
18-500 S19 Final Report, Team A3: 05/08/2019

1

Abstract—We aimed to replicate the architecture of the

Larrabee project that was developed and ultimately abandoned by
Intel, where we use the RISC-V ISA instead of x86. This allows for
us to use an even simpler integer pipeline and improve the ratio of
CPU logic to floating logic. Just like Larrabee, our processor cores
are going to be capable of vector operations on single-precision
floating-point numbers, and will use the RISC-V vector extension
to program our cores in C. Our vector cores will use independent
scratchpad memories, whose contents will be managed by code
running on the supervisor.

Index Terms—ASIC, CPU, FPGA, FPU, GPU, VPU

I. INTRODUCTION
ITH power limitations and a slowdown in Moore’s

law, computing has moved towards increasingly parallel
architectures. Graphics processing units (GPUs) are a good
example of a successful attempt at parallelism, with graphics
problems providing a large number of completely independent
operations that can be executed in specialized shader cores on
the GPU. These cores and the general architecture of a GPU
emphasizes numerical throughput over decision making, in part
since multiple shader cores share instruction fetch and decode
logic, limiting the amount of jumps any single core can
effectively execute. GPUs provide a lot of their speedup by
implementing application specific hardware, like texture and
rasterization units, which are not programmed through
assembly code but instead given smalls commands and then let
to run independently on some data.

 Intel Larrabee was intended as a GPU competitor, as its
initial marketing and benchmarks were running different video
games. As an effort to leverage existing designs, but also to
simplify development for it, Intel decided to use general
purpose x86 cores instead of purpose-built shaders in Larrabee,
where there would be less x86 cores than shader cores in a
comparable GPU, but far more cores than in a CPU of the same
era. A GPU, along with having customized computing
hardware, also has very specific pipelining and memory
hierarchy, while Larrabee would instead give each core equal
access to main memory. This allowed for user code to allocate
cores as it saw fit to different applications, with cores
potentially split up between applications just like memory is
allocated.

 To simplify the design of our architecture we used RISC-
V instead of x86 as the ISA for each of our cores. We can

leverage existing compilers for RISC-V to write code for each
of our cores, and given the simplicity of the RISC-V ISA we
can produce a minimal integer pipeline whose only ISA
augmentation is floating-point and vector processing logic,
essentially implementing RV32-IFV.

To demonstrate and debug our architecture we want to try to
implement it on two different FPGA boards, with different
sized FPGAs. The FPGA is a good way to demonstrate that the
architecture not only runs real code, but that we can meet some
basic timing requirements and that our logic can make efficient
use of the resources given to it. Our RISC-V processor for this
reason will be optimized for targeting an FPGA so that the
vector coprocessor will be able to run at full speed. The FPGA
we are targeting also has an ARM CPU attached to the FPGA
fabric, which is easy to boot Linux on and will be our supervisor
core, where jobs can be dispatched to the vector cores and
results read back to potentially be drawn to the screen or saved
to a file.

Our goal was to perform at about 50% of each individual
FPGAs theoretical floating-point performance, by only using
software running on our vector cores. This reduction from the
theoretical performance is there to accommodate the FPGA
design’s clock speed being about half of what the theoretical
DSP slice speed is, and also any inefficiency of the software
and memory model of our architecture. This should result in a
maximum floating throughput target for our architecture of
0.116 TFLOPs on the Ultra96 and 0.977 TFLOPs on the
ZCU102.

Wannabee Larrabee

Authors: Alexander Gotsis, Electrical and Computer Engineering, Carnegie Mellon University

 Cyril Agbi, Electrical and Computer Engineering, Carnegie Mellon University

David Gronlund, Electrical and Computer Engineering, Carnegie Mellon University

W

18-500 S19 Final Report, Team A3: 05/08/2019

2

II. DESIGN REQUIREMENTS AND BENCHMARKS
Our primary design requirement was to be able to most

effectively leverage the floating-point resources in the FPGA,
which through each of our vector cores should be usable
entirely through software. The platforms we wanted to
benchmark our architecture on are two different Xilinx
Ultrascale+ development boards, which both have the same
ARM processor attached to the FPGA fabric. This would allow
us to boot nearly identical software on each board, and
hopefully demonstrate that our architecture can scale by simply
providing more cores for the user. We also wanted to use two,
and if time allowed three, different benchmarks to show that
across different workloads our architecture can saturate the
math resources in the FPGA.

