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Abstract— A system capable of running NES (Nintendo 

Entertainment System) ROMS of games such as Donkey Kong and 

Super Mario Bros. Our hardware implementation of the NES 

console will allow players to use original controllers to play and 

the ability to load and save game state data onto an SD card. 

Saving game state data is common in software emulators however 

it is rarer in hardware emulation, our system will try to bridge that 

gap.  

 
Index Terms—Emulation, NES, Retro Video Games, FPGA, SD 

card, RTL 

 

I. INTRODUCTION 

 live in an era when video games are getting more 

complex every year. Graphics are improving, player 

counts are getting larger, and audio fidelity is at an all-time 

high. There is also a recent renaissance of retro-style games 

such as Shovel Knight, Celeste, Sonic Mania, and Cuphead. We 

thought it would be a good time to revisit the rebirth of modern 

video games, by studying and building an emulator for the NES 

system. When the NES came out, the video game industry had 

just experienced a crash in North America, however it quickly 

became the best-selling gaming console of its time. It 

revitalized the industry and helped propel it forward to what we 

have now. The NES has some of the most memorable gaming 

experiences such as Super Mario Bros 1, 2 and 3, The Legend 

of Zelda, Metroid, Donkey Kong, amongst many others. Even 

though there are many software emulators that provide cycle 

accurate emulation we want to use hardware to provide the user 

a retro feel closer to the original console, by using original 

controllers, outputting a CRT-like video signal, and offering a 

cycle accurate emulator on an FPGA board. One of the most 

attractive features of software emulators is saving game 

progress. Save states were restricted to a handful of games that 

had non-volatile memory in the cartridge, however most games 

did not support them. Saving game states is a nice feature 

because you can create your own checkpoints and avoid 

restarting the game from the beginning. Most FPGA emulators 

we found online, do not support this feature so we would like 

to offer this as a feature in ours.  

 

 

II. DESIGN REQUIREMENTS 

 

Our implementation of the NES will try to match the original 

console as close as possible. To accomplish this, we have the 

following requirements: 

• PPU - the Picture Processing Unit will be running at 

5.36 MHz 

o the PPU will render frames 100% cycle-

accurate.  

o the PPU will have MMIO registers in the 

CPU’s address space to manage 

communication with the CPU.  

o The communication through the MMIO 

registers will also be cycle accurate, 

including the DMA of the OAM.  

o the PPU will have several internal memory 

blocks: 256 bytes of OAM (stores sprites), 

2KB of VRAM (stores background tiles), 32 

bytes of palette RAM (stores color 

information).  

o As in the original hardware, our system will 

support a maximum of 8 sprites per scanline.  

o Static frame rendering based on a VRAM 

dump will match cycle accurate emulator 

(Mesen) 

• CPU - the Central Processing Unit will be running at 

1.78 MHz 

o Controller’s will be mapped to specific 

MMIO addresses on the CPU’s address space 

o the CPU will run instructions 100% cycle 

accurate 

o the CPU is based on the 6502 processor and 

will support IRQs 

o  

• APU - the Audio Processing Unit will be running at 

1.78 MHz 

o The APU will have the five channels: pulse 1 

& 2 , triangle, noise, and data modulation 

o The APU will fire IRQ’s when the DMC 

finishes its samples 

o The APU will receive channel control signals 

from the APU in MMIO registers at 

addresses 0x4000-0x4017 in shared RAM 

o The APU will use a non-linear mixer to create 

NES Emulation on FPGA 
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a final wave without distortion 

o The frame counter will generate the channel 

clocks to keep output waves in phase and in 

their corresponding frequency 

• VGA 

o System will target the 640x480 @ 60Hz 

industry standard 

• SD Card 

o the system will support loading ROMs from 

an SD card  

o the system will also support saving/loading 

game progress to/from an SD card  

 

At the very least our system should be able to: load the 

original Donkey Kong from an SD card, allow the player to use 

original NES controllers to play the game, let the player click a 

button on the FPGA to save their game state to the SD card, let 

the player click an alternate button on the FPGA to load their 

game state from the SD card.   

