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    Abstract — Our system is a person-tracking 
security camera made to help stores and 
homeowners protect their properties. To do this, 
our security camera will zoom and track such that 
a suspicious person’s actions can be clearly seen 
on the camera footage.  Our system will improve 
upon existing tracking security cameras by using 
advanced machine learning algorithms and by 
being a self-contained edge device. 
 
    Index Terms — AdaFruit, Camera, DeepPhi, 
Deep Learning, Inference, Power, Security, 
Tracking, Servo Motors, Yolov3, Arduino C 
 
I. Introduction 
 
        It is not uncommon to see video surveillance 
systems being installed on street lights, houses and 
small storefronts. Though they can be effective at 
detecting trespassers or following the motion of a 
known target, it can be difficult to obtain a clear view 
of a person, even with a high video resolution and a 
modest distance between the camera and the target. 
With a fixed mount camera one often has no choice 
but to use a large field of view to avoid having blind 
spots in their camera system, resulting in objects in 
view being too small to reliably identify. However, a 
zooming camera can obtain high resolution images of 
individual targets of interest without permanently 
restricting the field of view of the camera. With 
recent research in neural computer vision, advanced 
algorithms like Yolov3 can be used to reliably 
identify and locate people within view, making an 
automatic person tracking camera feasible. 
 
        Currently, automatic person tracking security 
cameras are rare in the marketplace, and the few that 
exist are usually high-end PTZ cameras that require a 
complex setup process and a central server for 
computation. These PTZ cameras typically do not use 
deep neural networks, and as a result the tracking 
feature is not very reliable.  We plan to create a better 1

solution: a self-contained security camera that uses 
highly accurate machine learning algorithms to 
successfully zoom into a person. 

1 https://ipvm.com/reports/should-you-use-autotracking-ptzs 

 
II. Design Requirements / Metrics 

 
        The target audience we decided to focus on are 
typical homeowners and stores. These users are more 
likely to find an automated, no-hassles security 
solution appealing. To guide our design 
specifications, we offer a formal description of our 
product as follows: 
 
        A compact and self-contained security camera 
that automatically tracks and zooms into any 
potentially suspicious person, and that an average 
store or homeowner can easily install and use. 
 

A. Convenience Requirements 
        We want a compact and self-contained system to 
ensure that the installation process is not too difficult. 
We also require the camera to automatically zoom, so 
that targets within view can be identified. To be able 
to hone into any person within view, the camera 
would need to pan and track while it is zoomed in. 
 
        To quantify the compactness and self-contained 
properties, we decided to establish these design 
requirements: 
 
        The system must not require a central server. It 
should support both plugged-in and battery mode 
operation. Ideally, on one charge it will be able to 
continuously track people and capture footage for up 
to 500 minutes, or remain operational for up to 30 
days while waiting for people to enter the field of 
view. 
 
        The battery mode operation enhances the ease of 
installation, as an average homeowner or store may 
find it inconvenient to run power cables to their front 
door. The running time requirements are based on 
similar commercial security camera products.  These 2

strict runtime requirements on a limited power source 
make power consumption a preeminent concern.  
 
B. Tracking Requirements 
The tracking specifications are as follows: 

2 https://www.amazon.com/Battery-Powered- 
Security-Wireless-Wire-Free/dp/B07HH6Z357/ 

https://www.amazon.com/Battery-Powered-
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With up to three people approaching 

between 5 and 20 feet of the front door, with an equal 
probability of approaching and leaving in any 
direction at any time of the day, and assuming ample 
lighting, the person-tracking security camera should 
fail to zoom and track each person motion less than 
one time in 50 trials on average. When tracking 
properly, the person’s height should take around 
80% of the camera frame height.  
 
        The figure is motivated by the frequency of theft 
faced by homeowners and stores. Specifically, we 
found that the average household receives around 27 
packages per year , and that shoplifting incidents 3

typically fall around 18 incidents per outlet per year . 4

Most of these incidents don’t involve more than two 
criminals, so we chose to test with three people in 
view. 
 