Board/FPGA DSP
Slices

Max.
DSP
Freq.

Max. Theoretical
FLOPs (Multiply)

Ultra96
ZCU3EG-1

360 645 0.232 TFLOPs

ZCU102
ZCU9EG-2

2,520 775 1.953 TFLOPs

For all of our benchmarks we wanted to write them in C and

then run them on the ARM core alone to simply show that they
work. Then we tried to make sure that they were being
accelerated by the NEON FPU next to the ARM core, which
would hopefully show some improvements in performance.
Next, we wanted to work on porting the code over to our
architecture, which would first involve managing moving code
and data around between the cores, and then trying to use our
custom vector intrinsics to speed up the normal floating-point
instructions generated by the RISC-V compiler. Had extra time
allow our plan would then be to also port the benchmark over
to a comparable GPU and benchmark its performance versus
our architecture over a metric involving theoretical FLOPS
throughput for both architectures. Our vector and floating-point
units have a performance counter which allows them to check
how many of each operation they have performed, which we
can compare to either our clock cycle counter or wall time for
different benchmarks against an equivalent CPU or GPU
implementation.

A. Mandelbrot Benchmark
 Our first benchmark is hopefully the simplest, which is to

compute the Mandelbrot fractal pattern on our architecture.
Ideally, we have the Linux supervisor on the ARM core able to
render that to a display in real time, but it would also be
acceptable to simply save it to memory or a file to later validate
the result. The reason we chose this algorithm for our first
benchmark is due to its relative simplicity, with the value
assigned to each pixel on the screen determined solely by its
location, which provides a simple way to determine if the
floating-point resources are saturated without relying on
memory accesses. The only memory challenge with this
benchmark is moving the pixel results out of each core as they
are computed and assigning them to the final rendered image,
which we could not complete in time.

Fig. 1. Example rendering of the mandelbrot set. [2]

18-500 S19 Final Report, Team A3: 05/08/2019

3

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
After the design review we decided to move the Memory

stage in the integer pipeline to be after the Execute stage instead
of in parallel with it. This allowed us to not have to duplicate an
adder from the Execute stage. We also looked at the vector
instructions and decided to support only floating-point vector
operations in our first revision instead of combined
integer/floating-point vector operations.

 Of particular note, our block diagrams follow the key
below, which helps to distinguish between individual register
stages in a design, what those stages do, and if those blocks in
the diagram consist of multiple stages. The arrows are also
clearly distinguished, with solid arrows using full flow control,
and dotted arrows using no flow control.

Fig. 2. Legend for processor and floating-point unit design.

A. Integer Pipeline
 One of the biggest issues with FPGA logic is the routing

delay, which for a long pipeline can far outweigh the delay
through look-up-tables (LUTs). Tough combinatorial logic in
an ASIC like a long carry chain are comparatively small
problems in FPGAs, who have purpose-built carry-chains that
are a much closer approximation of ASIC performance than the
routing resources are. For this reason our CPU pipeline is very
careful of having dependencies between stages, especially
avoiding the complete forwarding approach taken in a lot of
small five-stage processors. This allows the place and route
algorithm to layout the design with less spatial considerations,
which significantly improve the tools abilities to find better
routing.

We also take special care to only have a single write-port into
our register file, which allows the FPGA to use special purpose
distributed RAM resources. Two write ports would force the
FPGA to use normal registers to implement the register file,
which would balloon the number of LUTs needed to decode the
register file. Distributed RAM in the FPGA is also found in the
FPGA in larger quantities than normal registers on a bit-for-bit
basis. Given that a RISC-V register file is exactly a kilo-bit, this
resource saving is super important to make sure we have
enough integer-pipelines to service our floating-point vector
logic.

