
18-500 Final Project Report: 03/04/2019

1

Abstract— A system capable of running NES (Nintendo

Entertainment System) ROMS of games such as Donkey Kong and

Super Mario Bros. Our hardware implementation of the NES

console will allow players to use original controllers to play and

the ability to load and save game state data onto an SD card.

Saving game state data is common in software emulators however

it is rarer in hardware emulation, our system will try to bridge that

gap.

Index Terms—Emulation, NES, Retro Video Games, FPGA, SD

card, RTL

I. INTRODUCTION

 live in an era when video games are getting more

complex every year. Graphics are improving, player

counts are getting larger, and audio fidelity is at an all-time

high. There is also a recent renaissance of retro-style games

such as Shovel Knight, Celeste, Sonic Mania, and Cuphead. We

thought it would be a good time to revisit the rebirth of modern

video games, by studying and building an emulator for the NES

system. When the NES came out, the video game industry had

just experienced a crash in North America, however it quickly

became the best-selling gaming console of its time. It

revitalized the industry and helped propel it forward to what we

have now. The NES has some of the most memorable gaming

experiences such as Super Mario Bros 1, 2 and 3, The Legend

of Zelda, Metroid, Donkey Kong, amongst many others. Even

though there are many software emulators that provide cycle

accurate emulation we want to use hardware to provide the user

a retro feel closer to the original console, by using original

controllers, outputting a CRT-like video signal, and offering a

cycle accurate emulator on an FPGA board. One of the most

attractive features of software emulators is saving game

progress. Save states were restricted to a handful of games that

had non-volatile memory in the cartridge, however most games

did not support them. Saving game states is a nice feature

because you can create your own checkpoints and avoid

restarting the game from the beginning. Most FPGA emulators

we found online, do not support this feature so we would like

to offer this as a feature in ours.

II. DESIGN REQUIREMENTS

Our implementation of the NES will try to match the original

console as close as possible. To accomplish this, we have the

following requirements:

• PPU - the Picture Processing Unit will be running at

5.36 MHz

o the PPU will render frames 100% cycle-

accurate.

o the PPU will have MMIO registers in the

CPU’s address space to manage

communication with the CPU.

o The communication through the MMIO

registers will also be cycle accurate,

including the DMA of the OAM.

o the PPU will have several internal memory

blocks: 256 bytes of OAM (stores sprites),

2KB of VRAM (stores background tiles), 32

bytes of palette RAM (stores color

information).

o As in the original hardware, our system will

support a maximum of 8 sprites per scanline.

o Static frame rendering based on a VRAM

dump will match cycle accurate emulator

(Mesen)

• CPU - the Central Processing Unit will be running at

1.78 MHz

o Controller’s will be mapped to specific

MMIO addresses on the CPU’s address space

o the CPU will run instructions 100% cycle

accurate

o the CPU is based on the 6502 processor and

will support IRQs

o

• APU - the Audio Processing Unit will be running at

1.78 MHz

o The APU will have the five channels: pulse 1

& 2 , triangle, noise, and data modulation

o The APU will fire IRQ’s when the DMC

finishes its samples

o The APU will receive channel control signals

from the APU in MMIO registers at

addresses 0x4000-0x4017 in shared RAM

o The APU will use a non-linear mixer to create

NES Emulation on FPGA

Author: Oscar A Ramirez Poulat: Electrical and Computer Engineering, Carnegie Mellon University,

Diego Rodriguez: Electrical and Computer Engineering, Carnegie Mellon University,

Nikolai Lenney: Electrical and Computer Engineering, Carnegie Mellon University

W

18-500 Final Project Report: 03/04/2019

2

a final wave without distortion

o The frame counter will generate the channel

clocks to keep output waves in phase and in

their corresponding frequency

• VGA

o System will target the 640x480 @ 60Hz

industry standard

• SD Card

o the system will support loading ROMs from

an SD card

o the system will also support saving/loading

game progress to/from an SD card

At the very least our system should be able to: load the

original Donkey Kong from an SD card, allow the player to use

original NES controllers to play the game, let the player click a

button on the FPGA to save their game state to the SD card, let

the player click an alternate button on the FPGA to load their

game state from the SD card.