        The 20 foot benchmark is based on the typical 
length of a driveway, since it is less likely for a 
person beyond that distance to be a meaningful 
target. Since the zoomed in view can only 
accommodate one person, we would have to alternate 
between tracking different people in view and 
schedule the camera’s viewing time to minimize the 
probability of missing people less than 20 feet away. 
We choose to support down to a minimum distance 
of 5 feet as a reasonable range where the person will 
occupy most of the field of view without being too 
close to see. 
 
        Other requirements include a 720p 30fps video 
footage recording capability. This resolution and 
frame rate is standard for many modern security 
cameras and webcams. Tracking should be done at 
least 10 fps time resolution, which allows the tracker 
to see at least one frame of a person no matter how 
fast they run. We would also need our servos to have 
a high enough rotation rate to track a moving person 
from 5 feet away, but given that our servos are 
capable of 60 degrees of rotation in less than half a 
second, this is should not be challenging to meet. 
 
       The zoom metric was based on the idea that we 
want to see the actions the suspicious person is 
taking. To do this, we cannot be fully zoomed into 
the person’s face because if we do this we will be 
unable to see what the person is doing with the rest of 
their body. So, by fixing the person’s height to be 

3 https://www.inc.com/john-white/tired-of-getting- 
your-packages-stolen-heres-what-to-do.html 
4 http://citeseerx.ist.psu.edu/viewdoc/download? 
doi=10.1.1.182.6338&rep=rep1&type=pdf 

around 80% of the frame height, we will have full 
view of the suspicious person’s body and will 
therefore be able to see their actions.  
 
C. Testing Plan 
        To test these requirements, we will place the 
system on a table near the back door of Fairfax 
Apartments, because the view there is similar to that 
of small shop or townhouse, complete with a 
sidewalk, a street, and a corridor that can treated as a 
driveway. We will test the system with these 
scenarios: 
 
● Individual person walking at a brisk pace from a 

random direction, reach a closest approach of 
between 5 feet and 20 feet, waiting for two 
seconds, then leaving in a random direction, at 
night or at the daytime. (50 trials) 

● Three simultaneous people each independently 
choosing a path as above. (50 trials) 

● Take random frames after the camera has 
finished zooming and check to see that the 
person takes up around 80% of the frame. 

https://www.inc.com/john-white/tired-of-getting-
http://citeseerx.ist.psu.edu/viewdoc/download
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III. Architecture 

 
Fig 1. Block diagram of hardware architecture and arrangement of software subsystems. 

 

Fig 2. Block diagram of software architecture and general flow control 
 



18-500 Design Review Report: 03/04/2019 

        The foundation for our approach to human 
identification and tracking is deep learning inference 
accelerated by the programmable logic/FPGA portion 
of the Xilinx MPSoC on the Ultra96 board. Xilinx’s 
solution to this problem, referred to as “edge 
inference” in the industry, is the use of their newly 
acquired subsidiary Deephi, a company which 
created a deep learning accelerator architecture 
implemented on Xilinx FPGAs to enable fast, low 
power deep learning inference.  
 

 
Fig 3. Architecture of the Deephi Aristotle inference accelerator 

 
        We chose this architecture because it is new 
(Deephi was acquired in July 2018), allowing room 
for experimentation beyond established use cases, 
and it benefits from Xilinx’s robust documentation, 
making it possible for amateurs to work with. It is 
additionally configurable allowing for customized 
approaches to minimize power while meeting our 
performance targets.  
 
        Deephi/Xilinx not only provide the hardware, 
but they also provide a software ecosystem in the 
form of the Deep Neural Network Development Kit 
(DNNDK). This includes tools to compress and 
optimize a neural net (via DECENT), and then 
compile it to work with their accelerator architecture 
(via DNNC). This includes native support for 
Yolov3, one of the leading object (including human) 
identification models.  

