Person-Tracking Security Camera

Team A5:

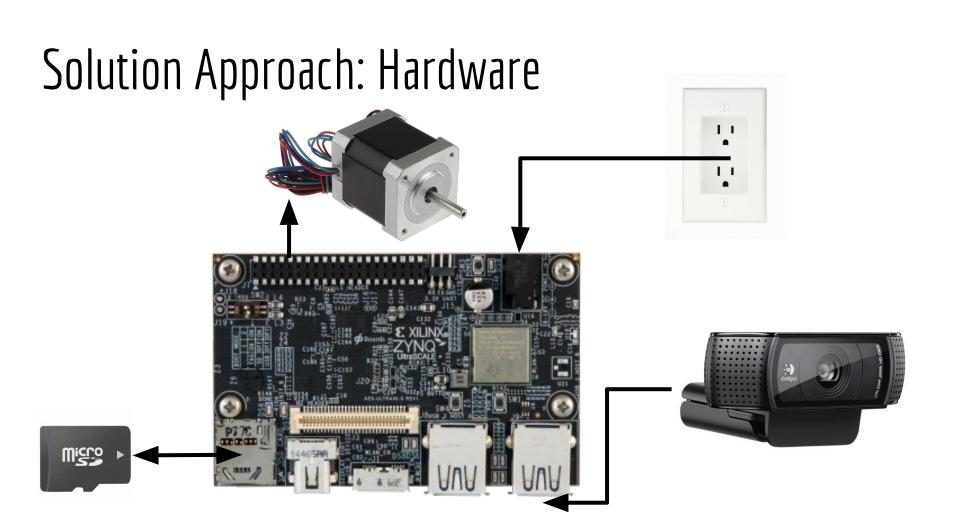
Jerry Ding, Nathan Levin, Karthik Natarajan

Use Case

- Security cameras often lack the resolution to clearly display the face of an intruder. Even with 720p footage, faces can be hard to see at the end of a 20 feet driveway.
- Multi-camera systems are expensive and difficult to position
- Pedestrian tracking technology exists, and current neural CV approaches can have very high accuracy.
- We plan to use this to make a security camera physically track one person with a zoomed-in view.
- ECE Areas: Hardware, Software, Systems

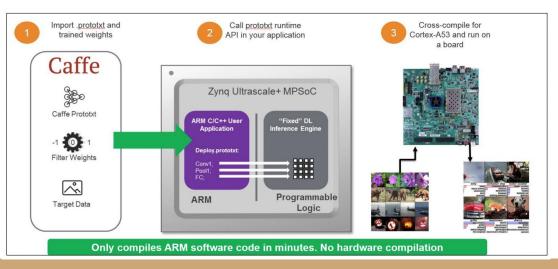
Case Study - Package Theft

Limited field of view and low resolution for important features.


Subject still at large.

Requirements

- Must be able to track people at a rate of 10 fps
 - Able to track Usain Bolt with meter accuracy
- Data recorded to external media at 720p30
- Passively cooled up to 80°F external temperature
- Able to keep subject detected and in frame 80% of the time while subject within the range of the camera


Components - Hardware (Pessimistic Pricing)

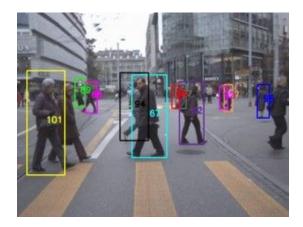
Item	Cost
Ultra96 FPGA SoC board	\$250.00
Logitech C920 Camera	\$50.00
Cables	\$20.00
PSU	\$20.00
Motor + controller	\$40.00
Poster	\$100.00
Misc.	\$50.00
Total	\$530.00

Solution Approach: Software

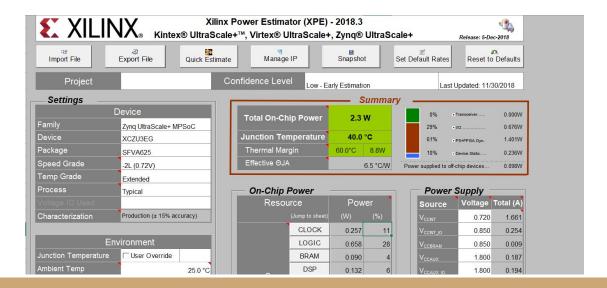
- Xilinx Tools
 - reVISION software suite
 - NNNDK (Deep Neural Network Development Kit)
 - Power estimation and system monitoring
 - Vivado
- Gstreamer 1.2
 - Video recording
- Neural network
 - TensorFlow
 - YOLO-v3-tiny

Solution Approach: Machine Learning

Xilinx provides reVISION, a tool to enable HW acceleration for ML models.

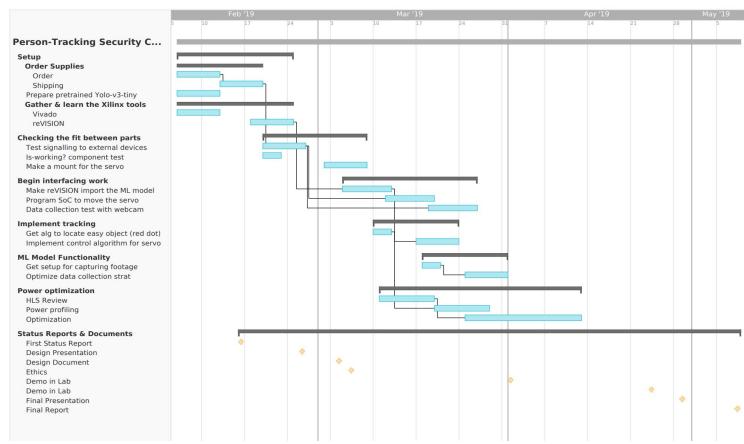

We plan to download the pretrained Yolo-v3-tiny network and use existing tools to convert it into a TensorFlow model which can be used by reVISION.

A fallback is to train a model using the Caltech Pedestrian Detection dataset.


Testing, Verification and Metrics

- Our camera should be able to track a person within 20 ft of your door
- Measure mean of distance between subject and center of the frame
- Run camera for 5 hours with passive cooling and monitor for overheating
- Accuracy = (# frames identified) / (# of frames subject is within range)

Some useful measurements


- Track the power output of the board with Xilinx's SysMon
- Track the percentage of the picture the person takes up when zoomed
- Track the miss rate, a.k.a. % of times where a person walking through camera's field of vision was not detected.

Tasks and Division of Labor

	Hardware	Mechatronics	Machine Learning	I/O
Nathan				
Jerry				
Karthik				

Schedule