Given the lack of complete forwarding a couple of small
optimizations were then taken to improve instructions-per-
clock (IPC) in the integer pipeline. First the Execute stage saves
its last result indefinitely until a new result is produced, which
the decode logic will instruct the Execute stage to use should
the next operation be dependent on it. Second the Execute stage
forwards its result, if it is purely a register-to-register operation,
past the Memory stage and directly to the Writeback stage. This
requires that the Writeback stage have logic allowing it to
accept multiple result streams, and can write them to the register
file in any order. To prevent a shorter latency, later executed
instruction from pre-empting an earlier one, instructions writing
to invalid registers are not allowed to execute until the register
becomes valid again, or the previous invalidation was done
through the Execute stage, and the next invalidation would be
through the Execute stage too.

Given that the branch prediction table needs to be stored in
the FPGA distributed RAM in order for the fetch stage to be
single cycle we opted to make it small, but configurable in
depth. We also allow for forwarding from buses that we found
to be useful to forward from but that did not dramatically hurt
timing. This limited and configurable forwarding approach
further allows us to accommodate complications involved in
FPGA implementation.

18-500 S19 Final Report, Team A3: 05/08/2019

4

Fig. 3. Integer pipeline implementation.

B. Floating-Point
 The FPU will fully support the RISC-V F-extension. In

order to do that, we need it to be able to perform all of the
floating-point operations, as well as interactions with memory
and the integer registers. It also needs to be well optimized for
the FPGA. The FPU design is important to the project because
it is used for the vector extension. Also, the plan is to have it
designed so that it can easily be integrated with the core. For
this reason, we need it to use up as few resources as possible
and be pipelined well so that it doesn’t hurt our timing.

The FPU has 4 stages: Decode, Execute, Writeback, and
Rounding. The Decode stage will receive the floating-point
instruction and prepare the signals for the rest of the stages. One
thing to note is that our FPU is like our integer pipeline in that
it does out-of-order execute and in-order writeback. We have
six execution paths (Addition, Multiplication, Division, Square
Root, Encode, Decode, Memory). The encode execution path
handles instructions who use data from an integer register to
produce an output for a floating-point register (and vice-versa
for the decoder). The memory path is the same as the one in the
integer pipeline, but we use it to handle the floating-point load
and store instructions since they rely on the floating-point
registers. The Writeback stage selects which output from the
Execute stage to write to a register (if necessary). Once selected,
the Rounding stage will round the result if necessary before the
result is written to the floating point register.

 As mentioned before, performance of the FPU was
crucial to the design. We wanted to seamlessly add in our FPU
to the core such that it would not mess up our timing (don’t want
our critical path in the FPU). And since we wanted to vectorize
our core, we needed the FPU to use up as few resources as
possible. The FPU operations (add, multiply, divide, square
root) required a lot of logic and time to compute. So, each
operation path was pipelined into three stages. The first stage
handles the resolution of the exponent. Then the second stage
does the operation on the mantissa. And the final stage
normalizes the result. As an attempt to save space we did
rounding after the writeback stage since the rounding logic is
the same for all of the operations.

For division and square root, the mantissa resolution requires
a loop that would be expensive and time consuming to do in one
clock cycle. Also, splitting up the loop into a bunch of pipeline
stages would be expensive. We resolve this by having the
results from one iteration of the mantissa resolution loop from
the end of the stage back into the beginning of the stage for the
necessary number of iterations (stalling the path as the looping
occurs). This prevents the division and square root mantissa
resolution from using up excess resources and hurting our
timing.

18-500 S19 Final Report, Team A3: 05/08/2019

5

Fig. 4. Floating-Point Unit Implementation.

C. Vector
 Bridging the gap between the FPU and the performance

requirement we are trying to hit is the vector processing unit.
Following the design of the Larrabee cores, our vector
processing unit can work on 16 floating-point numbers at once,
which requires each register file entry to be 512 bits wide. The
RISC-V vector specification allows for these vector entries to
wrap multiple floating-point registers, i.e. the first vector
register of 16 entries might encompass the first 4 vector
registers since each vector register is only 4 entries wide. This
is mostly done to save on the use of vector registers for short
vector operations, while also allowing for very wide vector
operations on the same register file. At the expense of area but
for design simplicity, a full 16-single precision float wide
register file would only need 16 kilobits of distributed RAM,
and our smallest FPGA will have nearly 1.8 megabits of it,
which means a single vector core will only need 1% of the
available distributed RAM. However, due to the accessibility
requirements of distributed RAM inside the FPGA and the
potential for an instruction to read from three separate registers,
we actually needed three times this much distributed RAM to
implement a single vector register file, or about 48 kilobits of
distributed RAM.