 

To stay true to the original NES’s specs, our system’s major 

parameters are summarized in the following table:  

 

Master Clock Speed 21.477272 MHz 

CPU Clock Speed 1.79 MHz (Master / 12) 

APU Frame Counter 

Rate 

60 Hz 

PPU Clock Speed 5.36 MHz (Master / 4) 

Height of Picture 240 Scanline (corresponds 

to 240 pixels) 

Length of Vertical 

Blanking 

20 scanlines 

Total number of CPU 

cycles per frame 

89341.5 / 3 = 29780.5 

Vertical scan rate 60 Hz 

 

In order to test our overall system, we will first test our 

smaller subcomponents to ensure they work correctly. It will be 

crucial to do individual testing first because our overall system 

will likely not work if any of the individual components fail, 

especially the CPU and the PPU. Also, the complexity of testing 

the system is much more complicated to do automatically. 

There are three major metrics we are going to benchmark: frame 

accuracy, cycle accuracy, and memory accuracy. 

 

Most of our PPU testing for frame accuracy will be heavily 

reliant on the Mesen emulator. We chose it because it has a very 

good debugger and it is cycle accurate. It allows you to analyze 

every component of the NES at runtime, set breakpoints and 

most importantly for us it lets you copy the entire PPU memory. 

This is how we generate static VRAM dumps which we then 

feed to our hardware implementation to generate a frame. To 

generate a frame in our hardware we have a testbench that uses 

System Verilog to write the color of every pixel in our frame to 

a text file. We then have a python script that takes in this text 

file and compares it with a reference frame generated by the 

Mesen emulator. This way we can create any number of test 

vectors by loading any game ROM to the emulator, pausing at 

a frame that has behavior we are testing, and copying the static 

VRAM to our hardware emulator. Some of the behavior we are 

looking to test: frames with no sprites, frames with sprites, 

frames with more than 8 sprites on a scanline (this was a 

restriction on the original NES), frames with a scrolled 

background horizontally, frames with a scrolled background 

vertically. So far, we have 5 tests of frames with sprites and no 

sprites we are using in development, but we plan on creating 

quite a few more when we get to more complicated parts of the 

PPU. In terms of PPU cycle accuracy, we plan on using 

counters and System Verilog assertions to ensure that all the 

signals get triggered on the correct cycle. We also need to 

ensure that our rendering process takes the exact number of 

cycles as in the original even if our implementation differs 

slightly. We will also ensure that every operation on the PPU’s 

registers takes the exact amount of cycles as in the original spec, 

again we will use assertions to verify this. For instance, DMA 

for the PPU needs to take 513 cycles if on an even CPU cycle 

or 514 cycles if on an odd CPU cycle.  

 

In terms of accuracy, for the CPU we will benchmark our 

implementation against a reference implementation of the 6502. 

We will run a set of benchmark tests to verify that every 

instruction and addressing mode works adequately.  

 

For the APU we will also use the Mesen emulator to look at 

its registers and compare them to our own to ensure we are 

producing the correct sounds. Like the PPU testing we can load 

any game we would like and probe its values at a given cycle.  
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

The overall system architecture is comprised of 3 major 

components: the CPU, the PPU and the APU.  

 

When a game ROM gets loaded, the CPU will start reading 

and executing instructions. The instructions could correspond 

to reading user input from the controller, modifying sprites or 

background tiles to make a change on screen, changing the 

audio levels of the APU or arithmetic operations for updating 

game state. Most of the game’s game engine is implemented as 

an IRQ handler that runs whenever the PPU finishes rendering 

a frame. The controllers will be connected to the FPGA via 

GPIO pins that the CPU will read and interpret accordingly.  

 

The PPU’s job is to look at VRAM and output the 

corresponding frame pixel-by-pixel. The pixel-by-pixel 

rendering is fed into a VGA module that converts the pixel’s 

color to RGB values to output to the display. Additionally, the 

PPU has to perform reads and writes of VRAM on behalf of the 

CPU. The PPU also provides status information via MMIO 

registers on the CPU’s address space so that the CPU knows 

when it is safe to continue execution.  The CPU restarts 

execution of the game code when the PPU raises the VBlank 

IRQ, which occurs when the PPU has finished rendering a 

frame and is no longer accessing VRAM so that CPU can 

modify it. Consequently, a game only has about 2273 CPU 

cycles to perform game updates before the PPU takes over 

control and starts rendering the updates.  