Fig 4. State diagram for the system 

 
        A high level state diagram of the full system is 
shown in Fig. 4. In summary, we will need to support 
a sleep mode where the system is not recording 
footage to the SD card and is not using the FPGA 
fabric for inference. 
 
        In the sleep state, the Ultra96 board will be 
suspended, and the Adafruit Feather M0 will monitor 
the motion sensor to determine when to wake the 
Ultra96. Though the Adafruit board will occasionally 
perform some processing, it will usually be in an idle 
state that only consumes less than 30mW . The 5

Ultra96 chip consumes about 35 mW , and the RAM 6

self-refresh cycle consumes up to 40mW. Together, 
the power consumption will be around 100mW, 
which is on track to give us a 30 day idle battery life. 
 
        There are likely to be a significant number of 
false positives from the motion sensor alone, 
however. To prevent fully powering on the board on 
each false positive, we include an intermediate low 
power mode which only uses a subset of the Ultra96 
board’s capabilities to run simple image processing 
algorithms at a low frame rate. The goal is for this 
stage is to conservatively filter out likely sources of 
false positives such as cars and wind, ensuring that 
the board usually powers fully on only when a person 
enters the view. We believe that by tuning the sensor 
and Ultra96 board to minimize the energy spent in 
this mode, we can obtain a 30 day idle battery life 
even considering false positive detections. 
 
        Finally, in the active state, the board will begin 
recording footage to the on-board SD card and use 
neural algorithms to generate a bounding box for 
people in view. We estimate that this mode will 
consume between 5 and 15 watts, which allows the 
camera to operate for 500 minutes. 
 
        The software block diagram is shown in Fig 2. 
The software components can be divided roughly into 
two groups: an image processing group and a 
sensorimotor group. Image processing code is 
implemented on the Ultra96 and sensorimotor code is 
implemented on the Adafruit Feather M0. 
Communication between the two will be done via 
UART. 
 
        Low power person detection is implemented by 
comparing the current video frames with a 

5 https://electronics.stackexchange.com/questions/52991/ 
is-the-cortex-m0-really-low-power/52995 
6 https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/ 
18842181/Zynq+UltraScale+MPSoC+Power+Off+Suspend 

https://electronics.stackexchange.com/questions/52991/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
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background image. The background image is 
obtained with a temporal low-pass filter, which 
averages the on-screen pixels over a long period of 
time (fully resetting the background image if the 
camera has suddenly moved, which suddenly changes 
the pixels in the view). Using these frames and the 
background image, it is relatively easy to compute 
crude features such as the speed and apparent size of 
the moving object, which can be filtered to exclude 
obvious false positives. 
 
        When the low power person detector finds a 
probable person, it will bring the board to active 
mode. A priority scoring system will use features 
such as the size and motion of each detected 
bounding box to choose which bounding box to focus 
on at any given point in time. The bounding box 
information is used by the Adafruit Feather M0 in the 
motor controller, which uses code written with the 
Arduino C stepper and servo libraries to move the 
camera. Similarly, an autofocus algorithm will be 
implemented in the Feather board to adjust the 
stepper motors in the focuser. 

 
IV. Design Trade Studies 
 
A.  DPU Power Consumption 
 
        Our most important design tradeoff for this 
project was the balance between the capabilities of 
the DPU and its power consumption. We had a target 
inference rate of 10fps, and initially expected to 
optimize to just hit this frame rate, so as to minimize 
the power of the system (thus extending its runtime) 
within that tracking requirement. What we 
discovered, however, is that the capabilities of the 
DPU with our optimized neural net far exceeded our 
expectations. The default Ultra96 implementation ran 
in excess of 30fps, which is the maximum frame rate 
supported by the 1080p video stream we were 
reading in from the camera. Therefore, we predicted 
that our performance would almost certain surpass 
our use case’s requirement, and our effort would be 
best spent minimizing the DPU configuration, and 
thus its power consumption. 
 
