comprised of 3 major

components: the CPU, the PPU and the APU.

When a game ROM gets loaded, the CPU will start reading

and executing instructions. The instructions could correspond

to reading user input from the controller, modifying sprites or

background tiles to make a change on screen, changing the

audio levels of the APU or arithmetic operations for updating

game state. Most games implement their game engine as an IRQ

handler that runs whenever the PPU finishes rendering a frame.

The controllers will be connected to the FPGA via GPIO pins

that the CPU will read and interpret accordingly.

The PPU’s job is to look at VRAM and output the

corresponding frame pixel-by-pixel. The pixel-by-pixel

rendering is fed into a VGA module that converts the pixel’s

color to RGB values to output to the display. Additionally, the

PPU has to perform reads and writes of VRAM on behalf of the

CPU. The PPU also provides status information via MMIO

registers on the CPU’s address space so that the CPU knows

when it is safe to continue execution. The CPU restarts

execution of the game code when the PPU raises the VBlank

IRQ, which occurs when the PPU has finished rendering a

frame and is no longer accessing VRAM so that CPU can

modify it. Consequently, a game only has about 2273 CPU

cycles to perform game updates before the PPU takes over

control and starts rendering the updates.

The APU is controlled by the CPU writes to memory mapped

registers 0x4000-0x4017. These writes are intended to change

the frequency, length, and volume of the APU channels. The

APU channels that were implemented include the two pulse

channels, noise, and triangle channel. The channels function

independently from one another and are responsible for

continuously generating their corresponding wave. The outputs

of the channels are then passed into a non-linear mixer to

determine the final audio. All the while, the frame counter is in

charge of clocking and timing for the APU internals. It also

raises IRQs under special circumstances. The DMC channel is

the fifth channel in the APU, but it was not finalized and

removed due to unwanted effects on audio.

The ROM was originally going to be loaded from an SD card

using the NIOS II softcore, however due to time constraints we

decided to load games from SRAM instead. In the end we wrote

a script that took several game ROMs and combined them into

one hex file that we then loaded on the FPGA using Terasic’s

control panel for the DE2-115. Once on the chip we used

switches on the board to select what game to play and pressing

one of the keys copied the game from SRAM to internal

BRAMs used by the PPU and CPU. Initially we also wanted to

support save states however we couldn’t meet this goal.

(a)

Fig. 1. System picture. (a) Block diagram

IV. DESIGN TRADE STUDIES

Since our goal for capstone was to recreate the NES, many

of our design choices were limited. We needed to strictly follow

the expected behavior of the three major subsystems: CPU,

PPU, and APU. If we were to diverge from this, the likelihood

of properly emulating the NES hardware would be slim. Still,

due to some vagueness in the documentation we had the liberty

of inferring our own designs.

One of the more interesting choices we had to make was how

to handle the clock inside of our CPU. The MOS 6502 has a

two-phase clock, which means that is drives two clock signals,

PHI1 and PHI2, which are mutually exclusive; one is high while

the other is low. Most of the internal registers are clocked by

the clock signal PHI1, but the memory bus signals are clocked

on PHI2. In implementing the CPU, we could either use this

two clock setup, or instead have one clock, and ensure that

memory data arrives at the correct time relative to what the

registered elements observe. This ended up being as simple as

delaying memory by one cycle. While this wasn’t the true

implementation of the original device, our system would not be

able to tell any differences because of it, and it was far simpler

to add this memory delay than to deal with two clock signals in

a closely interconnected system.

In the original system the PPU shared a memory bus with the

CPU which meant that the CPU could use leftover values on the

bus, however this behavior is only used by very few games and

in order to simplify out design we had disjoint memory buses

for the CPU and PPU this made the memory controllers simpler

to manage and debug, while still being compatible with the vast

majority of games.

Initially the PPU read background data differently than the

original. Specifically, it didn’t share the PPUADDR register

between the background rendering and the register interface.

This decoupling of the PPUADDR made it so that initial

versions of the background rendering modules were easier to

develop and debug. This decoupling of the register meant that

scrolling games would not work because they rely on this exact

behavior. Once the entire system was connected and non-

scrolling games worked, I went back and rewrote background

rendering so that it more closely matched the original

implementation.

The CPU and PPU require strict cycle accuracy to achieve

proper game rendering. Some games require communication

18-500 Final Project Report: 05/09/2019

4

between these two units while the monitor is updating the

image. Being one cycle off would result in noticeably incorrect

pixel placement and color. However, the CPU and APU

communication is significantly more lenient. The APU has a

literal array of registers that hold the values written by the CPU

before they are seen by the APU’s components. This means that

the APU channels do not see the most recent changes until the

next CPU cycle.