 

The ROM will be read from an SD card by using the NIOS 

II softcore on the FPGA and Quartus IP block for SD interface. 

Once the data from the SD card is read, it will be copied into 

SRAM so that the CPU and PPU can read it. Similarly, to store 

the state of the game, we will serialize all registers and the 2 

RAMs (CPU and PPU). Once the data is serialized, we will 

store it at a predetermined position in SRAM that will then 

enable the NIOS II softcore to read the data from SRAM and 

store it in the SD card. To load a save state we will undo this 

operation by reading SD card data and storing it at 

predetermined location on SRAM so it then gets loaded into the 

PPU and CPU.  
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IV. SYSTEM DESCRIPTION 

A. CPU Subsystem 

Our CPU is a recreation of the MOS 6502, with some slight 

differences. The main differences from the MOS 6502 are that 

we will not support decimal mode addition, since this feature 

was removed on the NES, and we will not support 

undocumented opcodes, since only a very small subset of 

games use these. 

The MOS 6502 is an 8-bit, microcoded processor, with a 16-

bit address space. The architectural state of the processor 

includes the 16-bit program counter (PC) and the following 8-

bit registers: the accumulator (A), two index registers (X and 

Y), stack pointer (SP), and status flags. The status flags include 

7 flags: the negative flag, overflow flag, break flag, decimal 

flag, interrupt flag, zero flag, and carry flag. 

To interface with memory, the MOS 6502 has a 16-bit  

memory address line (ADDR), a single bit read and write line,  

and an 8-bit data line, which we have split into a data_out line 

(for reads) and a data_in line (for writes). We also need an  

additional internal register that holds the previously read value  

from the memory, which we include as a part of our memory 

interface. The read line is active on every cycle, so the CPU  

either reads or writes on every cycle. The address is registered,  

but it is also write-through, so you don’t need to change the  

address if you want to keep accessing the same address in 

memory, and there is only a delay of one cycle per each read,  

even for new addresses.  Our ALU is straightforward. It takes 

in two 8-bit values (alu_src1 and alu_src2), a single bit source 

2 invert signal (alu_src2_invert), a single bit carry-in 

(alu_c_in), and an operation (alu_op), and produces an 8-bit 

output (alu_out), a single bit carry-out signal (alu_c_out), a 

single bit zero-out signal (alu_z_out), and a single bit overflow 

signal (alu_v_out). The ALU operations are add, xor, or, and, 

shift left, shift right, and hold. The ALU does not operate 

combinationally, so all the output signals are registered, which 

is necessary for some addressing modes. The hold operation 

just keeps the outputs of the ALU steady. 

These are the main elements of the datapath. The registers 

primarily interact with each other and memory through the 

ALU. To move a value from A to X, for example, A is moved 

to alu_src1 and 0 is moved to alu_src2, 0 to alu_c_in, and add 

to alu_op. The alu_output would then be moved into Y on the 

following cycle. An 8-bit value can be moved directly into the 

status register, or individual flags can be set, cleared, or set 

based on the outputs of the alu. The PC has a special 16-bit 

incrementor, so its value can be updated without needing to use 

the ALU. Also note that PC and ADDR can be split into 

separate 8-bit halves, since it is necessary in many cases to 

move an 8-bit value into just one half of these two addresses. 

To manage the datapath, we need our control signals. The 

control signals are dictated by each instruction. Every 

instruction has the same first two steps: fetch and decode. At 

the beginning of each instruction, the only known is the PC, or 

the address of the instruction, so fetch just issues a read to 

memory at the address of the PC and increments the PC. In 

decode, we have the actual opcode of the instruction available, 

but we still need to interpret it to figure out what needs to be 

done. Each opcode specifies an instruction and an addressing 

mode. 

