
18-500 Design Review Report: 03/04/2019

Person-Tracking Camera

Authors: Nathan Levin, Jerry Ding, and Karthik Natarajan
Electrical and Computer Engineering, Carnegie Mellon University

 Abstract — Our system is a person-tracking
security camera made to help stores and
homeowners protect their properties. To do this,
our security camera will zoom and track such that
a suspicious person’s actions can be clearly seen
on the camera footage. Our system will improve
upon existing tracking security cameras by using
advanced machine learning algorithms and by
being a self-contained edge device.

 Index Terms — AdaFruit, Camera, DeepPhi,
Deep Learning, Inference, Power, Security,
Tracking, Servo Motors, Yolov3, Arduino C

I. Introduction

 It is not uncommon to see video surveillance
systems being installed on street lights, houses and
small storefronts. Though they can be effective at
detecting trespassers or following the motion of a
known target, it can be difficult to obtain a clear view
of a person, even with a high video resolution and a
modest distance between the camera and the target.
With a fixed mount camera one often has no choice
but to use a large field of view to avoid having blind
spots in their camera system, resulting in objects in
view being too small to reliably identify. However, a
zooming camera can obtain high resolution images of
individual targets of interest without permanently
restricting the field of view of the camera. With
recent research in neural computer vision, advanced
algorithms like Yolov3 can be used to reliably
identify and locate people within view, making an
automatic person tracking camera feasible.

 Currently, automatic person tracking security
cameras are rare in the marketplace, and the few that
exist are usually high-end PTZ cameras that require a
complex setup process and a central server for
computation. These PTZ cameras typically do not use
deep neural networks, and as a result the tracking
feature is not very reliable. We plan to create a better 1

solution: a self-contained security camera that uses
highly accurate machine learning algorithms to
successfully zoom into a person.

1 https://ipvm.com/reports/should-you-use-autotracking-ptzs

II. Design Requirements / Metrics

 The target audience we decided to focus on are
typical homeowners and stores. These users are more
likely to find an automated, no-hassles security
solution appealing. To guide our design
specifications, we offer a formal description of our
product as follows:

 A compact and self-contained security camera
that automatically tracks and zooms into any
potentially suspicious person, and that an average
store or homeowner can easily install and use.

A. Convenience Requirements
 We want a compact and self-contained system to
ensure that the installation process is not too difficult.
We also require the camera to automatically zoom, so
that targets within view can be identified. To be able
to hone into any person within view, the camera
would need to pan and track while it is zoomed in.

 To quantify the compactness and self-contained
properties, we decided to establish these design
requirements:

 The system must not require a central server. It
should support both plugged-in and battery mode
operation. Ideally, on one charge it will be able to
continuously track people and capture footage for up
to 500 minutes, or remain operational for up to 30
days while waiting for people to enter the field of
view.

 The battery mode operation enhances the ease of
installation, as an average homeowner or store may
find it inconvenient to run power cables to their front
door. The running time requirements are based on
similar commercial security camera products. These 2

strict runtime requirements on a limited power source
make power consumption a preeminent concern.

B. Tracking Requirements
The tracking specifications are as follows:

2 https://www.amazon.com/Battery-Powered-
Security-Wireless-Wire-Free/dp/B07HH6Z357/

https://www.amazon.com/Battery-Powered-

18-500 Design Review Report: 03/04/2019

With up to three people approaching

between 5 and 20 feet of the front door, with an equal
probability of approaching and leaving in any
direction at any time of the day, and assuming ample
lighting, the person-tracking security camera should
fail to zoom and track each person motion less than
one time in 50 trials on average. When tracking
properly, the person’s height should take around
80% of the camera frame height.

 The figure is motivated by the frequency of theft
faced by homeowners and stores. Specifically, we
found that the average household receives around 27
packages per year , and that shoplifting incidents 3

typically fall around 18 incidents per outlet per year . 4

Most of these incidents don’t involve more than two
criminals, so we chose to test with three people in
view.

 The 20 foot benchmark is based on the typical
length of a driveway, since it is less likely for a
person beyond that distance to be a meaningful
target. Since the zoomed in view can only
accommodate one person, we would have to alternate
between tracking different people in view and
schedule the camera’s viewing time to minimize the
probability of missing people less than 20 feet away.
We choose to support down to a minimum distance
of 5 feet as a reasonable range where the person will
occupy most of the field of view without being too
close to see.