This design choice is acceptable since it is essentially

delaying the audio output for less than a millisecond so the

difference would not be noticeable. Although having the CPU

write directly into the APU’s channels was doable, at the time

of implementation it was much easier to reason over and debug

the system by having all the signals stored in this register array.

It is worth noting that the frame counter interfaced directly with

the CPU’s writes. The reason for this is because the frame

counter could raise IRQ’s. Some games uses these IRQ’s for

timing and synchronization so cycle accuracy was crucial for

the frame counter.

 A major difference between our implementation and the

original was in the mixing scheme. The NES had 5 Digital to

Analog Converters (DAC), one for each audio channel. The

FPGA board we were synthesizing on only has one DAC that

was part of 24-bit audio codec that could drive the audio jack.

One option was to purchase some more DACs and drive them

with the FPGA GPIO pins. This would require wiring some

external components on a breadboard and then driving a

speaker. Even though this would most closely capture the audio

of the NES, we preferred if we could drive a speaker with a

standard AUX cable. So, we opted to use a lookup table to

approximate the non-linear mixing of the DACs and use the

audio codec for its single DAC and capability to drive the AUX

port.

 One final design tradeoff we considered was how we

would store our games and how where we would put the RAMs

for our PPU and CPU. For our RAMs we had two options:

Block RAM or SRAM. The advantages of BRAM is that we

can use two BRAM blocks, so the CPU and PPU don’t need to

worry about stealing the memory ports from each other’s. The

advantage of using SRAM is that it is larger, and that the game

ROM would likely be loaded into SRAM as well. The main

drawback of using SRAM is that it only has one set of input

wires, which means that the CPU and PPU could not use it

simultaneously. It would still be possible to use SRAM in this

way, since we could interleave these devices accesses to it on

the cycles when each device is inactive. We decided against this

since this interleaving would likely lead to problems, and the

BRAM was more than large enough to fit our RAMs.

For storing our games, we had three main options: store them

in Block RAM, SRAM, or on an SD card. The BRAM would

have been very easy to use since the game ROM can be

synthesized directly into BRAM, and we were already familiar

with using BRAM since our RAMs are also in BRAM. It is also

good because it means that the CPU and PPU don’t have to

worry about competing for any data lines since the ROM can

be distributed into different BRAMs for program ROM and

character ROM. The main drawback is that the overall capacity

is small and would limit the number of games and save files we

could store on the board at one time. This limitation is even

worse if we were using games outside of mapper 0, since they

tend to be larger. The SRAM is advantageous because we can

fit more games in it since is has a 2MB capacity, but it is

disadvantageous because it’s a little harder to program with

Quartus, and because the CPU and PPU can’t access is

simultaneously. The main advantage of the SD card is that is is

persistent, which means we don’t need to reprogram it, and that

it could even maintain save data. The drawback of the SD card

is that there is a lot of overhead in communicating with it, and

that the components of our system wouldn’t be able to

communicate with it quickly enough for our games to run cycle

accurately. In the end we ended up loading our games onto

SRAM, and then selectively loading one active game at a time

into the BRAM.

V. TESTING AND VERIFICATION

In order to test our overall system, we will first test our

smaller subcomponents to ensure they work correctly. It will

be crucial to do individual testing first because our overall

system will likely not work if any of the individual

components fail, especially the CPU and the PPU. Also the

complexity of testing the system as a whole is much more

complicated to do automatically. There are three major metrics

we are going to benchmark: frame accuracy, cycle accuracy,

and memory accuracy.

Most of our PPU testing for frame accuracy will be heavily

reliant on the Mesen emulator. We chose it because it has a

very good debugger and it is cycle accurate. It allows you to

analyze every component of the NES at runtime, set

breakpoints and most importantly for us it lets you copy the

entire PPU memory. This is how we generate static VRAM

dumps which we then feed to our hardware implementation to

generate a frame. To generate a frame in our hardware we

have a testbench that uses SystemVerilog to write the color of

every pixel in our frame to a text file. We then have a python

script that takes in this text file and compares it with a

reference frame generated by the Mesen emulator. This way

we can create any number of test vectors by loading any game

ROM to the emulator, pausing at a frame that has behavior we

are testing, and copying the static VRAM to our hardware

emulator. Some of the behavior we are looking to test: frames

with no sprites, frames with sprites, frames with more than 8

sprites on a scanline (this was a restriction on the original

NES), frames with a scrolled background horizontally, frames

with a scrolled background vertically. So far we have 5 tests

of frames with sprites and no sprites we are using in

development, but we plan on creating quite a few more when

we get to more complicated parts of the PPU. In terms of PPU

cycle accuracy, we plan on using counters and SystemVerilog

assertions to ensure that all the signals get triggered on the

correct cycle. We also need to ensure that our rendering

process takes the exact number of cycles as in the original

even if our implementation differs slightly. We will also

ensure that every operation on the PPU’s registers takes the

exact amount of cycles as in the original spec, again we will

18-500 Final Project Report: 05/09/2019

5

use assertions to verify this. For instance, DMA for the PPU

needs to take 513 cycles if on an even CPU cycle or 514

cycles if on an odd CPU cycle.