Many opcodes have a vector of control signals associated 

with them. These signals can specify ALU sources, ALU output 

destinations, ALU operations, branch conditions, flag setting 

conditions, etc. It is expected that the ALU operation happens 

prior to the register write back and flag setting. The control 

signal vector does not specify when each operation needs to be 
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performed, but rather, that these operations need to be done 

during the instruction’s lifetime. Every addressing mode has a 

specific sequence of control vectors (the microcode) that are 

used to manage which reads, writes, alu operations, and register 

writes happen, and when. The control vector can specify what 

values to move into the address line, the read signal, what 

values to move into the PC, whether to skip a line in the 

microcode, whether to halt the microde, when to begin fetching 

the next instruction, etc. 

 A link to the CPU’s microcode that we’ve written so far 

has been included in our references. 

 Although the MOS 6502 is a relatively simple CPU, it still 

has some instruction level parallelism. The CPU can fetch the 

next instruction, even if it still finishing up an instruction, if the 

instruction if it is still working on will not use memory for the 

duration of its execution. Some instructions which only read 

from memory, such as logical operations, loads, and 

comparisons fit this category. In many cases an instruction will 

run for two cycles while the succeeding instruction is in fetch 

and decode, though this doesn’t create any data hazards since 

none of the registers are accessed in fetch or decode. In decode, 

we need to figure out what the vector of control signals should 

be, what line of microcode to jump to, whether we need to 

increment the PC again, and whether to start fetching the next 

instruction on the following cycle. The decoder module is 

meant to take in an opcode and figure out all of these. Note that 

some addressing modes specify operands, and in these cases, 

we need to increment the PC while still in decode. The uCode 

ROM is just a memory that stores vectors of microcode control 

signals.  

The CPU also has two interrupt signals, which are the 

interrupt request (IRQ) and non-maskable interrupt (NMI). 

These interrupts can trigger an interrupt handler to be run in the 

CPU in place of an instruction. These interrupts can come from 

the APU and PPU when they need to communicate to the CPU. 

In addition to the interrupts, the CPU can share information 

with the APU and PPU with shared memory. The CPU shares 

8 8-bit register with the PPU as part of its address space, and it 

shares an additional 24 8-bit registers with the APU as well. The 

first two Kilo-Bytes of the address space are reserved as the 

CPU’s RAM and will be implemented with block RAMs. The 

top 48 Kilo-Bytes of the CPU’s address space is the cartridge 

space, which is where the games’ instructions live. We will use 

the FPGA’s SRAM to implement the cartridge space. The 

remaining space in the address space just maps to the same 

portions listed previously, so multiple different addresses will 

map to identical portions of memory. 

 

 

 

 

 

 

 

 

B. PPU Subsystem 

The PPU (Picture Processing Unit), oversees rendering the 

game’s frames and displaying them on a TV screen. The PPU 

has two major jobs: facilitate interactions with the PPU’s 

memory and displaying the correct pixels on screen.  

 

First a brief overview of the memory layout and how sprites 

are represented internally. The pixel information to display on-

screen is not kept on a pixel by pixel basis, instead pixels are 

grouped into tiles which correspond to a 8x8 pixel area on 

screen. These tiles are kept in the game’s ROM along with the 

code. From the PPU’s perspective, however, the tiles are kept 

in the first 8KB of the PPU’s address space. These 8KB are split 

into two tables called Pattern Tables, one holds tile information 

for sprites the other tile information for backgrounds. The 

layout of a background is kept in the Nametable, and the layout 

is on a tile basis. In other words, an entry in the Nametable 

corresponds to a tile index which is an address in the Pattern 

Table. Sprites information is kept in a table called OAM, there 

are 4 bytes per sprite corresponding to the x position, y position, 

the tile index, and sprite attributes (such as vertical or horizontal 

flipping). Finally, there is the Palette RAM which holds 4 

palettes (sets of colors) for sprite tiles and 4 palettes for 

background tiles.   

 

The first job is done through a set of registers that allow the 

CPU to write to VRAM and OAM, which control background 

tiles and sprite tiles respectively. By writing to these, the CPU 

can modify what gets rendered on screen. Other registers let the 

CPU specify an X and Y scroll so that tiles on screen give the 

illusion of scrolling. These registers are at the heart of the NES 

since they are the bridge between what gets displayed on screen 

and the game’s code.  

