
NES emulation on FPGA
Team A8:
Diego Rodriguez
Nikolai Lenney
Oscar Ramirez Poulat

Use Case

● Faithfully recreate NES console on
FPGA

● Play NES games with original
controllers

● Support subset of NES games that
use mapper-0 (NROM)

● Save game progress onto flash
memory

● Load game progress from flash

Use Case - continued

● Why?
○ Bridge gap between software and hardware

emulators (save states in hardware)
○ Keep retro consoles alive by porting them to

modern technology
● Areas:

○ Hardware Design (CPU, PPU)
○ Signal processing (APU)
○ Software (testing framework)

Requirements

● Player state gets saved to onboard flash memory
● Player state gets loaded from onboard flash memory
● User can use an original NES controller to play a game
● System can load .nes ROMs that use mapper-0
● System will display a 256x240 image to a monitor through VGA
● Frame difference w.r.t. software emulator is less than 1%
● Achieve an average of at least 55 FPS

Requirements - continued

● PPU registers match the values of the emulator at a particular cycle
● CPU registers match the values of the emulator at a particular cycle
● OAM (Sprite RAM) trace (256 bytes) matches emulator at a particular

cycle
● CPU RAM trace of load and store matches emulator at a particular

cycle
● APU registers for its channels match the emulator at a particular cycle
● Replicate 8-bit audio on a external speaker

Solution

● CPU: in charge of running the .nes programs,
interface with controller
○ Implement instructions set for the 6502 microprocessor,

clocked at 1.79 MHz
○ 2 KB of RAM mapped to FPGA SRAM

● PPU: composes game’s frames out of sprites
○ Will generate 256x240 video signal to be sent through VGA to

display
○ 10 KB of VRAM mapped to FPGA SRAM
○ Additional memory space to hold color information and screen

location

Solution

● APU: generates the game’s music by modulating
different channels
○ Has five channels (2 pulse generators, a triangle wave, noise,

delta channel)
○ The five channels are modified with designated registers, and

combined using a non-linear scheme

● Serialization: serialize game state and write to flash
○ Need to dump game’s stateful information including (RAM,

VRAM, registers, OAM)
○ Use a scan chain to serialize our design’s flip flops and store

them in memory

Solution - continued

CPU APU

2A03 PPU

VGA
Adapter

Flash
RAM

Controller

RAM

RAM

Registers

PWMSpeaker

Display

Serializer

Solution - continued

Technology:
● Altera DE2-115 FPGA
● Original NES controllers
● Speaker
● Mesen NES emulator
● VGA display

Testing, Verification and Metrics

● Saving/Loading
○ Write and read to Flash memory using Altera software

● Outputs for audio and video
○ Create dummy images and steady frequencies

● NES ROMS
○ Instantiate .nes files in SRAM and observe game bootup

● Controllers
○ Use test harness to detect the different button inputs from controller

● Frame Rate
○ Insert counter to keep track of how many frames are sent to display

● Execution
○ Compare CPU state to that of Mesen emulator

Tasks and Division of Labor
● Nikolai:

○ Implement CPU instruction set
○ Interface with controllers
○ Module for writing/loading save state to flash memory

● Diego:
○ Implement the PPU rendering pipeline
○ Implement APU audio pipeline
○ Implement PWM module for speaker
○ Save State serialization

● Oscar:
○ Implement the PPU rendering pipeline
○ Implement VGA driver
○ ROM loader into SRAM
○ Testing framework for emulator comparison

Schedule

https://docs.google.com/spreadsheets/d/10u9kZImvUQW7v8SjNf5pVW5hUL
kV7jVWW4Zvj-4kfc8/edit?usp=sharing

https://docs.google.com/spreadsheets/d/10u9kZImvUQW7v8SjNf5pVW5hULkV7jVWW4Zvj-4kfc8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/10u9kZImvUQW7v8SjNf5pVW5hULkV7jVWW4Zvj-4kfc8/edit?usp=sharing