To stay true to the original NES’s specs, our system’s major

parameters are summarized in the following table:

Master Clock Speed 21.477272 MHz

CPU Clock Speed 1.79 MHz (Master / 12)

APU Frame Counter

Rate

60 Hz

PPU Clock Speed 5.36 MHz (Master / 4)

Height of Picture 240 Scanline (corresponds

to 240 pixels)

Length of Vertical

Blanking

20 scanlines

Total number of CPU

cycles per frame

89341.5 / 3 = 29780.5

Vertical scan rate 60 Hz

In order to test our overall system, we will first test our

smaller subcomponents to ensure they work correctly. It will be

crucial to do individual testing first because our overall system

will likely not work if any of the individual components fail,

especially the CPU and the PPU. Also, the complexity of testing

the system is much more complicated to do automatically.

There are three major metrics we are going to benchmark: frame

accuracy, cycle accuracy, and memory accuracy.

Most of our PPU testing for frame accuracy will be heavily

reliant on the Mesen emulator. We chose it because it has a very

good debugger and it is cycle accurate. It allows you to analyze

every component of the NES at runtime, set breakpoints and

most importantly for us it lets you copy the entire PPU memory.

This is how we generate static VRAM dumps which we then

feed to our hardware implementation to generate a frame. To

generate a frame in our hardware we have a testbench that uses

System Verilog to write the color of every pixel in our frame to

a text file. We then have a python script that takes in this text

file and compares it with a reference frame generated by the

Mesen emulator. This way we can create any number of test

vectors by loading any game ROM to the emulator, pausing at

a frame that has behavior we are testing, and copying the static

VRAM to our hardware emulator. Some of the behavior we are

looking to test: frames with no sprites, frames with sprites,

frames with more than 8 sprites on a scanline (this was a

restriction on the original NES), frames with a scrolled

background horizontally, frames with a scrolled background

vertically. So far, we have 5 tests of frames with sprites and no

sprites we are using in development, but we plan on creating

quite a few more when we get to more complicated parts of the

PPU. In terms of PPU cycle accuracy, we plan on using

counters and System Verilog assertions to ensure that all the

signals get triggered on the correct cycle. We also need to

ensure that our rendering process takes the exact number of

cycles as in the original even if our implementation differs

slightly. We will also ensure that every operation on the PPU’s

registers takes the exact amount of cycles as in the original spec,

again we will use assertions to verify this. For instance, DMA

for the PPU needs to take 513 cycles if on an even CPU cycle

or 514 cycles if on an odd CPU cycle.

In terms of accuracy, for the CPU we will benchmark our

implementation against a reference implementation of the 6502.

We will run a set of benchmark tests to verify that every

instruction and addressing mode works adequately.

For the APU we will also use the Mesen emulator to look at

its registers and compare them to our own to ensure we are

producing the correct sounds. Like the PPU testing we can load

any game we would like and probe its values at a given cycle.

18-500 Final Project Report: 03/04/2019

3

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The overall system architecture is comprised of 3 major

components: the CPU, the PPU and the APU.

When a game ROM gets loaded, the CPU will start reading

and executing instructions. The instructions could correspond

to reading user input from the controller, modifying sprites or

background tiles to make a change on screen, changing the

audio levels of the APU or arithmetic operations for updating

game state. Most of the game’s game engine is implemented as

an IRQ handler that runs whenever the PPU finishes rendering

a frame. The controllers will be connected to the FPGA via

GPIO pins that the CPU will read and interpret accordingly.

The PPU’s job is to look at VRAM and output the

corresponding frame pixel-by-pixel. The pixel-by-pixel

rendering is fed into a VGA module that converts the pixel’s

color to RGB values to output to the display. Additionally, the

PPU has to perform reads and writes of VRAM on behalf of the

CPU. The PPU also provides status information via MMIO

registers on the CPU’s address space so that the CPU knows

when it is safe to continue execution. The CPU restarts

execution of the game code when the PPU raises the VBlank

IRQ, which occurs when the PPU has finished rendering a

frame and is no longer accessing VRAM so that CPU can

modify it. Consequently, a game only has about 2273 CPU

cycles to perform game updates before the PPU takes over

control and starts rendering the updates.