In terms of accuracy, for the CPU we will benchmark our

implementation against a reference implementation of the

6502. We will run a handpicked set of benchmark tests to

verify that every instruction and addressing mode works

adequately.

For the APU we can also use the Mesen emulator to look at

its registers and compare them to our own to ensure we are

producing the correct sounds. Similar to the PPU testing we

can load any game we would like and probe its values at a

given cycle.

Some of our frame accuracy results:

Test Accuracy

balloon_fight_trace0 99.99%

balloon_fight_trace1 99.43%

balloon_fight_trace2 100.00%

donkey_kong_3_trace0 100.00%

donkey_kong_3_trace1 100.00%

donkey_kong_3_trace2 100.00%

tag_team_wrestling0 100.00%

tag_team_wrestling1 100.00%

tag_team_wrestling2 100.00%

super_mario_bros0 100.00%

super_mario_bros1 100.00%

super_mario_bros2 100.00%

These results represent how closely our generated frames

match a known cycle accurate emulator such as Mesen. Most

games we reached the intended accuracy, however for some of

our balloon fight traces we did not generate some pixels

correctly. I did not look too deeply as to why this was

occurring but I believe it was an issue with how I acquired the

traces.

We wrote a testbench that tested specific registers in the PPU

here are our results.

Test Name Description Status

OAMDMA Tests the OAMDMA register Passed

OAMDATA Tests the OAMDATA register Passed

OAMDMA timing Tests the timing of OAMDMA Passed

PPUDATA Tests the PPUDATA register Passed

We used tests from the NES wiki to verify that our sprite 0 hit

was correct.

Test Name Description Status

01.basic Tests basic sprite 0 detection Passed

02.alignment

Tests alignment of the detection

with cpu cycle Passed

03.corners

Ensures correct sprite 0 behavior

in the corners Passed

04.flip

Ensures correct sprite 0 behavior

when fliping a sprite Passed

05.left_clip

Ensures correct sprite 0 behavior

when left side of the screen is

clipped out Passed

06.right_edge

Ensures correct sprite 0 behavior

in the right edge Passed

07.screen_bottom

Ensures correct sprite 0 behavior

in the bottom of the screen Passed

08.double_height

Ensures correct sprite 0 when

using 8x16 sprites Failed

09.timing_basics

Ensures sprite 0 hit timing to

within 12 or so PPU clocks. Failed

10.timing_order

Tests sprite 0 hit timing in case

where multiple sprites hit Failed

11.edge_timing

Tests sprite 0 hit timing for which

pixel it first reports hit on when

some pixels are under clip, or at or

beyond right edge. Passed

For the APU we used NES tests as well:

Test

Name Description Status

reset Tests APU power and reset state Passed

pulse div

Tests frequency timer of pulse

waves Passed

env Tests envelopes Passed

sweep

Tests the overflow and cutoff of

sweep unit Passed

timers

Tests the frequency of all

channels

Failed: noise,

dmc

tri lin Tests triangle linear counter Passed

volume

Tests the volume of all 5

channels Failed

apu test Array of tests Inconclusive

18-500 Final Project Report: 05/09/2019

6

To verify the correctness of the CPU we decided to use a

ROM that tested each instruction in the 6502 against a

reference implementation. The test is called nestest.nes and

can be found in the NES wiki. We passed the entire test.

Here is a list of games that the CPU can run:

Games that are

playable

Load but still have

issues

Don’t

Load

Balloon Fight B-Wings Galaxian

Bomberman

Donkey Kong

Donkey Kong 3

Donkey Kong Jr

Donkey Kong Jr Math

Ice-Hockey

Galaga

Mario Bros

Pac-Land

Pac-Man

Space Invaders

Super Mario Bros

Soccer

Spelunker

Tennis

Xevious

Tag Team Wrestling

Ice Climbers

1942

Baseball

Excitebike

Kung Fu

F-1 Race

VI. SYSTEM DESCRIPTION

A. CPU

Our CPU is a recreation of the MOS 6502, with some slight

differences. The main differences from the MOS 6502 are that

we will not support decimal mode addition, since this feature

was removed on the NES, and we will not support

undocumented opcodes, since only a small subset of games use

these.

