4
N

NES emulation on FPGA

Team AS:

Diego Rodriguez
Nikolai Lenney

Oscar Ramirez Poulat

Use Case NS, oo MR TINE

SUPCR
e Faithfully recreate NES console on mn“m mms.
FPGA ' @198 MINTENDD
e Play NES games with original T
controllers A TNy
e Support subset of NES games that Y
use mapper-0 (NROM)
e Save game progress onto flash
memory

Load game progress from flash

Use Case - continued

e Why?
o Bridge gap between software and hardware
emulators (save states in hardware)
o Keep retro consoles alive by porting them to
modern technology

e Areas:

o Hardware Design (CPU, PPU)
o Signal processing (APU)
o Software (testing framework)

% FCEUX 2.2.1: Super_Mario_Bros.... ‘

File NES Config Tools Debug Help

®
%, =)

=

Requirements

Player state gets saved to onboard flash memory

Player state gets loaded from onboard flash memory

User can use an original NES controller to play a game

System can load .nes ROMs that use mapper-0

System will display a 256x240 image to a monitor through VGA
Frame difference w.r.t. software emulator is less than 1%
Achieve an average of at least 55 FPS

Requirements - continued

e PPU registers match the values of the emulator at a particular cycle

e CPU registers match the values of the emulator at a particular cycle

e OAM (Sprite RAM) trace (256 bytes) matches emulator at a particular
cycle

e CPU RAM trace of load and store matches emulator at a particular
cycle

e APU registers for its channels match the emulator at a particular cycle

Replicate 8-bit audio on a external speaker

Solution

e CPU: in charge of running the .nes programs,

interface with controller

o Implement instructions set for the 6502 microprocessor,
clocked at 1.79 MHz

o 2 KB of RAM mapped to FPGA SRAM

e PPU: composes game’s frames out of sprites

o Will generate 256x240 video signal to be sent through VGA to
display

o 10 KB of VRAM mapped to FPGA SRAM

o Additional memory space to hold color information and screen
location

Solution

APU: generates the game’s music by modulating
different channels

(@)

(@)

Has five channels (2 pulse generators, a triangle wave, noise,
delta channel)

The five channels are modified with designated registers, and
combined using a non-linear scheme

Serialization: serialize game state and write to flash

O

Need to dump game’s stateful information including (RAM,
VRAM, registers, 0AM)

Use a scan chain to serialize our design’s flip flops and store
them in memory

CLK

FF

Solution - continued

2A03

Controller

CPU

APU

RAM

PPU

Registers

RAM

Display

VGA
Adapter

Speaker

PWM

Serializer

Flash

Solution - continued

Technology:

Altera DE2-115 FPGA
Original NES controllers
Speaker

Mesen NES emulator
VGA display

Testing, Verification and Metrics

e Saving/Loading
o Write and read to Flash memory using Altera software

e Outputs for audio and video
o Create dummy images and steady frequencies
e NESROMS
o Instantiate .nes files in SRAM and observe game bootup
e Controllers
o Use test harness to detect the different button inputs from controller
e Frame Rate
o Insert counter to keep track of how many frames are sent to display

e Execution
o Compare CPU state to that of Mesen emulator

Tasks and Division of Labor

e Nikolai:

o Implement CPU instruction set

o Interface with controllers

o Module for writing/loading save state to flash memory
e Diego:

o Implement the PPU rendering pipeline

o Implement APU audio pipeline

o Implement PWM module for speaker

o Save State serialization

e Oscar:
Implement the PPU rendering pipeline

o Implement VGA driver
o ROM loader into SRAM
O

(@)

Testing framework for emulator comparison

Schedule

Week of Nikolai Diego Oscar Notable dates 0 Slack
02/11 S 12 12 1 Implement Control Ops for CPU
02/14 1 13“ 13_ 2 Implement ALU Ops for CPU 24 Design Doc
02/18 2' 14& 14 I:I 3 Implement Read-Modify-Write Ops for CPU 25 Design Presentation
02/21 2| 15‘ 15 4 Implement Unofficial Opcodes for CPU 26 Final Report
02/25 3 12 12 Test CPU instructions 27 Final Presentation
02/28 24 24 24 6 Create controller interface _ Integration
03/04 4 14 14 Design Doc " 7 Test controller interface
03/07 5 Serialize game state data
03/11 0 0 0 Spring break Deserialize game state data
03/14 0 Spring break Test serilization

03/18 11 Create flash memory controller

03/21 ‘ 12 Read sprites from VRAM

03/25 | 13 Generate Foreground sprites

03/28 i 14 Generate Background sprites

04/01 15 Create Frame by combining sprites €]
04/04 Test generated frames
04/08 17 VGA module S
18 APU to CPU interface St

04/11

04/15 19 APU to speaker mixing scheme bl
04/18 - Test APU 2
04/22 0 0 0 21 ' PWM module for speaker e
04/25 27 27 27 22 Load ROM into SRAM

04/29 26 26 26 Final Presentations Testing framework with Mesen emulator

05/02 26 26 26 Demo

05/06 Final Report Due

https://docs.google.com/spreadsheets/d/10u9kZImvUQW7v8SiNf5pVW5hUL
kV7iVWWA4Zvi-4kfc8/edit?usp=sharing

https://docs.google.com/spreadsheets/d/10u9kZImvUQW7v8SjNf5pVW5hULkV7jVWW4Zvj-4kfc8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/10u9kZImvUQW7v8SjNf5pVW5hULkV7jVWW4Zvj-4kfc8/edit?usp=sharing