        Xilinx provided a pre-build Ultra96 image with 
an instantiation of the Deephi B1152, which is what 
we initially expected to have to work with. However, 
during the course of the project they posted the IP 
repository for the Deephi accelerator core. Despite 
being nominally compatible only with a different 
Xilinx product, we were able to modify the IP core in 
Vivado (Xilinx’s hardware design tool) to reduce its 

configuration to a lower power, yet still extremely 
capable end result.  
 

 
Fig 5. Vivado-derived modeled power consumption of Deephi DPU 
implementations. Power totals include SoC processing system 
(hard IP cores).  
 
        To derive an optimal configuration for our 
system, we first started by compiling results for 
Xilinx’s ZCU102 image (where the IP was initially 
pulled from), and then with the stock configuration 
present on the Ultra96.  
 
        The ZCU102, as a substantially larger 
implementation of the DPU, unsurprisingly has 
power consumption far in excess of the Ultra96, but 
the Ultra96 configuration itself still consumed 
substantial power. With that in mind, we strove to cut 
down the DPU configuration to one better suited to a 
power-constrained environment. The first step was to 
drop the DPU configuration from the default B1152 
to the B1024 design, which is the lowest end 
configuration supported by our neural network 
compiler tools (DNNDK). Give then 3x margin by 
which our measured performance exceeded our 
requirement, we predicted this lesser DPU 
configuration to have an inconsequential impact on 
performance.  
 
        This change reduced power consumption by 
~0.24W, which is not insignificant, but we thought 
we could push the gains further. Optimizing the clock 
generating logic in Vivado, including replacing the 
extraneous MMCM clock generation with more 
efficient PLL-based clock generation, yielded an 
additional ~40mW improvement. However, it was by 
combining these improvements with a power 
optimized compilation step that more significant 
gains were seen, further dropping the power by 
approximately 0.32W, for a total of >12% power 
reduction compared to the default configuration.  
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        However, with these changes in place, we 
needed to verify that the performance of our system 
was still within specification. Upon testing with the 
completed system, our inference frame rate with this 
reduced configuration still exceeded 25fps, a 
limitation imposed by the CPU-bound storage of the 
video stream.  
 
      We additionally used Deephi profiling tools to 
verify the DPU utilization was not limiting the 
system performance.  
 

 
Fig 5. Profiled utilization numbers for minimized DPU 
configuration. 
 
        With utilization of the smallest configuration 
failing to reach even 60%, it’s clear that the DPU is 
not the limiting component of the system, despite all 
of the effort put into minimizing its capabilities. 
Furthermore, the Xilinx tools suggested that with this 
configuration, the system’s power consumption is 
dominated by the processing system (hard IP cores), 
particularly the CPU, and further optimization of the 
DPU core could only provide marginal gains at best. 
 
        Unable to provide substantial further power 
reduction, we instead chose to use this excess DPU 
performance to improve tracking accuracy by 
averaging over multiple frames, while still remaining 
well above the 10fps requirement for our ultimate 
tracking frame rate. 
 
 
V. System Description 

        Our solution is built hierarchically and contains 
two main subsystems. Below is a detailed description 
of the implementation choices in each component. 
 
A. Ultra96 Subsystem 

1. Bounding Box Detection 
a. Hardware Inference Entry Point 

This component uses DeePhi’s DNNDK framework 
to instantiate a DPU kernel for the Yolov3-tiny neural 
network, generate DPU tasks from OpenCV images 
collected from the camera, and submit the tasks to the 
DPU for inference. 
 
        One undocumented detail of DeePhi’s DNNC 
compiler used to create the Yolov3-tiny kernel is how 
it handles input data. It assumes each pixel in the 
image is encoded with a floating point number 
between 0 and 255, while DarkNet trains the neural 
network assuming a range of 0 to 1. Therefore the 
Caffe model was modified to match the changed data 
format. 
 

b. Yolo Detection Layer 
        The logic for the output layer of the Yolov3-tiny 
architecture cannot be implemented in the DPU, so it 
had to be re-implemented in software. We did not use 
a library for this - instead, we read the Yolov3 
research paper to reproduce the definition of this 
layer. 
 