The ROM will be read from an SD card by using the NIOS

II softcore on the FPGA and Quartus IP block for SD interface.

Once the data from the SD card is read, it will be copied into

SRAM so that the CPU and PPU can read it. Similarly, to store

the state of the game, we will serialize all registers and the 2

RAMs (CPU and PPU). Once the data is serialized, we will

store it at a predetermined position in SRAM that will then

enable the NIOS II softcore to read the data from SRAM and

store it in the SD card. To load a save state we will undo this

operation by reading SD card data and storing it at

predetermined location on SRAM so it then gets loaded into the

PPU and CPU.

18-500 Final Project Report: 03/04/2019

4

IV. SYSTEM DESCRIPTION

A. CPU Subsystem

Our CPU is a recreation of the MOS 6502, with some slight

differences. The main differences from the MOS 6502 are that

we will not support decimal mode addition, since this feature

was removed on the NES, and we will not support

undocumented opcodes, since only a very small subset of

games use these.

The MOS 6502 is an 8-bit, microcoded processor, with a 16-

bit address space. The architectural state of the processor

includes the 16-bit program counter (PC) and the following 8-

bit registers: the accumulator (A), two index registers (X and

Y), stack pointer (SP), and status flags. The status flags include

7 flags: the negative flag, overflow flag, break flag, decimal

flag, interrupt flag, zero flag, and carry flag.

To interface with memory, the MOS 6502 has a 16-bit

memory address line (ADDR), a single bit read and write line,

and an 8-bit data line, which we have split into a data_out line

(for reads) and a data_in line (for writes). We also need an

additional internal register that holds the previously read value

from the memory, which we include as a part of our memory

interface. The read line is active on every cycle, so the CPU

either reads or writes on every cycle. The address is registered,

but it is also write-through, so you don’t need to change the

address if you want to keep accessing the same address in

memory, and there is only a delay of one cycle per each read,

even for new addresses. Our ALU is straightforward. It takes

in two 8-bit values (alu_src1 and alu_src2), a single bit source

2 invert signal (alu_src2_invert), a single bit carry-in

(alu_c_in), and an operation (alu_op), and produces an 8-bit

output (alu_out), a single bit carry-out signal (alu_c_out), a

single bit zero-out signal (alu_z_out), and a single bit overflow

signal (alu_v_out). The ALU operations are add, xor, or, and,

shift left, shift right, and hold. The ALU does not operate

combinationally, so all the output signals are registered, which

is necessary for some addressing modes. The hold operation

just keeps the outputs of the ALU steady.

These are the main elements of the datapath. The registers

primarily interact with each other and memory through the

ALU. To move a value from A to X, for example, A is moved

to alu_src1 and 0 is moved to alu_src2, 0 to alu_c_in, and add

to alu_op. The alu_output would then be moved into Y on the

following cycle. An 8-bit value can be moved directly into the

status register, or individual flags can be set, cleared, or set

based on the outputs of the alu. The PC has a special 16-bit

incrementor, so its value can be updated without needing to use

the ALU. Also note that PC and ADDR can be split into

separate 8-bit halves, since it is necessary in many cases to

move an 8-bit value into just one half of these two addresses.

To manage the datapath, we need our control signals. The

control signals are dictated by each instruction. Every

instruction has the same first two steps: fetch and decode. At

the beginning of each instruction, the only known is the PC, or

the address of the instruction, so fetch just issues a read to

memory at the address of the PC and increments the PC. In

decode, we have the actual opcode of the instruction available,

but we still need to interpret it to figure out what needs to be

done. Each opcode specifies an instruction and an addressing

mode.