The MOS 6502 is an 8-bit, microcoded processor, with a 16-

bit address space. The architectural state of the processor

includes the 16-bit program counter (PC) and the following 8-

bit registers: the accumulator (A), two index registers (X and

Y), stack pointer (SP), and status flags. The status flags include

7 flags: the negative flag, overflow flag, break flag, decimal

flag, interrupt flag, zero flag, and carry flag.

To interface with memory, the MOS 6502 has a 16-bit

memory address line (ADDR), a single bit read and write line,

and an 8-bit data line, which we have split into a data_out line

(for reads) and a data_in line (for writes). We also added an an

internal register for the previously read value to the memory

controller. The read line is active on every cycle, so the CPU

either reads or writes on every cycle. The address is registered,

but it is also write-through, so the memory address does not

need to be reasserted to access the don’t need to change the

address if you want to keep accessing the same address in

memory, and there is only a delay of one cycle per each read,

even for new addresses.

Our ALU is fairly straightforward. It takes in two 8-bit values

(alu_src1 and alu_src2), a single bit source 2 invert signal

(alu_src2_invert), a single bit carry-in (alu_c_in), and an

operation (alu_op), and produces an 8-bit output (alu_out), a

single bit carry-out signal (alu_c_out), a single bit zero-out

signal (alu_z_out), and a single bit overflow signal (alu_v_out).

The alu operations are add, xor, or, and, shift left, shift right,

and hold. The alu does not operate combinationally, so all of

the output signals are registered, which is necessary for some

addressing modes. The hold operation just keeps the outputs of

the alu steady.

These are the main elements of the datapath. The registers

primarily interact with each other and memory through the

ALU. To move a value from A to X, for example, A is moved

to alu_src1 and 0 is moved to alu_src2, 0 to alu_c_in, and add

to alu_op. The alu_output would then be moved into Y on the

following cycle. An 8-bit value can be moved directly into the

status register, or individual flags can be set, cleared, or set

based on the outputs of the alu. The PC has a special 16-bit

incrementor, so its value can be updated without needing to use

the ALU. Also note that PC and ADDR can be split into

separate 8-bit halves, since it is necessary in many cases to

move an 8-bit value into just one half of these two addresses.

To manage the datapath, we need our control signals. The

control signals are dictated by each instruction. Every

instruction has the same first two steps: fetch and decode. At

the beginning of each instruction, the only known is the PC, or

18-500 Final Project Report: 05/09/2019

7

the address of the instruction, so fetch just issues a read to

memory at the address of the PC and increments the PC. In

decode, we have the actual opcode of the instruction available,

but we still need to interpret it to figure out what actually needs

to be done. Each opcode specifies an instruction and an

addressing mode.

Many opcodes have a vector of control signals associated

with them. These signals can specify ALU sources, ALU output

destinations, ALU operations, branch conditions, flag setting

conditions, etc. It is expected that the alu operation happens

prior to the register write back and flag setting. The control

signal vector does not specify when each operation needs to be

performed, but rather, that these operations need to be done

during the instruction’s lifetime.

 Every addressing mode has a specific sequence of control

vectors (the microcode) that are used to manage which reads,

writes, alu operations, and register writes happen, and when.

The control vector can specify what values to move into the

address line, the read signal, what values to move into the PC,

whether or not to skip a line in the microcode, whether or not to

halt the microcode, when to begin fetching the next instruction,

etc.

 A link to the CPU’s microcode that we’ve written so far

has been included in our references.

 Although the MOS 6502 is a relatively simple CPU, it still

has some instruction level parallelism. The CPU can fetch the

next instruction, even if it still finishing up an instruction, if the

instruction if it is still working on will not use memory for the

duration of its execution. Some instructions which only read

from memory, such as logical operations, loads, and

comparisons fit this category. In many cases an instruction will

run for two cycles while the succeeding instruction is in fetch

and decode, though this doesn’t create any data hazards since

none of the registers are accessed in fetch or decode. In decode,

we need to figure out what the vector of control signals should

be, what line of microcode to jump to, whether we need to

increment the PC again, and whether to start fetching the next

instruction on the following cycle. The decoder module is

meant to take in an opcode and figure out all of these. Note that

some addressing modes specify operands, and in these cases we

need to increment the PC while still in decode. The uCode ROM

is just a memory that stores vectors of microcode control

signals.

The CPU also has two interrupt signals, which are the

interrupt request (IRQ) and non-maskable interrupt (NMI).

These interrupts can trigger an interrupt handler to be run in the

CPU in place of an instruction. These interrupts can come from

the APU and PPU when they need to communicate to the CPU.