        Within this layer, there are a number of tunable 
parameters that affect the quality of bounding box 
detection, most notably a confidence threshold 
between 0 and 100 for marking a bounding box as a 
detected person. We tuned the confidence value to 
find the lowest threshold before the network drew 
bounding boxes around non-human objects in the 
testing lab (25), and settled on a value of 33 to leave 
a safety buffer. 
 

2. Bounding Box Correlation / Smoothing 
        The neural network treats each frame of the 
video independently, and therefore explicit 
processing is needed to establish a temporal link 
between bounding boxes across frames (e.g. to track 
one person without being distracted by the presence 
of another). In addition, the size and position of the 
boxes tend to fluctuate across frames, which can 
strain the motor system if the fluctuations translate 
into rapid back and forth motions. This is why a 
bounding box smoothing system is included. 
 

a. Bounding Box Correlation 
        To identify which boxes in a new frame 
correspond to which boxes in previous frames, we 
compute the intersection over union (IoU) between 
all bounding boxes for a new frame and the set of 
smoothed boxes for the previous frame. We establish 
that a new box is temporally linked to a past box if 
the IoU exceeds 0.33, and if a single box is 
temporally linked to multiple past boxes then the 
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oldest (which is arguably the more robust) past box is 
chosen for the correlation. 
 

b. Size / Position Moving Average 
        Smoothing is implemented with an exponential 
moving average of the position and the size of the 
boxes across frames. For each frame, this smoothing 
is only applied to bounding boxes for which a 
correlation was found in the bounding box correlation 
step. The weights used for the averaging is roughly 
equivalent to averaging three frames for the box 
position, and averaging 12 frames for the box size. 
 

c. Lifetime Management 
        There can be times when one of the smoothed 
bounding boxes for the previous frame is not 
correlated with any boxes for the current frame. This 
occurs either when the person in the box leaves the 
field of view, or when the person in the box is briefly 
occluded. For these boxes where no correlation is 
found, a staleness counter is incremented. Otherwise, 
if a correlation is found the staleness counter is 
decremented, stopping at 0. Boxes with a staleness 
greater than 15 (equivalent to 0.625 seconds with no 
correlation) are removed. An age variable is kept 
track for all live boxes, and only boxes with an age 
greater than 10 frames are used for the anchor box 
selection system. 
 
        With this system, boxes will be retained when a 
person is briefly occluded, and will be removed when 
a person leaves the field of view. 
 

d. Predictive Motion / Scaling 
        In addition, boxes with no correlation are 
speculatively moved and scaled according to the 
changes observed in the previous frame for up to 5 
frames. This speculative motion improves the IoU 
score once a bounding box is re-established, making 
it more likely that the bounding box will be retained 
after a brief occlusion.  

 
3. Anchor Box Selection 

        The system generally chooses one box in view 
to be the anchor, and periodically changes the anchor 
to focus on multiple targets. This system is 
responsible for this functionality. 
 

a. Feature Extractor 
        When the system needs to choose a new anchor 
box, a number of features are extracted from the 
pixels within each bounding box in view. These 
features are the average values of the R, G, and B 
channels for 8 equal-sized vertical strips and 4 
equal-sized vertical strips from the box. 

 
b. Feature History Buffer 

        A buffer of 5 feature vectors from past anchor 
boxes are used to decide on a new anchor box. The 
new anchor box chosen will be the one whose 
features are the most dissimilar to the closest match 
among the features in the history buffer, where 
similarity is measured with the L2 distance metric. 
 

c. Lost Box Handling 
        When the anchor box is lost, a grace period of 
one second is given for the system to find a new box. 
If found, the new box is re-established as the anchor. 
Otherwise, the Ultra96 sends a signal to fully zoom 
out the view before finding a new anchor box (where 
a fully-zoomed-out signal from the Feather M0 is 
used to determine when zoom is restored to default). 
This helps handle up intermittent periods where the 
anchored person could not be detected. 
 