 Each VPU is designed primarily for addition,
multiplication, and fused multiply-add. Division and square
roots are also supported by both the VPU and the base FPU, but
have a much higher latency and comparatively less resources
are allocated to them. Two DSP slices are used per
multiplication unit, and given that each FPU (of which there are
16 equivalents per VPU) is only ever issued a single operation
per clock cycle, some of logic like rounding can be shared
amongst the multiplication, addition, division, and square root
logic for only a fractional reduction in performance.

 In a best case regarding resource usage, we can expect to
use two DSP slices for a fused multiply-adder (this unit could
do either a single multiplication or addition a clock cycle, or a
fused multiply-add in two clock cycles), which would allow us
in the same FPGA we selected to build about 360 fused
multiply-adders. Given our vector width, we could then expect
to make about 11 VPUs with all the FPGA resources.

 However, due to limitations in how other operations get
mapped to FPGA resources, we wound up being limited
primarily by the number of LUTs in the FPGA and not our DSP
slices, but we will discuss this later.

 We also realized during implementation that the RISC-V
vector specification was far more complicated than we were
expecting it to be, mostly involving how vector operations were
allowed to be strided across the file. We eventually settled on
not implementing this part of the specification, which was
feasible since we were generating all of the assembly ourselves.

18-500 S19 Final Report, Team A3: 05/08/2019

6

D. Interconnect
 Each of the combined vector cores has a separate interface

for both instruction and data memory. These interfaces are
relatively simple request/response memory interfaces that
connect to two different scratchpad memories. This separation
is warranted since each core is never going to edit or issue its
own instructions, instead getting those issued from the
supervisor. First, given the small size of both memories, this
allows each core to have somewhere between one to two cycles
of latency without a cache, reducing logic consumption in the
FPGA. Each memory also uses the dual-port configuration of
the block RAM in the FPGA, but there are four separate entities
that need access to it, so we implemented a memory multiplexor
on each port. First, instruction memory and the supervisor get
access to a single port, since each is probably not going to
accessing it at the same time, as a core is in idle while it is being
loaded. The data memory and floating point data memory both
share the other port, which makes sense from a bandwidth
standpoint as only a single instruction can be issued a cycle that
would need to access this memory.

 Instructions can be issued to a group of cores at a time,
with the write requests being replicated across the group by the
interconnect logic. This behavior is maskable by the
interconnect, so a fine-grained group of cores can be issued the
same behavior all at once. This is useful for instance when
needing to perform operations like vertex transformations, as
all of the cores are executing the same instructions on different
data. This mirrors the parallelism that GPU shader cores
implement, but still provides separate instruction memories to
each core.

 Each core is managed by polling memory addresses in its
data memory for status updates, as well as having a small
interrupt receiver from the core should it execute an undefined
instruction or try to access memory outside of its scratchpad.
To recover from this state, the supervisor has access to a reset
controller for each core, which allows it to put any individual
core into reset. All cores in fact start in reset, and need to be
brought out of reset when the system starts. A core brought out
of reset will then proceed to start executing instructions at the
beginning of its instruction memory.

 The request/response memory interface used by the
individual cores is converted to AXI at each core’s data memory
so that independent memory operations can occur while the
core is running. This independent AXI slave device can either
be written to directly by the supervisor through the
interconnect, or through a DMA engine that is provided per
group of cores. This DMA engine sits on the same interconnect
as that group of cores, which gives it faster access times for
moving data between individual cores in that group, but at the
expense of latency for moving data from the core to main
memory. The DMA cores and AXI interconnect are Xilinx IP
catalog cores.

Our block diagram that we were using to test out a single

instance of the core is shown below. In the design we have the
core, an AXI interconnect to bridge all the blocks together,
some ILAs in order to debug the logic inside of the FPGA, and

an AXI FIFO so that we can read out the messages that the
FPGA is printing out.