In addition to the interrupts, the CPU can share information

with the APU and PPU with shared memory. The CPU shares

8 8-bit register with the PPU as part of its address space, and it

shares an additional 24 8-bit registers with the APU as well. The

first two Kilo-Bytes of the address space are reserved as the

CPU’s RAM, and will be implemented with block RAMs. The

top 48 Kilo-Bytes of the CPU’s address space is the cartridge

space, which is where the games’ instructions live. We will use

the FPGA’s SRAM to implement the cartridge space. The

remaining space in the address space just maps to the same

portions listed previously, so multiple different addresses will

map to identical portions of memory.

B. PPU

The PPU (Picture Processing Unit, is responsible of

rendering the game’s frames and displaying them on a monitor

18-500 Final Project Report: 05/09/2019

8

via VGA cable. The PPU has two main roles: create an

interface to interact with the CPU in memory and display the

appropriate frames on screen.

First a brief overview of the memory layout and how sprites

are represented internally. The pixel information to display on-

screen is not kept on a pixel by pixel basis, instead pixels are

grouped into tiles which correspond to an 8x8 pixel area.

These tiles are kept in the game’s ROM. From the PPU’s

perspective, however, the tiles are kept in the first 8KB of the

PPU’s address space. These 8KB are split into two tables

called Pattern Tables, one holds tile information for sprites

and the other for backgrounds. The layout of backgrounds is

kept in the Nametable, and it is on a tile basis. In other words,

an entry in the Nametable corresponds to a tile index which is

an address in the Pattern Table. Sprite information is kept in a

table called OAM, there are 4 bytes per sprite corresponding

to the x position, y position, the tile index, and sprite attributes

(such as vertical or horizontal flipping). Finally, there is the

Palette RAM which holds 4 palettes (sets of colors) tiles.

Communicating with the CPU is done through a set of

registers that allow it to write to VRAM and OAM, which

control background tiles and sprite tiles respectively. By

writing to these, the CPU can modify what gets rendered.

Other registers let the CPU specify an X and Y scroll so that

tiles on screen give the illusion of scrolling.

The controller register (PPUCTRL) is at address 0x2000

(of CPU’s address space). This is a write only register that

allows the CPU to set the following attributes: base nametable

address (where in VRAM the background tile information is

read from), set the stride for how to access the PPUs VRAM

either +1 or +32, specify what pattern table to use for sprites,

specify what pattern table to use for background tiles, and

whether the PPU should generate a Non Maskable Interrupt to

the CPU at the start of the vertical blanking interval.

The mask register (PPUMASK) is at address 0x2001. This

is a write only register that allows the CPU to control how the

PPU renders sprites, backgrounds, and colors. Specifically,

there are bits to control: greyscale (give pixels a greyer look),

whether the PPU should render backgrounds or sprites on the

leftmost 8 pixels of the screen, hide background, hide sprites,

and change RGB color intensities.

The status register (PPUSTATUS) is at address 0x2002.

This is a read only register that allows the CPU to know what

the state of the PPU is. This register is often used for timed

events, specifically by knowing when the PPU has reached a

specific pixel on the screen. The most important flags in this

register are the Sprite 0 hit, which gets triggered when a

special background tile overlaps another special sprite tile, and

the Vblank flag, which gets triggered when vertical blanking

phase begins.

The OAM address register (OAMADDR) is at address

0x2003. This is a write only register that specifies at what

location of the OAM (memory that holds sprite information)

the CPU wants to write to.

The OAM data register (OAMDATA) is at address 0x2004.

This is a read and write register that specifies the data you

want to write to address in OAMADDR. OAMADDR is

incremented after each write to OAMDATA.

The scroll register (PPUSCROLL) is at address 0x2005.

This is a write only register that allows the CPU to specify

what the top left corner pixel should get rendered. This allows

pixel-granular scrolling to work and was a great feature of the

NES at the time.

18-500 Final Project Report: 05/09/2019

9

The address register (PPUADDR) is at address 0x2006.

This is a write only register that allows the CPU to specify at

what address in VRAM to write data to. This register is used

in conjunction with the PPUDATA register to fill in the

PPU’s VRAM with background tile layouts.

The data register (PPUDATA) is at address 0x2007. This is

a read and write register which allows the CPU to specify the

data to write to VRAM. After each write the PPUADDR

register is incremented by 1 or 32 depending on the stride bit

specified in the PPUCTRL register.

The OAM DMA (OAMDMA) is at address 0x4014. This is

a write register that allows the CPU to perform DMA on the

PPU’s VRAM. The CPU only has to write one byte YY to this

address and the PPU will copy the data from range 0xYY00 -

YYFF of the CPU’s memory into the PPU’s internal OAM.

The PPU will display pixels on a monitor through VGA.