4. Video Storage 
        A persistent file is used to store a video index, 
which is incremented every time the system boots up. 
This index helps create a unique video file on each 
boot. A multithreaded MJPG video encoder from 
OpenCV is used to generate the video file. 
 

5. Sleep State Management 
        When the Ultra96 subsystem detects no 
bounding boxes for 20 seconds, it sends a signal to 
the Feather M0 to enter the shut down state. When an 
ACK message is received, the Ultra96 powers itself 
down. When the Feather M0 decides to wake the 
Ultra96, a signal is sent directly to the low speed 
expansion header to power on the Ultra96 board. 
 
B. Feather M0 Subsystem 

1. Scheduler Loop 
a. Command Parsing 

        Commands are single capital letters followed by 
an integer parameter. Characters are buffered until a 
newline character is found. 
 

b. Motor Release Logic 
        When no zoom commands are received for 
500ms, the Feather M0 releases the stepper motors to 
save power. 
 

c. Sleep State Management 
        When the Ultra96 subsystem sends a shutdown 
command to the Feather M0, the latter replies with an 
ACK, releases the servos and the stepper motor, and 
enters the sleep state where it only monitors the 
motion sensors for waking up.. 
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2. Zoom / Focus Controller 
a. State Management 

        No sensors are available to measure the position 
of the zoom and focus stepper motor, so this 
component keeps track of the current step counts for 
the zoom and focus steppers explicitly. When the 
system fully zooms out, a signal is sent to the Ultra96 
via UART. 
 

b. Interruptible Motion System 
        Moving the zoom and focus steppers takes time, 
and performing a large zoom change all at once will 
leave the Feather unresponsive due to a lack of 
multithreading. Instead, zoom changes are 
implemented as a sequence of small steps toward a 
target. Each small step moves both the zoom and 
focus steppers to maintain a focused view, and the 
derivative of the focusing curve is used to keep the 
amount of time spent in each step roughly constant. 
 
        If the scheduler receives a command for a zoom 
in the opposite direction of the current target, the 
target is immediately moved to be in the opposite 
direction. 
 

c. Focusing Curve 
        The focus stepper was manually calibrated at 13 
zoom levels to find the proper focus vs. zoom curve 
for a target around 20 feet away, and a 5th degree 
polynomial was fitted to these points to interpolate 
between the 13 zoom levels. 
 
        We observe that the clarity of a target did not 
depend very much on the distance of the target, and 
so a fixed focus vs. zoom curve can be used without 
fine-tuned adjustment. 
 

3. Pan-Tilt Controller 
        This component controls the pan-tilt servos for 
the camera mount. Since a target position is directly 
encoded as a PWM signal of the Feather, the system 
remains fully responsive while the servos are moving 
without extra effort. 
 
Neural Network Details 
 
        The Yolov3-tiny neural network is trained from 
scratch with the COCO and Caltech Pedestrian 
datasets, adding to about 70,000 images. Some 
filtering is done to remove very small (< 30 pixel 
height) bounding boxes in the ground truth data. In 
addition, data augmentation is used to make the 
system more robust to people partially in view. In 
particular, 10 percent of the images were duplicated 
and modified in one of these three ways: 

 
● Cropped from above to hide part of a 

person’s upper body 
● Cropped from below to hide part of a 

person’s lower body 
● Blurred to simulated imperfect focus 

 
        Finally, around 1000 images from the NYU 
Depth v2 dataset are used as negative examples in the 
training set. These images have a variety of objects 
but no people in view. 
 