 Other requirements include a 720p 30fps video
footage recording capability. This resolution and
frame rate is standard for many modern security
cameras and webcams. Tracking should be done at
least 10 fps time resolution, which allows the tracker
to see at least one frame of a person no matter how
fast they run. We would also need our servos to have
a high enough rotation rate to track a moving person
from 5 feet away, but given that our servos are
capable of 60 degrees of rotation in less than half a
second, this is should not be challenging to meet.

 The zoom metric was based on the idea that we
want to see the actions the suspicious person is
taking. To do this, we cannot be fully zoomed into
the person’s face because if we do this we will be
unable to see what the person is doing with the rest of
their body. So, by fixing the person’s height to be

3 https://www.inc.com/john-white/tired-of-getting-
your-packages-stolen-heres-what-to-do.html
4 http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.182.6338&rep=rep1&type=pdf

around 80% of the frame height, we will have full
view of the suspicious person’s body and will
therefore be able to see their actions.

C. Testing Plan
 To test these requirements, we will place the
system on a table near the back door of Fairfax
Apartments, because the view there is similar to that
of small shop or townhouse, complete with a
sidewalk, a street, and a corridor that can treated as a
driveway. We will test the system with these
scenarios:

● Individual person walking at a brisk pace from a

random direction, reach a closest approach of
between 5 feet and 20 feet, waiting for two
seconds, then leaving in a random direction, at
night or at the daytime. (50 trials)

● Three simultaneous people each independently
choosing a path as above. (50 trials)

● Take random frames after the camera has
finished zooming and check to see that the
person takes up around 80% of the frame.

https://www.inc.com/john-white/tired-of-getting-
http://citeseerx.ist.psu.edu/viewdoc/download

18-500 Design Review Report: 03/04/2019

III. Architecture

Fig 1. Block diagram of hardware architecture and arrangement of software subsystems.

Fig 2. Block diagram of software architecture and general flow control

18-500 Design Review Report: 03/04/2019

 The foundation for our approach to human
identification and tracking is deep learning inference
accelerated by the programmable logic/FPGA portion
of the Xilinx MPSoC on the Ultra96 board. Xilinx’s
solution to this problem, referred to as “edge
inference” in the industry, is the use of their newly
acquired subsidiary Deephi, a company which
created a deep learning accelerator architecture
implemented on Xilinx FPGAs to enable fast, low
power deep learning inference.

Fig 3. Architecture of the Deephi Aristotle inference accelerator

 We chose this architecture because it is new
(Deephi was acquired in July 2018), allowing room
for experimentation beyond established use cases,
and it benefits from Xilinx’s robust documentation,
making it possible for amateurs to work with. It is
additionally configurable allowing for customized
approaches to minimize power while meeting our
performance targets.

 Deephi/Xilinx not only provide the hardware,
but they also provide a software ecosystem in the
form of the Deep Neural Network Development Kit
(DNNDK). This includes tools to compress and
optimize a neural net (via DECENT), and then
compile it to work with their accelerator architecture
(via DNNC). This includes native support for
Yolov3, one of the leading object (including human)
identification models.

Fig 4. State diagram for the system

 A high level state diagram of the full system is
shown in Fig. 4. In summary, we will need to support
a sleep mode where the system is not recording
footage to the SD card and is not using the FPGA
fabric for inference.

 In the sleep state, the Ultra96 board will be
suspended, and the Adafruit Feather M0 will monitor
the motion sensor to determine when to wake the
Ultra96. Though the Adafruit board will occasionally
perform some processing, it will usually be in an idle
state that only consumes less than 30mW . The 5

Ultra96 chip consumes about 35 mW , and the RAM 6

self-refresh cycle consumes up to 40mW. Together,
the power consumption will be around 100mW,
which is on track to give us a 30 day idle battery life.

 There are likely to be a significant number of
false positives from the motion sensor alone,
however. To prevent fully powering on the board on
each false positive, we include an intermediate low
power mode which only uses a subset of the Ultra96
board’s capabilities to run simple image processing
algorithms at a low frame rate. The goal is for this
stage is to conservatively filter out likely sources of
false positives such as cars and wind, ensuring that
the board usually powers fully on only when a person
enters the view. We believe that by tuning the sensor
and Ultra96 board to minimize the energy spent in
this mode, we can obtain a 30 day idle battery life
even considering false positive detections.

