
NES emulation on FPGA
Nikolai Lenney
Diego Rodriguez
Oscar Ramirez



Application Area

● Faithfully recreate NES console on 
FPGA

● Play NES games with original 
controllers

● Support subset of NES games that use 
mapper-0 (NROM) 

● Save game progress onto SD card
● Load game progress from SD card



Solution Approach

● Recreate the cycle accurate NES CPU, PPU, and APU
● Follow communication protocols for internal units
● Develop VGA module to display 640x480 resolution of NES games
● Purchase NES controllers, adapters, and 8-bit speaker
● Read controller inputs from FPGA GPIO pins
● Drive speaker without distortion
● Read and write data to SD card



System specification

CPU APU

2A03 PPU

VGA 
Adapter

SD
Interface

Controller

RAM

RAM

Registers

PWMSpeaker

Display

Serializer



System Specification - CPU

● Memory
○ Memory maps to CPU RAM, Game 

Cartridge ROM, Shared registers with 
APU and PPU, and controllers

● Decoder
○ Fetches a vector of control signals 

specific to a particular instruction, and 
independent of addressing mode

● uCode ROM
○ Holds microinstructions for executing 

instructions of different addressing 
modes



System specification - PPU
● Rendering process:

○ PPU renders 262 scanlines per frame, each scanline last for 
341 clock cycles

○ For every frame:
■ -1 scanline: prefetch tile info for first two tiles
■ 0-239 scanline: render background and sprite
■ 240 scanline: idle scanline
■ 241-260 scanline: VBlank lines, CPU can access VRAM

○ For every visible scanline:
■ 0 cycle: idle cycle
■ 1-256 cycle: visible pixels

● output pixels based on VRAM
● prefetch next tile’s 
● sprite evaluation for next scanline

■ 257-340: prefetch tile data for next line’s first two tiles



System specification - PPU
● Background pixel module:

○ pixel color is determined by a combination of attributes in VRAM
○ cache attributes for 2 tiles lines in registers, fetch new tile line every 8 

cycles
○ based on the first tile line, output the appropriate color
○ during HSYNC prefetch first 2 tile for next scanline

● Sprite pixel module:
○ pixel color is determined by OAM (object attribute memory) and VRAM
○ use a Temp OAM to hold a max of 8 sprites for current scanline
○ if current row and col are within range of sprite output pixel color
○ during HSYNC do a linear search of OAM to fill the temp OAM with sprites 

in next scanline

● Pixel merger:
○ based on the sprite’s priority determine if background pixel or sprite pixel 

goes in foreground



System Specification - PPU



System Specification - APU

● CPU specifies properties to APU’s channels 
● Frame counter provides clocks for channels
● The 5 major channels generate waves

○ Noise - creates pseudorandom noise
○ DMC - plays differential pulse code modulation samples
○ Pulse 1 & 2 - produces a pulse wave of varying duty cycle, period, etc
○ Triangle - produces a triangle wave of variable frequency

● Channel waves are converted to analog
● All waves are mixed for final audio output





Metrics and validation

● Frame Accuracy
○ emulator frame will be compared against ours to check for differences

● Cycle Accuracy
○ PPU: Status signals from register trigger and can be read at correct cycle
○ CPU: use a reference simulator to verify instructions run cycle accurate

● Memory Accuracy
○ PPU: use emulator scripts to dump Nametable, OAM, Pattern table and 

compare against our memory trace
○ CPU: use a reference simulator to verify memory traces are accurate.



Project Management