 

The controller register (PPUCTRL) is at address 0x2000 (of 

CPU’s address space). This is a write only register that allows 

the CPU to set the following attributes: base nametable address 

(where the background tile layout information is located in the 

PPU’s VRAM),  set the stride for how to access the PPUs 

VRAM either +1 or +32, specify what pattern table to use for 

sprites, specify what pattern table to use for background tiles, 

and whether the PPU should generate a Non Maskable Interrupt 

to the CPU at the start of the vertical blanking interval. 

 

The mask register (PPUMASK) is at address 0x2001. This 

is a write only register that allows the CPU to control how the 

PPU renders sprites, backgrounds, and colors. Specifically, 

there are bits to control: greyscale (give pixels a greyer look), 

whether the PPU should render backgrounds or sprites on the 

leftmost 8 pixels of the screen, hide background, hide sprites, 

and change RGB color intensities.  

 

The status register (PPUSTATUS) is at address 0x2002. 

This is a read only register that allows the CPU to know what 

the state of the PPU is. This register is often used for timed 

events, specifically by knowing when the PPU has reached a 

specific pixel on the screen. The most important flags in this 
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register are the Sprite 0 hit, which gets triggered when a special 

background tile overlaps another special sprite tile, and the 

Vblank flag, which gets triggered when vertical blanking stars.  

 

The OAM address register (OAMADDR) is at address 

0x2003. This is a write only register that specifies at what 

location of the OAM (memory that holds sprite information) the 

CPU wants to write to.  

 

The OAM data register (OAMDATA) is at address 0x2004. 

This is a read and write register that specifies the data you want 

to write to address in OAMADDR. OAMADDR is 

incremented after each write to OAMDATA. 

 

The scroll register (PPUSCROLL) is at address 0x2005. 

This is a write only register that allows the CPU to specify what 

the top left corner pixel should get rendered. This allows pixel-

granular scrolling to work and was a great feature of the NES 

at the time.  

 

The address register (PPUADDR) is at address 0x2006. This 

is a write only register that allows the CPU to specify at what 

address in VRAM to write data to. This register is used in 

conjunction with the PPUDATA register to fill in the PPU’s 

VRAM with background tile layouts.  

 

The data register (PPUDATA) is at address 0x2007. This is 

a read and write register which allows the CPU to specify the 

data to write to VRAM. After each write the PPUADDR 

register is incremented by 1 or 32 depending on the stride bit 

specified in the PPUCTRL register. 

 

The OAM DMA (OAMDMA) is at address 0x4014. This is 

a write register that allows the CPU to perform DMA on the 

PPU’s VRAM. The CPU only has to write one-byte YY to this 

address and the PPU will copy the data from range 0xYY00 -

YYFF of the CPU’s memory into the PPU’s internal OAM.   

 

The PPU’s second job (displaying pixels on screen) will be 

accomplished through VGA. Depending on your geographic 

location, the original NES was engineered to display images on 

the NTSC or PAL video standards. The two video standards 

have distinct frequencies they run at. The original NTSC video 

standard has a horizontal refresh rate of 15KHz, that is 

horizontal scan lines are fed to the display at 15000 per second. 

However, modern VGA has a horizontal refresh rate of 31KHz, 

so we have designed our system to render frames at the original 

15KHz but output them at 31KHz. This is done by running the 

VGA module at twice the frequency of the PPU, and either: 

outputting the same scanline twice at double the speed or 

outputting the scanline ate double the speed followed by a black 

scanline. The latter option will give our games a retro CRT-like 

look, so we will be opting for this initially. If we notice that the 

image is to dark and we don’t like how it looks we will revert 
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to the first option. In order to accommodate the VGA interface 

and to use the resources we have on the FPGA more effectively 

we modified the rendering process of the original NES, while 

keeping the overall cycle counts the same. 