 Finally, in the active state, the board will begin
recording footage to the on-board SD card and use
neural algorithms to generate a bounding box for
people in view. We estimate that this mode will
consume between 5 and 15 watts, which allows the
camera to operate for 500 minutes.

 The software block diagram is shown in Fig 2.
The software components can be divided roughly into
two groups: an image processing group and a
sensorimotor group. Image processing code is
implemented on the Ultra96 and sensorimotor code is
implemented on the Adafruit Feather M0.
Communication between the two will be done via
UART.

 Low power person detection is implemented by
comparing the current video frames with a

5 https://electronics.stackexchange.com/questions/52991/
is-the-cortex-m0-really-low-power/52995
6 https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18842181/Zynq+UltraScale+MPSoC+Power+Off+Suspend

https://electronics.stackexchange.com/questions/52991/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/

18-500 Design Review Report: 03/04/2019

background image. The background image is
obtained with a temporal low-pass filter, which
averages the on-screen pixels over a long period of
time (fully resetting the background image if the
camera has suddenly moved, which suddenly changes
the pixels in the view). Using these frames and the
background image, it is relatively easy to compute
crude features such as the speed and apparent size of
the moving object, which can be filtered to exclude
obvious false positives.

 When the low power person detector finds a
probable person, it will bring the board to active
mode. A priority scoring system will use features
such as the size and motion of each detected
bounding box to choose which bounding box to focus
on at any given point in time. The bounding box
information is used by the Adafruit Feather M0 in the
motor controller, which uses code written with the
Arduino C stepper and servo libraries to move the
camera. Similarly, an autofocus algorithm will be
implemented in the Feather board to adjust the
stepper motors in the focuser.

IV. Design Trade Studies

A. DPU Power Consumption

 Our most important design tradeoff for this
project was the balance between the capabilities of
the DPU and its power consumption. We had a target
inference rate of 10fps, and initially expected to
optimize to just hit this frame rate, so as to minimize
the power of the system (thus extending its runtime)
within that tracking requirement. What we
discovered, however, is that the capabilities of the
DPU with our optimized neural net far exceeded our
expectations. The default Ultra96 implementation ran
in excess of 30fps, which is the maximum frame rate
supported by the 1080p video stream we were
reading in from the camera. Therefore, we predicted
that our performance would almost certain surpass
our use case’s requirement, and our effort would be
best spent minimizing the DPU configuration, and
thus its power consumption.

 Xilinx provided a pre-build Ultra96 image with
an instantiation of the Deephi B1152, which is what
we initially expected to have to work with. However,
during the course of the project they posted the IP
repository for the Deephi accelerator core. Despite
being nominally compatible only with a different
Xilinx product, we were able to modify the IP core in
Vivado (Xilinx’s hardware design tool) to reduce its

configuration to a lower power, yet still extremely
capable end result.

Fig 5. Vivado-derived modeled power consumption of Deephi DPU
implementations. Power totals include SoC processing system
(hard IP cores).

 To derive an optimal configuration for our
system, we first started by compiling results for
Xilinx’s ZCU102 image (where the IP was initially
pulled from), and then with the stock configuration
present on the Ultra96.

 The ZCU102, as a substantially larger
implementation of the DPU, unsurprisingly has
power consumption far in excess of the Ultra96, but
the Ultra96 configuration itself still consumed
substantial power. With that in mind, we strove to cut
down the DPU configuration to one better suited to a
power-constrained environment. The first step was to
drop the DPU configuration from the default B1152
to the B1024 design, which is the lowest end
configuration supported by our neural network
compiler tools (DNNDK). Give then 3x margin by
which our measured performance exceeded our
requirement, we predicted this lesser DPU
configuration to have an inconsequential impact on
performance.

 This change reduced power consumption by
~0.24W, which is not insignificant, but we thought
we could push the gains further. Optimizing the clock
generating logic in Vivado, including replacing the
extraneous MMCM clock generation with more
efficient PLL-based clock generation, yielded an
additional ~40mW improvement. However, it was by
combining these improvements with a power
optimized compilation step that more significant
gains were seen, further dropping the power by
approximately 0.32W, for a total of >12% power
reduction compared to the default configuration.