Depending on your geographic location, the original NES was

engineered to display images on the NTSC or PAL video

standards. The two video standards have distinct frequencies

they run at. The original NTSC video standard has a horizontal

refresh rate of 15KHz, that is horizontal scan lines are fed to

the display at 15000 per second. However, modern VGA has a

horizontal refresh rate of 31KHz, so we have designed our

system to render frames at the original 15KHz but output them

at 31KHz. This is done by running the VGA module at twice

the frequency of the PPU, and either: outputting the same

scanline twice at double the speed or outputting the scanline at

double the speed followed by a black scanline. The latter

option will give our games a retro CRT-like look, so we will

be opting for this initially. If we notice that the image is too

dark, and we don’t like how it looks we will revert to the first

option. In order to accommodate the VGA interface and to use

the resources we have on the FPGA more effectively we

modified the rendering process of the original NES, while

keeping the overall cycle counts the same.

From the PPU’s perspective the rendering process takes 262

scanlines, each one outputting 341 ‘dots’ (can think of them as

pixels but only the first 256 ‘dots’ will be visible on screen)

one per cycle. The first 240 scan lines are in charge of

rendering the visible pixels, this is accomplished by rendering

pixels into a buffer that is passed to the VGA module after a

scanline. For each pixel at a particular position (x,y) we

calculate its color by looking up the tile and color information

in VRAM, OAM, and palette RAM based on x and y. We then

write this color value into the previously mentioned buffer and

we move on to the next pixel. For each scanline the first 256

cycles correspond to visible pixels and the remaining 85

cycles are used for the VGA’s horizontal sync. The 241st and

242nd scan lines will be idle scanlines. They maintain the

same cycle counts as in the original NES. Scanlines 243 - 262

will correspond to the VGA’s vertical sync.

From the VGA’s perspective, the process is similar. However,

instead of having 262 scanlines, we will have 512 to

compensate for twice the PPU’s frequency. Each scanline will

also have 341 ‘dots’. After a PPU scanline is done rendering,

we will pipeline it to another buffer in the VGA which will

start outputting the pixels. Because of their different clocks,

one PPU scanline corresponds to two VGA scanlines, thus the

VGA will display the PPU’s rendered scanline twice or once

followed by a black scanline, depending on the look we want.

Since the VGA will output scanlines at double the frequency

of the PPU we will achieve the 31KHz horizontal refresh rate

needed for VGA protocol.

C. APU

The Audio Processing Unit (APU) is responsible for

generating the sound for the NES. The audio output is non -

linear combination of the five channels: pulse1, pulse2, triangle,

noise and the DMC. Each one these channels work

independently and continuously output amplitudes that are then

joined by the non-linear mixer to output its final value. Our

system does not have the DMC. It was removed before demo

because it was failing to reliably produce its audio signals and

began to interfere with the overall quality of the sound. By

removing it, the four remaining channels were clearly heard

without being drowned out by the DMC.

18-500 Final Project Report: 05/09/2019

10

 As for the channels that were implemented, a brief

description of each is provided below. The pulse channels basic

functionality was to produce a square wave. Additionally, it had

a sweep and envelope unit. The sweep unit helped vary the

frequency and the envelope varied the volume to produce waves

that resembled as sawtooth wave. The only difference between

pulse1 and pulse2 was the addresses the registers were mapped

to and how the seep unit calculated its target frequency. The

triangle channel, as the name suggests, produced a triangle

wave. Finally, the noise channel created pseudorandom noise.

 All these channels can be written to individually. The

signals that are controlled in all these channels are the frequency

and the length. The frequency is represented with a timer that is

essentially a variable clock divider. When the timer reaches

zero it attempts to clock the channel’s sequencer. It is the

sequencer that determines what is the next value for the channel

to output. Note, I mentioned that when the timer is zero it

attempts to clock the sequencer. Any timer pulse must go

through gates. When the gates are activated, they allow for the

value to go through, otherwise they force the output to zero.

Whether these gates are activated or not are most often

controlled by the length and linear counters. If the counts are

non-zero then the gate is activated and allows for the channel

output to change. Otherwise, zero is outputted and thus the

channel is muted.

 Then there is the frame counter that clocks the five

channels. More specifically, it produces the clock for their

linear and length counters. Furthermore, it clocks the envelope

and sweep unit. The frame counter controls how often channels

need to be updated and when they are to be updated. In addition

to timing, the frame counter is also responsible of raising IRQs.

This interrupt is connected directly to the CPU and must be

handled immediately.

 The outputs of the channels are then passed into a non-linear

mixer. It is a lookup table that converts the outputs of the many

channels into a single amplitude. This table is meant to mimic

the weights given to the channels in the NES.

VII. PROJECT MANAGEMENT

A. Schedule

The final schedule can be found on the last page of the report

The schedule shifted dramatically due to the rearrangement

of responsibilities. Originally, Oscar and Diego were meant to

work together on developing the PPU under the assumption that

it could be done concurrently and that the APU was much

simpler. Early on it became clear to see that working side-by-

side on the PPU was inefficient and that the APU could be

crucial for the system’s timing so Diego switched to work

solely on the APU.

