Person-Tracking Security Camera

Team A5: Jerry Ding, Nathan Levin, Karthik Natarajan

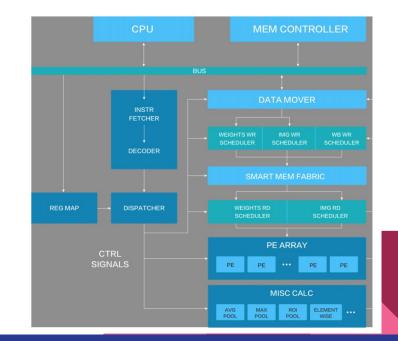
Application Area

• The primary distinguishing feature of our security camera system is the ability to use optical zoom and tracking to more clearly show a person's face.

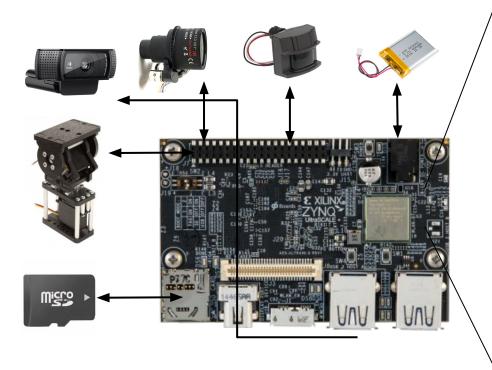
• The product, in one sentence:

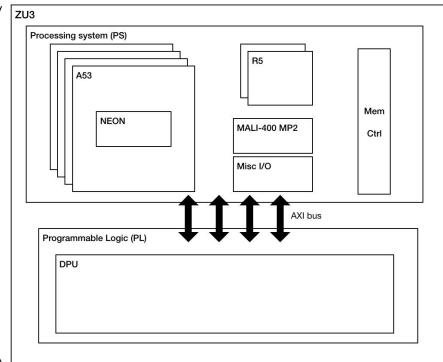
A compact and self-contained security camera that automatically tracks and zooms into any suspicious person, and that an average store or homeowner can easily install and use.

Solution Approach

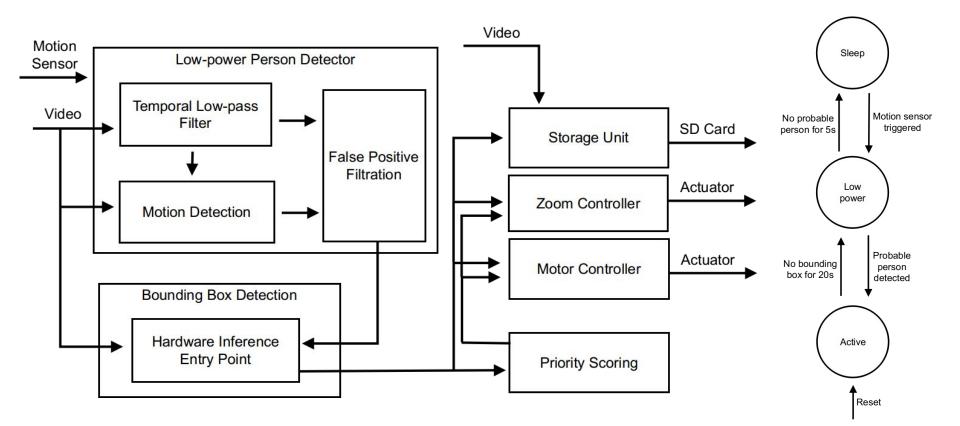

- "Automatically tracks and zooms"
 - A user interface for moving the camera is insufficient. We use computer vision algorithms.
- "Compact and self-contained"
 - Central server is out of the question. We use a small FPGA known to be a good fit for running computer vision algorithms.
- "Any suspicious person"
 - Multiple targets are possible if they are all suspicious. Add a scoring system to pick the best targets and the amount of time focused on them.