 

From the PPU’s perspective the rendering process takes 262 

scanlines, each one outputting 341 ‘dots’ (can think of them as 

pixels but only the first 256 ‘dots’ will be visible on screen) one 

per cycle. The first 240 scan lines oversee rendering the visible 

pixels, this is accomplished by rendering pixels into a buffer 

that is passed on to the VGA module once an entire scanline is 

done. For each pixel at a particular position (x,y) we calculate 

its color by looking up the tile and color information in VRAM, 

OAM, and palette RAM based on x and y. We then write this 

color value into the previously mentioned buffer and we move 

on to the next pixel. For each scanline the first 256 cycles 

correspond to visible pixels and the remaining 85 cycles are 

used for the VGA’s horizontal sync. The 241st and 242nd scan 

lines will be idle scanlines. They are simply kept to maintain 

the same cycle counts as in the original NES. Scanlines 243 - 

262 will correspond to the VGA’s vertical sync.  

 

From the VGA’s perspective, the process is similar. 

However, instead of having 262 scanlines, we will have 512 to 

compensate for twice the PPU’s frequency. Each scanline will 

also have 341 ‘dots’. After a PPU scanline is done rendering, 

we will pipeline it to another buffer in the VGA which will start 

outputting the pixels. Because of the clocks they are running, 

one PPU scanline corresponds to two VGA scanlines, thus the 

VGA will display the PPU’s rendered scanline twice or once 

followed by a black scanline, depending on the look we want. 

Since the VGA will output scanlines at double the frequency of 

the PPU we will achieve the 31KHz horizontal refresh rate 

needed for VGA protocol. 

 

C. APU Subsystem 

The Audio Processing Unit (APU) is responsible for 

generating the sound for the NES. The CPU controls the APU 

by writing control signals at addresses 0x4000-0x4017 in the 

RAM they share. These addresses are wired to the APU’s 

registers. As for the outputs, the APU produces a final wave that 

drives the speakers and can produce an IRQ. 

 

The APU produces its sub waves with its 5 channels: 

pulse_1, pulse_2, triangle, data modulation, and noise. The 

pulse channels produce square waves with specified duty cycle, 

frequency, duration, sweep, and volume. Moreover, the volume 

can be steady or an envelope. The triangle channel produces a 

triangle wave with specified duration and frequency. The data 

modulation channel outputs a 7-bit PCM signal with the 

specified sample start address and sample size. When the DCM 

finishes playing its sample then it will fire an IRQ.  Finally, the 

noise channel produces pseudo random bits with the exact same 
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control signals as the pulse channels. 

 

Finally, the frame counter is responsible for creating clocks 

that will drive the different channels. The outputs of the DMC, 

triangle, and noise channel are joined together as well as the 

pulse waves. These two new waves are then passed through a 

digital to analog converter and then mixed to create the final 

wave. 

V. PROJECT MANAGEMENT 

A. Schedule 

See last page for a detailed view of our schedule 

B. Team Member Responsibilities 

Nikolai - Nikolai is primarily in charge of implementing the 

CPU, including a software simulation and hardware 

implementation, and verification of both implementations. 

Nikolai will work with Oscar to integrate the CPU and the PPU. 

It is also his responsibility to create an SD card controller that 

can be used by Oscar to load game data from the SD card into 

SRAM, and that Diego can use to load, and store save states 

from the SD card into the system. It is also his responsibility to 

create an interface between the NES controllers and the design. 

 

Diego - Diego will share the workload of the PPU with Oscar 

during the earlier stages of the PPU development but will shift 

his focus towards implementing the APU. Diego will also 

assume the responsibility of integrating the APU with the CPU. 

He will also oversee interfacing with our speaker. It will also be 

Diego’s responsibility to serialize and deserialize the save state 

data for the system, which includes moving data back and forth 

between the SRAM and SD card, after Nikolai creates an SD 

card interface. 

 

Oscar - Oscar oversees the PPU design and implementation, 

though Diego will help him during the earlier phases of research 

and development. Oscar and Nikolai will work together to 

integrate the CPU and the PPU once both are completed. Oscar 

will also create the VGA interface for the design. It is also his 

responsibility to load game ROMs from the SD card into the 

SRAM, after Nikolai creates an SD card interface. 

 

All - All three members will equally share the responsibilities 

of drafting the project proposal, design review, and final report. 