Originally all three team members had slack in the final

weeks of the schedule. Difficulties with using the on-board

audio codec put testing of the APU behind schedule. Thus,

development of the APU was stalled significantly and Diego’s

slack disappeared. As a result, Nikolai was then placed in

charge of handling save states, but the late finalization of the

subsystems left too little time to setup all registers for loading

and saving. Finally, Oscar struggled with a combination of

version control issues and game scrolling bugs which extended

his expected schedules into the final weeks. His slack time was

replaced with setting up SRAM to boot 16 games for demo.

B. Team Member Responsibilities

Nikolai – Responsible for the development of the CPU

18-500 Final Project Report: 05/09/2019

11

including a software simulation and hardware implementation,

and their verification. Nikolai worked with Oscar to integrate

the CPU and the PPU. He also led the interfacing of the system

with the controllers. His final task was adding the save states.

Diego – Oscar and Diego shared the workload during the

earlier stages of the PPU development, but Diego shifted to

APU development. Diego also assumed the responsibility of

integrating the APU with the CPU. He was also responsible for

creating the interface to setup and use the audio codec for

driving the DAC and AUX port.

Oscar - Oscar oversaw the PPU design and implementation,

though Diego helped him during the earlier phases of research

and development. Oscar and Nikolai worked together to

integrate the CPU and the PPU once both were completed.

Oscar also created the VGA interface for the design. It was also

his responsibility to load game ROMs into the SRAM and

transfer it into BRAM to run multiple game ROMs.

All – All three members worked together on the various

reports and presentations throughout the semester.

C. Budget

The Bill of Materials can be found after the References

shown in Table 1.

D. Risk Management

For the CPU, the greatest Risk that exists is not properly

implementing interrupts. The NES has two crucial interrupts:

the VGA VBLANK and the APU IRQ. The former signals to

the CPU that it is time for PPU memory to be before it is time

to the PPU to render the next frame. If the CPU is unable to

handle this interrupt, then essentially nothing on the display will

be updated. Thus, the NES would be unusable. As for the APU

IRQ, it is fired whenever the DCM finishes playing its sample.

Although this is related to audio, some NES titles play

“nothing” to transform the IRQ into a timer to setoff events in

the game. The latter interrupt is not as fatal for the project but

can limit the number of games that can be ran on our emulator.

Furthermore, both interrupts require appropriate context

switching. Even if the CPU manages to handle the interrupts

correctly it must be able to return to the process that was

originally interrupted. If this process context is not properly

saved or restored then the game can crash or lead to some

undefined behavior. To avoid this risk, Nikolai will prioritize

implementing and testing interrupts using small benchmarks to

verify that the running process can be interrupted, the handler

is triggered, and context is correctly restored. As for Oscar and

Diego, they will prioritize the DMC channel implementation to

have the IRQ fire. Moreover, the VGA controller will produce

dummy images and require refreshing the image to create the

VBLANK signal.

One component of our project that ended up being a much

higher risk factor than initially anticipated was the save state

feature. This feature seemed simple enough to add, as it

essentially just required us to stream data from our system into

SRAM, or from SRAM into our system. The tricking part was

routing data throughout our system. We maintained a

spreadsheet listing where every single registered value in our

system was (we need to know every single value to preserve, or

else the state of the NES would be incorrect when reloaded),

and used this to generate a Verilog Header file that assigns each

registered signal an address. When streaming data to or from

the system, we use this address to choose which register’s data

we read, or which register we right data to. The reason this was

a challenge is because this meant we had to crawl through the

entire system, and modify every sequential logic block to allow

values to take values from an external source. Additionally, we

had to add ports to almost every module in the system so that

each sequential logic block could see the signals coming out of

the save state module. This becomes painful when he have over

a dozen modules and over a hundred registered signals.

The two main reasons we were unable to implement save

states is because when fell behind schedule and couldn’t find

the time to catch up, and because it required all members of the

group to be active participants. Since each leg of the project was

written by a different person, that section of the project had to

be updated by that person for save states, which meant that

everyone needed to set aside time to work on this one feature

while we had other things to work on in our project. A safer

option would have been a feature that someone could have done

without as much active participation from the other members,

such as an additional Mapper to showcase more impressive

games.

VIII. SUMMARY

By the project deadline, we were able to meet many of our

requirements, but not all. Our CPU seemed to meet the

correctness and timing requirements we laid out, though our

testing framework was not robust enough to prove this. Our

PPU had rare issue where the screen would suddenly flash =,

most likely caused by a Sprite 0 bug. As demonstrated in the

metrics and validation section the APU passed several tests

hosted on NESDEV. Still, it failed some cycle accuracy test for

the frame counter which may have been the cause for some

noticeable glitches, such as sustained sound effect and missing

short length sounds, Despite these deviations, we were still able

to play more than 20 games without any game breaking glitches

(this number is likely higher, but we didn’t test the whole

library).