Hardware component choice criteria 
 
Ultra96 - Chosen for its exceptional performance 
relative to its price and power consumption. The 
leading edge TSMC 16nm FinFET process was 
particularly appealing as a power-focused project, 
and the Ultra96 is one of the few boards compatible 
with Xilinx’s new Deephi inference accelerator 
ecosystem at this time. Additionally, the integrated 
GPU makes for easier development and 
demonstration compared to alternative boards, and 
the Xilinx ZU3 SoC used is strong enough for real 
time video inference with a variety of models. 
 
SEN0192 Motion Sensor - Chosen for its range, 
reliability, affordable price point, and flexible form 
factor. These criteria make it useful for our custom 
system, which like any such security device, demands 
reliability.  
 
Adafruit Feather M0 Basic Proto - Chosen for it’s 
low idle power (<10mA) and compatibility with 
Adafruit FeatherWing expansion boards and the 
Arduino software libraries, enabling easier motor 
control than porting the code to the Ultra96 or writing 
our own.  
 
Logitech C920 Pro - Chosen for its relatively low 
price, decent video quality, and it’s compatibility 
with the lens adapter used to connect our zoom lens 
with our Camera’s PCB. 
 
ServoCity SPT200 Pan & Tilt Kit + HS-485HB 
servos - Chosen for high durability and the strength 
to support weighty attachments to the camera, such as 
the lens and modified webcam with the lens adapter. 
 
SL-27135MFZ Motorized Zoom Lens- This zoom 
lens has a magnification factor of 5 while also being 
relatively cheap, in this case only $11. Also, because 
the average driveway is around 20 ft in length, the 
zoom lens can zoom into a person so they appear 
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only 4-5 ft away thereby giving us a good view of the 
people near your house or storefront. 
 
Software component choice criteria 
 
Yolov3 - We chose this machine learning model 
because of its native support through the Deephi tool, 
very wide use, and ease of customization geared 
towards improved human detection. Neural Network 
is used to help us track people while in active mode. 
 
OpenCV - We can use this for miscellaneous image 
processing, such as the code used for the low power 
person detection algorithm and priority scoring. 
 
DNNDK - Part of the Xilinx/Deephi ecosystem, and 
designed to optimize neural nets for low precision (8 
bit int), low power inference. It is therefore ideal for 
our use case.  
 
Arduino C- We chose Arduino C for 2 specific 
reasons. Firstly, Arduino C has very well documented 
libraries for both servo motors and stepper motors 
which will make it easy to use with our motors. On 
top of that, Arduino takes very little space which is 
good for us because our board only has 32 KB of 
RAM. 
 
VI. Project Management 

 
A. Schedule 
        As you can see, Fig. 6 has the schedule of tasks 
throughout the semester. As of right now, our 
schedule has had some minor changes, but nothing 
that puts us way behind schedule.  
 
        The main significant change was the time for 
ordering and shipping the parts for our project. This 
had to be pushed forward into early March because 
we had many changes in the overall design of our 
system as we went through different use cases and 
tried to solidify our metrics. And, because we have 
not gotten all of our parts, we have only been able to 
verify that the parts have arrived.  
 
        Outside of that, everything else has been going 
to schedule. Specifically, on the machine learning 
side, we have been able to extract and customize the 
Yolov3 network to track people. And, on the 
hardware side, we have started to interface with the 
with the board through GPIO while waiting for the 
remaining parts.  
 
 
 

B. Team Member Responsibilities 
  

For this project, we tried to divide the 
responsibilities so that we can parallelize the most 
amount of work. So, each of us are working on a 
different area of the project. Specifically, Jerry is 
doing most of the machine learning tasks like setting 
up the ML model and customizing the Yolov3 
network because he has access to a GPU which gets 
rid of the need for AWS credits. Then, Nathan’s tasks 
mostly involve working with the Ultra96 board and 
trying to reduce the amount of power that is used by 
the board. This was decided based on his level of 
knowledge with the Ultra96 and its components. 
Finally, Karthik is working on the controllers and the 
logic for allowing devices to interface with the board. 
This was decided based on previous class experience 
with making controllers. 
 