Many opcodes have a vector of control signals associated

with them. These signals can specify ALU sources, ALU output

destinations, ALU operations, branch conditions, flag setting

conditions, etc. It is expected that the ALU operation happens

prior to the register write back and flag setting. The control

signal vector does not specify when each operation needs to be

18-500 Final Project Report: 03/04/2019

5

performed, but rather, that these operations need to be done

during the instruction’s lifetime. Every addressing mode has a

specific sequence of control vectors (the microcode) that are

used to manage which reads, writes, alu operations, and register

writes happen, and when. The control vector can specify what

values to move into the address line, the read signal, what

values to move into the PC, whether to skip a line in the

microcode, whether to halt the microde, when to begin fetching

the next instruction, etc.

 A link to the CPU’s microcode that we’ve written so far

has been included in our references.

 Although the MOS 6502 is a relatively simple CPU, it still

has some instruction level parallelism. The CPU can fetch the

next instruction, even if it still finishing up an instruction, if the

instruction if it is still working on will not use memory for the

duration of its execution. Some instructions which only read

from memory, such as logical operations, loads, and

comparisons fit this category. In many cases an instruction will

run for two cycles while the succeeding instruction is in fetch

and decode, though this doesn’t create any data hazards since

none of the registers are accessed in fetch or decode. In decode,

we need to figure out what the vector of control signals should

be, what line of microcode to jump to, whether we need to

increment the PC again, and whether to start fetching the next

instruction on the following cycle. The decoder module is

meant to take in an opcode and figure out all of these. Note that

some addressing modes specify operands, and in these cases,

we need to increment the PC while still in decode. The uCode

ROM is just a memory that stores vectors of microcode control

signals.

The CPU also has two interrupt signals, which are the

interrupt request (IRQ) and non-maskable interrupt (NMI).

These interrupts can trigger an interrupt handler to be run in the

CPU in place of an instruction. These interrupts can come from

the APU and PPU when they need to communicate to the CPU.

In addition to the interrupts, the CPU can share information

with the APU and PPU with shared memory. The CPU shares

8 8-bit register with the PPU as part of its address space, and it

shares an additional 24 8-bit registers with the APU as well. The

first two Kilo-Bytes of the address space are reserved as the

CPU’s RAM and will be implemented with block RAMs. The

top 48 Kilo-Bytes of the CPU’s address space is the cartridge

space, which is where the games’ instructions live. We will use

the FPGA’s SRAM to implement the cartridge space. The

remaining space in the address space just maps to the same

portions listed previously, so multiple different addresses will

map to identical portions of memory.

B. PPU Subsystem

The PPU (Picture Processing Unit), oversees rendering the

game’s frames and displaying them on a TV screen. The PPU

has two major jobs: facilitate interactions with the PPU’s

memory and displaying the correct pixels on screen.

First a brief overview of the memory layout and how sprites

are represented internally. The pixel information to display on-

screen is not kept on a pixel by pixel basis, instead pixels are

grouped into tiles which correspond to a 8x8 pixel area on

screen. These tiles are kept in the game’s ROM along with the

code. From the PPU’s perspective, however, the tiles are kept

in the first 8KB of the PPU’s address space. These 8KB are split

into two tables called Pattern Tables, one holds tile information

for sprites the other tile information for backgrounds. The

layout of a background is kept in the Nametable, and the layout

is on a tile basis. In other words, an entry in the Nametable

corresponds to a tile index which is an address in the Pattern

Table. Sprites information is kept in a table called OAM, there

are 4 bytes per sprite corresponding to the x position, y position,

the tile index, and sprite attributes (such as vertical or horizontal

flipping). Finally, there is the Palette RAM which holds 4

palettes (sets of colors) for sprite tiles and 4 palettes for

background tiles.

The first job is done through a set of registers that allow the

CPU to write to VRAM and OAM, which control background

tiles and sprite tiles respectively. By writing to these, the CPU

can modify what gets rendered on screen. Other registers let the

CPU specify an X and Y scroll so that tiles on screen give the

illusion of scrolling. These registers are at the heart of the NES

since they are the bridge between what gets displayed on screen

and the game’s code.