18-500 Design Review Report: 03/04/2019

 However, with these changes in place, we
needed to verify that the performance of our system
was still within specification. Upon testing with the
completed system, our inference frame rate with this
reduced configuration still exceeded 25fps, a
limitation imposed by the CPU-bound storage of the
video stream.

 We additionally used Deephi profiling tools to
verify the DPU utilization was not limiting the
system performance.

Fig 5. Profiled utilization numbers for minimized DPU
configuration.

 With utilization of the smallest configuration
failing to reach even 60%, it’s clear that the DPU is
not the limiting component of the system, despite all
of the effort put into minimizing its capabilities.
Furthermore, the Xilinx tools suggested that with this
configuration, the system’s power consumption is
dominated by the processing system (hard IP cores),
particularly the CPU, and further optimization of the
DPU core could only provide marginal gains at best.

 Unable to provide substantial further power
reduction, we instead chose to use this excess DPU
performance to improve tracking accuracy by
averaging over multiple frames, while still remaining
well above the 10fps requirement for our ultimate
tracking frame rate.

V. System Description

 Our solution is built hierarchically and contains
two main subsystems. Below is a detailed description
of the implementation choices in each component.

A. Ultra96 Subsystem

1. Bounding Box Detection
a. Hardware Inference Entry Point

This component uses DeePhi’s DNNDK framework
to instantiate a DPU kernel for the Yolov3-tiny neural
network, generate DPU tasks from OpenCV images
collected from the camera, and submit the tasks to the
DPU for inference.

 One undocumented detail of DeePhi’s DNNC
compiler used to create the Yolov3-tiny kernel is how
it handles input data. It assumes each pixel in the
image is encoded with a floating point number
between 0 and 255, while DarkNet trains the neural
network assuming a range of 0 to 1. Therefore the
Caffe model was modified to match the changed data
format.

b. Yolo Detection Layer
 The logic for the output layer of the Yolov3-tiny
architecture cannot be implemented in the DPU, so it
had to be re-implemented in software. We did not use
a library for this - instead, we read the Yolov3
research paper to reproduce the definition of this
layer.

 Within this layer, there are a number of tunable
parameters that affect the quality of bounding box
detection, most notably a confidence threshold
between 0 and 100 for marking a bounding box as a
detected person. We tuned the confidence value to
find the lowest threshold before the network drew
bounding boxes around non-human objects in the
testing lab (25), and settled on a value of 33 to leave
a safety buffer.

2. Bounding Box Correlation / Smoothing
 The neural network treats each frame of the
video independently, and therefore explicit
processing is needed to establish a temporal link
between bounding boxes across frames (e.g. to track
one person without being distracted by the presence
of another). In addition, the size and position of the
boxes tend to fluctuate across frames, which can
strain the motor system if the fluctuations translate
into rapid back and forth motions. This is why a
bounding box smoothing system is included.

a. Bounding Box Correlation
 To identify which boxes in a new frame
correspond to which boxes in previous frames, we
compute the intersection over union (IoU) between
all bounding boxes for a new frame and the set of
smoothed boxes for the previous frame. We establish
that a new box is temporally linked to a past box if
the IoU exceeds 0.33, and if a single box is
temporally linked to multiple past boxes then the

18-500 Design Review Report: 03/04/2019

oldest (which is arguably the more robust) past box is
chosen for the correlation.

b. Size / Position Moving Average
 Smoothing is implemented with an exponential
moving average of the position and the size of the
boxes across frames. For each frame, this smoothing
is only applied to bounding boxes for which a
correlation was found in the bounding box correlation
step. The weights used for the averaging is roughly
equivalent to averaging three frames for the box
position, and averaging 12 frames for the box size.

c. Lifetime Management
 There can be times when one of the smoothed
bounding boxes for the previous frame is not
correlated with any boxes for the current frame. This
occurs either when the person in the box leaves the
field of view, or when the person in the box is briefly
occluded. For these boxes where no correlation is
found, a staleness counter is incremented. Otherwise,
if a correlation is found the staleness counter is
decremented, stopping at 0. Boxes with a staleness
greater than 15 (equivalent to 0.625 seconds with no
correlation) are removed. An age variable is kept
track for all live boxes, and only boxes with an age
greater than 10 frames are used for the anchor box
selection system.