        While these general descriptions help indicate 
how we assigned the bigger tasks for the project, we 
all have the secondary responsibility to integrate each 
of our individual parts to make sure they can work 
together as one system. Therefore, when we want to 
unit test the entire system, we all work together to 
make sure the individual parts are functioning 
properly. 
 
C. Budget 
 
       Fig. 7 shows us the overall budget usage for the 
project.  
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Fig 7. Budget detailing all the materials we are using 
 
 
 
 
D. Risk Management 
 
        Our primary risk management technique, and 
our most successful one by far, was carefully 
planning the entire project from beginning to end. By 
laying out the basic structure and function of each 
subsystem, we were able to ensure that there were 
minimal hiccups in the process, and we encountered 
no obstacles that fundamentally threatened the 
functionality of our system. 
 
        Part of this planning process was doing our 
homework on the capabilities of all the components 
we intended to use. We requested the Ultra96 instead 
of one of the already available dev boards because 
from our research, the extra CPU power would be 
necessary to handle some software-defined parts of 
our neural net-based tracking algorithm and the video 
storage. And indeed we discovered that we almost 
maxed out the 4 A53 cores with our program. 
Likewise, we made sure that our board was 
compatible with the Deephi tools so that we wouldn’t 

have to rely on untested functionality for the DPU 
functionality, even if we did eventually end up 
building the implementation ourselves. 
 
        Because of our meticulous planning, we did not 
have extraneous budget expenses, nor did we have to 
pay for rushed shipping for any of our supplies. 
Additionally, we made sure that the 
hardware-dependent functionality was cemented 
before the project progressed further, while the 
software was allowed to be slightly less rigid. 
Hardware is inflexible by nature, while software is 
more malleable. An awareness of each’s strengths 
and weaknesses was vital to our execution, and 
helped ensure that the project we delivered was 
exactly what we set out to create. 
 
VII. Related Work 
 
        While many other security systems exist, upon 
researching the competition, we found a number of 
flaws in existing implementations that we were 
displeased by, and encouraged the idea of this project 
as a viable competitive option. Most security systems 
require a central server for video 
collection/processing, often using proprietary and 
sometimes costly software. Additionally, few 
cameras had any form of tracking, instead relying on 
expensive multi-camera systems. How convenient for 
the camera vendors. 
 
        The tracking cameras we did find were of the 
most primitive variety, often only offering tracking in 
one direction of movement (to say nothing of zoom), 
and operating based solely upon movement instead of 
object recognition. They also generally were low 
resolution, and had a very coarse and limited tracking 
range. 
 
        The last key feature we found missing was 
optical zoom. We found not a single camera with 
both tracking an optical zoom, and the optical zoom 
cameras we did find started at $800, and absurd entry 
price for such a valuable feature. 
 
        By incorporating all of these features into a 
single, relatively inexpensive device, we truly created 
something unavailable on the greater market. 
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VI. Summary 
 
        We did what we set out to do. Our system meets 
our runtime requirements, with active power 
consumption under 10W (producing on-time of over 
600 minutes, exceeding or 500 minute requirement), 
and idle power of approximately 60mW, producing 
an idle runtime of over 2 months, again exceeding 
our 30 day requirement. The tracking and zoom are 
both smooth and functional, and the frame rate 
numbers for tracking exceed our specifications. We 
were able to record video at 24 fps due to a limitation 
of the video encoder, but this is relatively close to our 
goal of 30fps. 
 
        If we had to make some changes, the only major 
considerations would be to further optimize the logic 
and software for lower power consumption, but we’re 
overall pleased with the results we were able to 
achieve. As for advice for other students, all we’d say 
is plan well, and keep your head on your shoulders. 
Don’t try to do the impossible.  
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Fig 8. Gantt Chart detailing the schedule for the project. Blue is everyone, yellow is Jerry, orange is Karthik, and green is Nathan. 