The controller register (PPUCTRL) is at address 0x2000 (of

CPU’s address space). This is a write only register that allows

the CPU to set the following attributes: base nametable address

(where the background tile layout information is located in the

PPU’s VRAM), set the stride for how to access the PPUs

VRAM either +1 or +32, specify what pattern table to use for

sprites, specify what pattern table to use for background tiles,

and whether the PPU should generate a Non Maskable Interrupt

to the CPU at the start of the vertical blanking interval.

The mask register (PPUMASK) is at address 0x2001. This

is a write only register that allows the CPU to control how the

PPU renders sprites, backgrounds, and colors. Specifically,

there are bits to control: greyscale (give pixels a greyer look),

whether the PPU should render backgrounds or sprites on the

leftmost 8 pixels of the screen, hide background, hide sprites,

and change RGB color intensities.

The status register (PPUSTATUS) is at address 0x2002.

This is a read only register that allows the CPU to know what

the state of the PPU is. This register is often used for timed

events, specifically by knowing when the PPU has reached a

specific pixel on the screen. The most important flags in this

18-500 Final Project Report: 03/04/2019

6

register are the Sprite 0 hit, which gets triggered when a special

background tile overlaps another special sprite tile, and the

Vblank flag, which gets triggered when vertical blanking stars.

The OAM address register (OAMADDR) is at address

0x2003. This is a write only register that specifies at what

location of the OAM (memory that holds sprite information) the

CPU wants to write to.

The OAM data register (OAMDATA) is at address 0x2004.

This is a read and write register that specifies the data you want

to write to address in OAMADDR. OAMADDR is

incremented after each write to OAMDATA.

The scroll register (PPUSCROLL) is at address 0x2005.

This is a write only register that allows the CPU to specify what

the top left corner pixel should get rendered. This allows pixel-

granular scrolling to work and was a great feature of the NES

at the time.

The address register (PPUADDR) is at address 0x2006. This

is a write only register that allows the CPU to specify at what

address in VRAM to write data to. This register is used in

conjunction with the PPUDATA register to fill in the PPU’s

VRAM with background tile layouts.

The data register (PPUDATA) is at address 0x2007. This is

a read and write register which allows the CPU to specify the

data to write to VRAM. After each write the PPUADDR

register is incremented by 1 or 32 depending on the stride bit

specified in the PPUCTRL register.

The OAM DMA (OAMDMA) is at address 0x4014. This is

a write register that allows the CPU to perform DMA on the

PPU’s VRAM. The CPU only has to write one-byte YY to this

address and the PPU will copy the data from range 0xYY00 -

YYFF of the CPU’s memory into the PPU’s internal OAM.

The PPU’s second job (displaying pixels on screen) will be

accomplished through VGA. Depending on your geographic

location, the original NES was engineered to display images on

the NTSC or PAL video standards. The two video standards

have distinct frequencies they run at. The original NTSC video

standard has a horizontal refresh rate of 15KHz, that is

horizontal scan lines are fed to the display at 15000 per second.

However, modern VGA has a horizontal refresh rate of 31KHz,

so we have designed our system to render frames at the original

15KHz but output them at 31KHz. This is done by running the

VGA module at twice the frequency of the PPU, and either:

outputting the same scanline twice at double the speed or

outputting the scanline ate double the speed followed by a black

scanline. The latter option will give our games a retro CRT-like

look, so we will be opting for this initially. If we notice that the

image is to dark and we don’t like how it looks we will revert

18-500 Final Project Report: 03/04/2019

7

to the first option. In order to accommodate the VGA interface

and to use the resources we have on the FPGA more effectively

we modified the rendering process of the original NES, while

keeping the overall cycle counts the same.