 With this system, boxes will be retained when a
person is briefly occluded, and will be removed when
a person leaves the field of view.

d. Predictive Motion / Scaling
 In addition, boxes with no correlation are
speculatively moved and scaled according to the
changes observed in the previous frame for up to 5
frames. This speculative motion improves the IoU
score once a bounding box is re-established, making
it more likely that the bounding box will be retained
after a brief occlusion.

3. Anchor Box Selection

 The system generally chooses one box in view
to be the anchor, and periodically changes the anchor
to focus on multiple targets. This system is
responsible for this functionality.

a. Feature Extractor
 When the system needs to choose a new anchor
box, a number of features are extracted from the
pixels within each bounding box in view. These
features are the average values of the R, G, and B
channels for 8 equal-sized vertical strips and 4
equal-sized vertical strips from the box.

b. Feature History Buffer

 A buffer of 5 feature vectors from past anchor
boxes are used to decide on a new anchor box. The
new anchor box chosen will be the one whose
features are the most dissimilar to the closest match
among the features in the history buffer, where
similarity is measured with the L2 distance metric.

c. Lost Box Handling
 When the anchor box is lost, a grace period of
one second is given for the system to find a new box.
If found, the new box is re-established as the anchor.
Otherwise, the Ultra96 sends a signal to fully zoom
out the view before finding a new anchor box (where
a fully-zoomed-out signal from the Feather M0 is
used to determine when zoom is restored to default).
This helps handle up intermittent periods where the
anchored person could not be detected.

4. Video Storage
 A persistent file is used to store a video index,
which is incremented every time the system boots up.
This index helps create a unique video file on each
boot. A multithreaded MJPG video encoder from
OpenCV is used to generate the video file.

5. Sleep State Management
 When the Ultra96 subsystem detects no
bounding boxes for 20 seconds, it sends a signal to
the Feather M0 to enter the shut down state. When an
ACK message is received, the Ultra96 powers itself
down. When the Feather M0 decides to wake the
Ultra96, a signal is sent directly to the low speed
expansion header to power on the Ultra96 board.

B. Feather M0 Subsystem

1. Scheduler Loop
a. Command Parsing

 Commands are single capital letters followed by
an integer parameter. Characters are buffered until a
newline character is found.

b. Motor Release Logic
 When no zoom commands are received for
500ms, the Feather M0 releases the stepper motors to
save power.

c. Sleep State Management
 When the Ultra96 subsystem sends a shutdown
command to the Feather M0, the latter replies with an
ACK, releases the servos and the stepper motor, and
enters the sleep state where it only monitors the
motion sensors for waking up..

18-500 Design Review Report: 03/04/2019

2. Zoom / Focus Controller
a. State Management

 No sensors are available to measure the position
of the zoom and focus stepper motor, so this
component keeps track of the current step counts for
the zoom and focus steppers explicitly. When the
system fully zooms out, a signal is sent to the Ultra96
via UART.

b. Interruptible Motion System
 Moving the zoom and focus steppers takes time,
and performing a large zoom change all at once will
leave the Feather unresponsive due to a lack of
multithreading. Instead, zoom changes are
implemented as a sequence of small steps toward a
target. Each small step moves both the zoom and
focus steppers to maintain a focused view, and the
derivative of the focusing curve is used to keep the
amount of time spent in each step roughly constant.

 If the scheduler receives a command for a zoom
in the opposite direction of the current target, the
target is immediately moved to be in the opposite
direction.

c. Focusing Curve
 The focus stepper was manually calibrated at 13
zoom levels to find the proper focus vs. zoom curve
for a target around 20 feet away, and a 5th degree
polynomial was fitted to these points to interpolate
between the 13 zoom levels.

 We observe that the clarity of a target did not
depend very much on the distance of the target, and
so a fixed focus vs. zoom curve can be used without
fine-tuned adjustment.

3. Pan-Tilt Controller
 This component controls the pan-tilt servos for
the camera mount. Since a target position is directly
encoded as a PWM signal of the Feather, the system
remains fully responsive while the servos are moving
without extra effort.