 The most noticeable requirements that we did not reach

were our SD card and save state requirements. The SD card was

mainly intended to facilitate loading the game ROMs onto the

FPGA. We were able to load multiple game together onto the

board’s SRAM. Another goal of using the SD card was to keep

save data, but this point is moot since we didn’t have any save

data. As for the save data, while we had a save state module

written that worked in simulation for saving and loading the

CPU’s data, we were not able to extend this feature to the APU

and PPU as well, which is critical for the state of the game.

Overall, our NES emulator matched the original the vast

majority of the time with some small rare glitches and was

18-500 Final Project Report: 05/09/2019

12

missing some additional features.

A. Future work

For the time being there are no concrete plans for future

development of the emulator. If we were to continue with the

project, we would finish adding save states. Also, correct the

edge case tests that were being failed to resolve the strange and

rare glitches. The most exciting prospect would be to add

support for other Mappers beside Mapper-0. It would be

rewarding to have iconic and impressive titles such as the

Legend of Zelda and Super Mario bros 2 with the addition of

support for Mapper-1 and Mapper-4 games.

B. Lessons Learned

Throughout our time working on this project we learned a

few lessons. There are some of the more obvious lessons, such

as plan your overall design from the start. This means

answering questions about what the different parts in the system

need to do, and exactly how they need to communicate with

each other. We learned that simulators can be helpful tools

when trying to understand how a design is supposed to work,

especially when you have a test framework for the simulator,

but they can take longer than expected to develop; while a

simulator may take a long time to develop, it may still be

worthwhile, since it means you have a better understanding of

your design at an earlier point, and it can make the development

of the actual RTL very quick.

For FPGA projects, it is a good idea to budget a lot of time

for getting IPs to work. They may be advertised as “plug and

play”, but they often take an unreasonable amount of effort to

get working. It is also a good idea to try and debug in simulation

as much as you can. Synthesis is a very slow process, so

spending time on a testing framework can save you the time

you’d waste waiting for a design to compile and synthesize.

One lesson that is more specific to this project is that save

states can be surprisingly hard to implement. The main reason

for this is because it requires you to crawl through your whole

system and make changes at every level so that every registered

value can “see” the save state module. This requires a lot of

effort from every team member and cannot be rushed in at the

end. It may be fruitful to design your modules around adding

this feature, so you don’t need to crawl through later.

REFERENCES

http://wiki.nesdev.com/w/index.php/Nesdev_Wiki

http://tinyvga.com/vga-timing/640x480@60Hz

http://tinyurl.com/mymicrocode
http://www.dustmop.io/blog/2015/04/28/nes-graphics-part-1/

http://www.dustmop.io/blog/2015/06/08/nes-graphics-part-2/

http://www.dustmop.io/blog/2015/12/18/nes-graphics-part-3/
http://nintendoage.com/pub/faq/NA/index.html?load=nerdy_nights_out.html

https://tresi.github.io/nes/

`

http://wiki.nesdev.com/w/index.php/Nesdev_Wiki
http://tinyvga.com/vga-timing/640x480@60Hz
http://tinyurl.com/mymicrocode
http://www.dustmop.io/blog/2015/04/28/nes-graphics-part-1/
http://www.dustmop.io/blog/2015/06/08/nes-graphics-part-2/
http://www.dustmop.io/blog/2015/12/18/nes-graphics-part-3/
http://nintendoage.com/pub/faq/NA/index.html?load=nerdy_nights_out.html
https://tresi.github.io/nes/

18-500 Final Project Report: 05/09/2019

13

Table 1: Project Bill of Materials

Item Price Quantity Shipping
Did we

use it?
Total Paid

(3rd Party)

Nes Controller

(1st Party)

Nes Controller

8-bit 2 pin

Speaker

Controller Adapter $9.99 3 $0.00 Only 1 $29.97

DE2-115 $590.00 1 $0.00 Yes
Supplied by our

Department

VGA Monitor ~$100.00 1 $0.00 Yes Personal Item

Stereo Speakers ~~$50.00 1 $0.00 Yes Personal Item

Synopsis VCS ~25,000 1 $0.00 Yes
Supplied by our

Department

Quartus Prime $3,995 1 $0.00 Yes
Supplied by our

Department

$3.95 2 $7.81 No $15.71

$7.99 2 $2.99 No $18.97

$8.78 2 $0.00 Yes
Found in a bin in

1307

18-500 Final Project Report: 05/09/2019

14