From the PPU’s perspective the rendering process takes 262

scanlines, each one outputting 341 ‘dots’ (can think of them as

pixels but only the first 256 ‘dots’ will be visible on screen) one

per cycle. The first 240 scan lines oversee rendering the visible

pixels, this is accomplished by rendering pixels into a buffer

that is passed on to the VGA module once an entire scanline is

done. For each pixel at a particular position (x,y) we calculate

its color by looking up the tile and color information in VRAM,

OAM, and palette RAM based on x and y. We then write this

color value into the previously mentioned buffer and we move

on to the next pixel. For each scanline the first 256 cycles

correspond to visible pixels and the remaining 85 cycles are

used for the VGA’s horizontal sync. The 241st and 242nd scan

lines will be idle scanlines. They are simply kept to maintain

the same cycle counts as in the original NES. Scanlines 243 -

262 will correspond to the VGA’s vertical sync.

From the VGA’s perspective, the process is similar.

However, instead of having 262 scanlines, we will have 512 to

compensate for twice the PPU’s frequency. Each scanline will

also have 341 ‘dots’. After a PPU scanline is done rendering,

we will pipeline it to another buffer in the VGA which will start

outputting the pixels. Because of the clocks they are running,

one PPU scanline corresponds to two VGA scanlines, thus the

VGA will display the PPU’s rendered scanline twice or once

followed by a black scanline, depending on the look we want.

Since the VGA will output scanlines at double the frequency of

the PPU we will achieve the 31KHz horizontal refresh rate

needed for VGA protocol.

C. APU Subsystem

The Audio Processing Unit (APU) is responsible for

generating the sound for the NES. The CPU controls the APU

by writing control signals at addresses 0x4000-0x4017 in the

RAM they share. These addresses are wired to the APU’s

registers. As for the outputs, the APU produces a final wave that

drives the speakers and can produce an IRQ.

The APU produces its sub waves with its 5 channels:

pulse_1, pulse_2, triangle, data modulation, and noise. The

pulse channels produce square waves with specified duty cycle,

frequency, duration, sweep, and volume. Moreover, the volume

can be steady or an envelope. The triangle channel produces a

triangle wave with specified duration and frequency. The data

modulation channel outputs a 7-bit PCM signal with the

specified sample start address and sample size. When the DCM

finishes playing its sample then it will fire an IRQ. Finally, the

noise channel produces pseudo random bits with the exact same

18-500 Final Project Report: 03/04/2019

8

control signals as the pulse channels.

Finally, the frame counter is responsible for creating clocks

that will drive the different channels. The outputs of the DMC,

triangle, and noise channel are joined together as well as the

pulse waves. These two new waves are then passed through a

digital to analog converter and then mixed to create the final

wave.

V. PROJECT MANAGEMENT

A. Schedule

See last page for a detailed view of our schedule

B. Team Member Responsibilities

Nikolai - Nikolai is primarily in charge of implementing the

CPU, including a software simulation and hardware

implementation, and verification of both implementations.

Nikolai will work with Oscar to integrate the CPU and the PPU.

It is also his responsibility to create an SD card controller that

can be used by Oscar to load game data from the SD card into

SRAM, and that Diego can use to load, and store save states

from the SD card into the system. It is also his responsibility to

create an interface between the NES controllers and the design.

Diego - Diego will share the workload of the PPU with Oscar

during the earlier stages of the PPU development but will shift

his focus towards implementing the APU. Diego will also

assume the responsibility of integrating the APU with the CPU.

He will also oversee interfacing with our speaker. It will also be

Diego’s responsibility to serialize and deserialize the save state

data for the system, which includes moving data back and forth

between the SRAM and SD card, after Nikolai creates an SD

card interface.

Oscar - Oscar oversees the PPU design and implementation,

though Diego will help him during the earlier phases of research

and development. Oscar and Nikolai will work together to

integrate the CPU and the PPU once both are completed. Oscar

will also create the VGA interface for the design. It is also his

responsibility to load game ROMs from the SD card into the

SRAM, after Nikolai creates an SD card interface.

All - All three members will equally share the responsibilities

of drafting the project proposal, design review, and final report.

They will also equally share work on presentation slides for the

three presentations. With respect to the design itself, all three

members will work on system integration during the final

weeks of the project.

C. Budget

For our project we’re using several different software tools,

hardware platforms, and peripheral devices.

In terms of software we’re using Synopsys VCS for testing

our designs in simulated environments. We have been using this

tool for a few years in a few different courses, so we are very

comfortable with using it to test hardware designs.