Neural Network Details

 The Yolov3-tiny neural network is trained from
scratch with the COCO and Caltech Pedestrian
datasets, adding to about 70,000 images. Some
filtering is done to remove very small (< 30 pixel
height) bounding boxes in the ground truth data. In
addition, data augmentation is used to make the
system more robust to people partially in view. In
particular, 10 percent of the images were duplicated
and modified in one of these three ways:

● Cropped from above to hide part of a

person’s upper body
● Cropped from below to hide part of a

person’s lower body
● Blurred to simulated imperfect focus

 Finally, around 1000 images from the NYU
Depth v2 dataset are used as negative examples in the
training set. These images have a variety of objects
but no people in view.

Hardware component choice criteria

Ultra96 - Chosen for its exceptional performance
relative to its price and power consumption. The
leading edge TSMC 16nm FinFET process was
particularly appealing as a power-focused project,
and the Ultra96 is one of the few boards compatible
with Xilinx’s new Deephi inference accelerator
ecosystem at this time. Additionally, the integrated
GPU makes for easier development and
demonstration compared to alternative boards, and
the Xilinx ZU3 SoC used is strong enough for real
time video inference with a variety of models.

SEN0192 Motion Sensor - Chosen for its range,
reliability, affordable price point, and flexible form
factor. These criteria make it useful for our custom
system, which like any such security device, demands
reliability.

Adafruit Feather M0 Basic Proto - Chosen for it’s
low idle power (<10mA) and compatibility with
Adafruit FeatherWing expansion boards and the
Arduino software libraries, enabling easier motor
control than porting the code to the Ultra96 or writing
our own.

Logitech C920 Pro - Chosen for its relatively low
price, decent video quality, and it’s compatibility
with the lens adapter used to connect our zoom lens
with our Camera’s PCB.

ServoCity SPT200 Pan & Tilt Kit + HS-485HB
servos - Chosen for high durability and the strength
to support weighty attachments to the camera, such as
the lens and modified webcam with the lens adapter.

SL-27135MFZ Motorized Zoom Lens- This zoom
lens has a magnification factor of 5 while also being
relatively cheap, in this case only $11. Also, because
the average driveway is around 20 ft in length, the
zoom lens can zoom into a person so they appear

18-500 Design Review Report: 03/04/2019

only 4-5 ft away thereby giving us a good view of the
people near your house or storefront.

Software component choice criteria

Yolov3 - We chose this machine learning model
because of its native support through the Deephi tool,
very wide use, and ease of customization geared
towards improved human detection. Neural Network
is used to help us track people while in active mode.

OpenCV - We can use this for miscellaneous image
processing, such as the code used for the low power
person detection algorithm and priority scoring.

DNNDK - Part of the Xilinx/Deephi ecosystem, and
designed to optimize neural nets for low precision (8
bit int), low power inference. It is therefore ideal for
our use case.

Arduino C- We chose Arduino C for 2 specific
reasons. Firstly, Arduino C has very well documented
libraries for both servo motors and stepper motors
which will make it easy to use with our motors. On
top of that, Arduino takes very little space which is
good for us because our board only has 32 KB of
RAM.

VI. Project Management

A. Schedule
 As you can see, Fig. 6 has the schedule of tasks
throughout the semester. As of right now, our
schedule has had some minor changes, but nothing
that puts us way behind schedule.

 The main significant change was the time for
ordering and shipping the parts for our project. This
had to be pushed forward into early March because
we had many changes in the overall design of our
system as we went through different use cases and
tried to solidify our metrics. And, because we have
not gotten all of our parts, we have only been able to
verify that the parts have arrived.

 Outside of that, everything else has been going
to schedule. Specifically, on the machine learning
side, we have been able to extract and customize the
Yolov3 network to track people. And, on the
hardware side, we have started to interface with the
with the board through GPIO while waiting for the
remaining parts.

B. Team Member Responsibilities

For this project, we tried to divide the
responsibilities so that we can parallelize the most
amount of work. So, each of us are working on a
different area of the project. Specifically, Jerry is
doing most of the machine learning tasks like setting
up the ML model and customizing the Yolov3
network because he has access to a GPU which gets
rid of the need for AWS credits. Then, Nathan’s tasks
mostly involve working with the Ultra96 board and
trying to reduce the amount of power that is used by
the board. This was decided based on his level of
knowledge with the Ultra96 and its components.
Finally, Karthik is working on the controllers and the
logic for allowing devices to interface with the board.
This was decided based on previous class experience
with making controllers.