Solution Approach


- "Can easily install"
 - Some people but not all people have convenient ways to plug in the camera to wall power. Need to support battery operation.
 - For battery users, minimize the inconvenience of needing to recharge.
 - The competition: ~500 minutes of active operation, ~30 days idle state
 - Easy to recharge without disassembling the whole system.
 - Use a removable battery module containing a pair of 5V, 13Ah battery packs.
 - Generally run in low power mode, wake up when activity is detected
 - High sensitivity / spurious wakeups are OK to a certain extent


System Architecture

- Implementation of the Deephi Inference Accelerator (B1152F)
- Motivating factors
 - Extremely new ecosystem
 - Room to try unexplored possibilities
 - Robust Xilinx documentation
 - Optimized for low power (edge) inference
 - Highly configurable/customizable



Hardware Block Diagram

Software Block Diagram / State Diagram

Contributions

Hardware

- Off the shelf
 - o Ultra96
 - Motion sensor
 - Battery
- Customized
 - Deephi DPU core
 - C920 Pro camera
 - Optics
- New
 - Power control (systems level)
 - Mechatronics
 - Enclosure

Software

- Off the shelf
 - Linux operating system
 - Gstreamer (video streaming)
 - OpenCV
 - Yolo-v3 Tiny
 - Xilinx (Vivado, SDSoC)
 - Deephi DNNDK (inference engine)
- New
 - Low power object detection algorithm
 - Motor control
 - Zoom control
 - Priority scoring
 - Firmware level (sensor interrupts, etc.)

Hardware Utilization - Reference Implementation

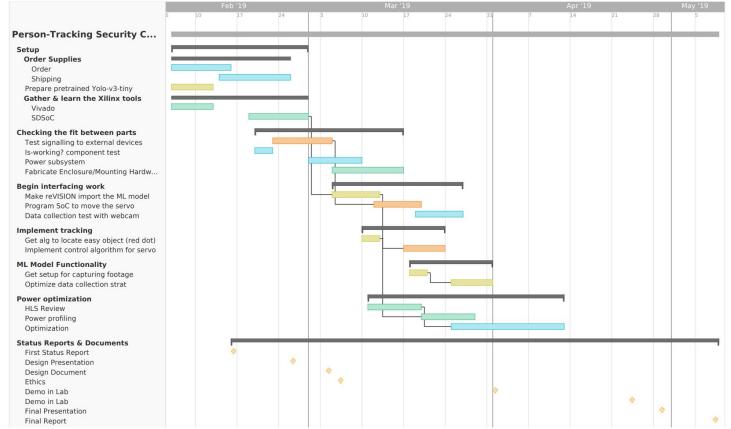
	LUT	Slice_reg	Block Ram	DSPs
All logic	70560	141120	216	360
DPU_B1152	36560	68729	115.5	288
Utilization ratio	51.81%	48.70%	53.47%	66.67%

Power consumption of programmable logic ~= 3.5W (based on ZU2 implementation)

Performance Baseline

Neural Network	MAC (GOPS)	fps
ResNet-50	7.7	25
Inception-v1	3.2	58
MobileNet	0.56	116
Face detection	1.1	133
Video analysis	5.5	35
Pose detection	5.0	48
ADAS detection	5.5	30
Semantic segmentation	8.8	24

Performance with DPU at 500MHz


Goals:

- Meet performance requirements with greater power efficiency than the reference design.
- Derive performance through methodology, not brute force hardware. Don't have power to spare.

Metrics

- Success rate for detecting at least one person on time, starting in sleep mode.
 - Unlikely to buy 50 packages in a year, let alone be targeted 50 times in a year
 - Goal: At least 50 trials between failures \Rightarrow more than 98% success rate
- Percentage of people correctly framed within the bounding box.
 - Goal: Given successful detection of at least 1 person, at least 50 trials between failures, where each failure only omits at most one person when three are in view
- 30 days idle time, 500 minutes active time
 - Idle time includes losses caused by false positives

Schedule & Division of Labor