For synthesizing our design, we’re using Quartus Prime 16.

We’re using Quartus because we’re very familiar with it, and

because the board we’ve selected is an Altera board. We’ve

chosen this version of Quartus for the relative ease of use of IP

blocks over other versions of Quartus that we’ve used.

Our FPGA board is a Terasic DE2-115. We picked this board

for several reasons. One factor was our familiarity with the

board and the Altera tool-chain, since learning Vivado would

definitely have quite a bit of overhead for us. We also didn’t

have to pay for this board out of our budget, since the

department fortunately has units to spare. Most importantly,

this FPGA has all of the resources we need for this project. This

board has 2 MB of SRAM, an SD card slot, 4 push buttons for

managing our save states, and VGA output. On the FPGA chip

there are over 114 thousand LUTs and 432 MK9s, which are

each about 1 Kilo-Byte of memory. In other words, this will be

enough for us to build our modestly sized system. I will also

note that this was not the only contender we had for our FPGA.

We were also considering the DE0-CV, since it also had most

of the same resources in the quantities we required, however,

its VGA port is 4-bit, as opposed to the 8-bit VGA of the DE2-

115. With a 4-bit VGA we would only have 32 different colors

to display, but the NES requires that we have at least 64

different colors, so the DE0-CV was ultimately an infeasible

choice.

In terms of peripherals we have our controllers, our controller

adapters, our speaker, and our VGA monitor. Our controllers

are replicas of the original NES controllers, and behave

identically. Our adapters take in NES controller output on one

end and give us GPIO on the other, which we can easy attach to

our board and interface with. Our speaker will serve as our

audio output and our monitor will serve as our digital output.

These don’t really need to be any specific speaker or VGA

monitor, as long as they can connect to the board.

Item Price Quantity Shipping Total

Nes

Controller $7.99 2 $2.99 $18.97

Speaker $3.95 2 $7.81 $15.71

Controller

Adapter $9.99 2 $0.00 $19.98

DE2-115 $590.00 1 $0.00

Supplied

To us

VGA

Monitor ~$100.00 1 $0.00

Supplied

To us

Synopsis

VCS ~25,000 1 $0.00

Supplied

To us

Quartus

Prime $3,995 1 $0.00

Supplied

To us

D. Risk Management

For the CPU, the greatest Risk that exists is not properly

18-500 Final Project Report: 03/04/2019

9

implementing interrupts. The NES has two crucial interrupts:

the VGA VBLANK and the APU IRQ. The former signals to

the CPU that it is time for PPU memory to be before it is time

to the PPU to render the next frame. If the CPU is unable to

handle this interrupt then essentially nothing on the display will

be updated. Thus, the NES would be unusable. As for the APU

IRQ, it is fired whenever the DCM finishes playing its sample.

Although this is related to audio, some NES titles play

“nothing” to transform the IRQ into a timer to setoff events in

the game. The latter interrupt is not as fatal for the project but

can limit the number of games that can be ran on our emulator.

Furthemore, both interrupts require appropriate context

switching. Even if the CPU manages to handle the interrupts

correctly it must be able to return to the process that was

originally interrupted. If this process context is not properly

saved or restored then the game can crash or lead to some

undefined behavior. To avoid this risk, Nikolai will prioritize

implementing and testing interrupts using small benchmarks to

verify that the running process can be interrupted, the handler

is triggered, and context is correctly restored. As for Oscar and

Diego, they will prioritize the DMC channel implementation to

have the IRQ fire. Moreover, the VGA controller will produce

dummy images and require refreshing the image to create the

VBLANK signal.

REFERENCES

[1] National Semiconductor Inc., www.national.com.

[2] NES Dev Wiki, http://wiki.nesdev.com/w/index.php/Nesdev_Wiki

[3] VGA Protocol Timing, http://tinyvga.com/vga-timing/640x480@60Hz

[4] Our CPU’s uCode, http://tinyurl.com/mymicrocode

http://www.national.com/

18-500 Final Project Report: 03/04/2019

10