 While these general descriptions help indicate
how we assigned the bigger tasks for the project, we
all have the secondary responsibility to integrate each
of our individual parts to make sure they can work
together as one system. Therefore, when we want to
unit test the entire system, we all work together to
make sure the individual parts are functioning
properly.

C. Budget

 Fig. 7 shows us the overall budget usage for the
project.

18-500 Design Review Report: 03/04/2019

Fig 7. Budget detailing all the materials we are using

D. Risk Management

 Our primary risk management technique, and
our most successful one by far, was carefully
planning the entire project from beginning to end. By
laying out the basic structure and function of each
subsystem, we were able to ensure that there were
minimal hiccups in the process, and we encountered
no obstacles that fundamentally threatened the
functionality of our system.

 Part of this planning process was doing our
homework on the capabilities of all the components
we intended to use. We requested the Ultra96 instead
of one of the already available dev boards because
from our research, the extra CPU power would be
necessary to handle some software-defined parts of
our neural net-based tracking algorithm and the video
storage. And indeed we discovered that we almost
maxed out the 4 A53 cores with our program.
Likewise, we made sure that our board was
compatible with the Deephi tools so that we wouldn’t

have to rely on untested functionality for the DPU
functionality, even if we did eventually end up
building the implementation ourselves.

 Because of our meticulous planning, we did not
have extraneous budget expenses, nor did we have to
pay for rushed shipping for any of our supplies.
Additionally, we made sure that the
hardware-dependent functionality was cemented
before the project progressed further, while the
software was allowed to be slightly less rigid.
Hardware is inflexible by nature, while software is
more malleable. An awareness of each’s strengths
and weaknesses was vital to our execution, and
helped ensure that the project we delivered was
exactly what we set out to create.

VII. Related Work

 While many other security systems exist, upon
researching the competition, we found a number of
flaws in existing implementations that we were
displeased by, and encouraged the idea of this project
as a viable competitive option. Most security systems
require a central server for video
collection/processing, often using proprietary and
sometimes costly software. Additionally, few
cameras had any form of tracking, instead relying on
expensive multi-camera systems. How convenient for
the camera vendors.

 The tracking cameras we did find were of the
most primitive variety, often only offering tracking in
one direction of movement (to say nothing of zoom),
and operating based solely upon movement instead of
object recognition. They also generally were low
resolution, and had a very coarse and limited tracking
range.

 The last key feature we found missing was
optical zoom. We found not a single camera with
both tracking an optical zoom, and the optical zoom
cameras we did find started at $800, and absurd entry
price for such a valuable feature.

 By incorporating all of these features into a
single, relatively inexpensive device, we truly created
something unavailable on the greater market.

18-500 Design Review Report: 03/04/2019

VI. Summary

 We did what we set out to do. Our system meets
our runtime requirements, with active power
consumption under 10W (producing on-time of over
600 minutes, exceeding or 500 minute requirement),
and idle power of approximately 60mW, producing
an idle runtime of over 2 months, again exceeding
our 30 day requirement. The tracking and zoom are
both smooth and functional, and the frame rate
numbers for tracking exceed our specifications. We
were able to record video at 24 fps due to a limitation
of the video encoder, but this is relatively close to our
goal of 30fps.

 If we had to make some changes, the only major
considerations would be to further optimize the logic
and software for lower power consumption, but we’re
overall pleased with the results we were able to
achieve. As for advice for other students, all we’d say
is plan well, and keep your head on your shoulders.
Don’t try to do the impossible.

VII. References

https://ipvm.com/reports/should-you-use-autotracking-ptzs

https://www.amazon.com/Battery-Powered-Security-Wireless-Wire-Free/dp/B07HH6Z357/

https://www.inc.com/john-white/tired-of-getting-your-packages-stolen-heres-what-to-do.html

 http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.182.6338&rep=rep1&type=pdf

https://electronics.stackexchange.com/questions/52991/is-the-cortex-m0-really-low-power/52995

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842181/Zynq+UltraScale+MPSoC+Power+Off+Suspend

https://www.inc.com/john-white/tired-of-getting-
http://citeseerx.ist.psu.edu/viewdoc/download
https://electronics.stackexchange.com/questions/52991/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/

18-500 Design Review Report: 03/04/2019

Fig 8. Gantt Chart detailing the schedule for the project. Blue is everyone, yellow is Jerry, orange is Karthik, and green is Nathan.