They will also equally share work on presentation slides for the 

three presentations. With respect to the design itself, all three 

members will work on system integration during the final 

weeks of the project. 

C. Budget 

For our project we’re using several different software tools, 

hardware platforms, and peripheral devices. 

In terms of software we’re using Synopsys VCS for testing 

our designs in simulated environments. We have been using this 

tool for a few years in a few different courses, so we are very 

comfortable with using it to test hardware designs. 

For synthesizing our design, we’re using Quartus Prime 16. 

We’re using Quartus because we’re very familiar with it, and 

because the board we’ve selected is an Altera board. We’ve 

chosen this version of Quartus for the relative ease of use of IP 

blocks over other versions of Quartus that we’ve used. 

Our FPGA board is a Terasic DE2-115. We picked this board 

for several reasons. One factor was our familiarity with the 

board and the Altera tool-chain, since learning Vivado would 

definitely have quite a bit of overhead for us. We also didn’t 

have to pay for this board out of our budget, since the 

department fortunately has units to spare. Most importantly, 

this FPGA has all of the resources we need for this project. This 

board has 2 MB of SRAM, an SD card slot, 4 push buttons for 

managing our save states, and VGA output. On the FPGA chip 

there are over 114 thousand LUTs and 432 MK9s, which are 

each about 1 Kilo-Byte of memory. In other words, this will be 

enough for us to build our modestly sized system. I will also 

note that this was not the only contender we had for our FPGA. 

We were also considering the DE0-CV, since it also had most 

of the same resources in the quantities we required, however, 

its VGA port is 4-bit, as opposed to the 8-bit VGA of the DE2-

115. With a 4-bit VGA we would only have 32 different colors 

to display, but the NES requires that we have at least 64 

different colors, so the DE0-CV was ultimately an infeasible 

choice.  

In terms of peripherals we have our controllers, our controller 

adapters, our speaker, and our VGA monitor. Our controllers 

are replicas of the original NES controllers, and behave 

identically. Our adapters take in NES controller output on one 

end and give us GPIO on the other, which we can easy attach to 

our board and interface with. Our speaker will serve as our 

audio output and our monitor will serve as our digital output. 

These don’t really need to be any specific speaker or VGA 

monitor, as long as they can connect to the board. 

 

Item Price Quantity Shipping Total 

Nes 

Controller $7.99 2 $2.99 $18.97 

Speaker $3.95 2 $7.81 $15.71 

Controller 

Adapter $9.99 2 $0.00 $19.98 

DE2-115 $590.00 1 $0.00 

Supplied 

To us 

VGA 

Monitor ~$100.00 1 $0.00 

Supplied 

To us 

Synopsis 

VCS ~25,000 1 $0.00 

Supplied 

To us 

Quartus 

Prime $3,995 1 $0.00 

Supplied 

To us 

 

D. Risk Management 

For the CPU, the greatest Risk that exists is not properly 
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implementing interrupts. The NES has two crucial interrupts: 

the VGA VBLANK and the APU IRQ. The former signals to 

the CPU that it is time for PPU memory to be before it is time 

to the PPU to render the next frame. If the CPU is unable to 

handle this interrupt then essentially nothing on the display will 

be updated. Thus, the NES would be unusable. As for the APU 

IRQ, it is fired whenever the DCM finishes playing its sample. 

Although this is related to audio, some NES titles play 

“nothing” to transform the IRQ into a timer to setoff events in 

the game. The latter interrupt is not as fatal for the project but 

can limit the number of games that can be ran on our emulator.  

Furthemore, both interrupts require appropriate context 

switching. Even if the CPU manages to handle the interrupts 

correctly it must be able to return to the process that was 

originally interrupted. If this process context is not properly 

saved or restored then the game can crash or lead to some 

undefined behavior. To avoid this risk, Nikolai will prioritize 

implementing and testing interrupts using small benchmarks to 

verify that the running process can be interrupted, the handler 

is triggered, and context is correctly restored. As for Oscar and 

Diego, they will prioritize the DMC channel implementation to 

have the IRQ fire. Moreover, the VGA controller will produce 

dummy images and require refreshing the image to create the 

VBLANK signal. 
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