E. Software
 The supervisor core that is dispatching data and

instructions to the vector cores is going to be the ARM core on
the FPGA development board that is running Linux. This
allows for much easier access to resources like networking and
video output on the development board, and potentially even
using high level languages like Python to manage the operations
of the individual vector cores.

 In order to run code on the vector cores it first needs to be
compiled from C to RISC-V machine code, which there already
exists a toolchain for. However, an additional complication is
using our VPU logic from C. The single-data FPU
implementation can be targeted by the RISC-V compiler, but
the vector extension is not mainstreamed yet. To solve this we
need to add the vector instructions to the RISC-V assembler,
then use a set of intrinsics to interface that assembly into our C
code. Luckily, this means we do not have to modify the RISC-
V GCC implementation, and instead just point it at a different
assembler. In a perfect world a compiler would exist already
that could infer the use of a vector operation from a similar
programming construct like a for-loop, but given even the state-
of-the-art in compiler research we are mostly left to write vector
code ourselves. This allows us to somewhat leverage the unique
differences in our architecture most effectively, particularly in
our we load and unload our vector core.

 We spent a lot of time working on editing gas (the GNU
assembler), so that GCC would respect the registers that our
instructions required and still generate the correct code. This
was much more involved than we expected and required editing
a lot of different parts of the compiler toolchain. In the end we
did have a properly functioning assembler that could assemble
and avoid dependency issues in a whole new set of registers.

For our integer pipeline, we used ECALL and EBREAK as
assembly macros, but we leveraged the lessons we learned there
to handle our overlaid vector-float register file. This required
our assembly macros to properly indicate to GCC which
registers were being clobbered and which ones were not.

 The supervisor code is going to be in charge of managing
messages from each of the vector cores and understanding any
exceptions that they generate. We wanted to implement a small

18-500 S19 Final Report, Team A3: 05/08/2019

7

set of software libraries for both the vector cores and supervisor
to allow for utilities like mailboxes between the two, as well as
allowing the vector cores to update the supervisor when they
need common operations like a DMA transaction done.

IV. MANAGEMENT

A. Schedule
See back for schedule.

B. Bill of Materials and Tools
Our project uses two FPGA boards to demonstrate the

architecture, the Ultra96 and a ZCU102. Both are Xilinx
Ultrascale+ development boards with an integrated quad-core
ARM processor to run our supervisor code on. We are using
Xilinx Vivado to build for the boards as well as simulate a lot
of our logic. We are also using VCS as a resource for simulating
some of our logic due to its ready availability in the ECE
clusters.

The Ultra96 is a small credit-card sized board which costs
about $250 and is a small-scale demonstration of our
architecture. It will help us show that even with a small number
of vector cores we can accelerate our benchmarks, especially
for embedded applications.

The ZCU102 is a much larger and more expensive
development board, but has the same ARM cores next to the
FPGA, and we are using it to show that our architecture can
scale. The ZCU102 is otherwise the same FPGA fabric as the
Ultra96, just bigger, which should help in migrating the design
when we get to that point.

 Our software toolchain consists primarily of the RISC-V
GCC compiler along with our modifications to the assembler.
The ARM cores will run Linux that we are booting using the
PetaLinux kernel provided by Xilinx, as well as the Pynq
libraries

V. RELATED WORK
Given that we are trying to replicate Intel Larrabee but with

a different ISA, it is the closest related work to our project.
Some notable differences were that they had actually fabricated
their architecture into custom silicon and demonstrated it that
way, while we are limited to presenting our architecture in an
FPGA and optimizing it for FPGA-specific resources.

 Intel would later abandon using the architecture they
developed for graphics and instead upgrade and rebrand it to be
a general computation accelerator called Xeon-Phi, which
powers many of the fastest computers in the world. Xeon-Phi
differs from our architecture in that it is a cache-coherent
processor amongst its cores and can otherwise boot an operating
system on its own, without a host computer acting as a
supervisor, although it is usually run with a supervisor in most
applications.

 While we were working on our design the vector
specification changed underneath us a few times, in some large
ways, so we ultimately had to work with an older and limited
version of the specification in order to be able to reasonably
implement it in our FPGA.

Fig. 5. (Top) Xeon-Phi accelerator card, [8] (Bottom) Larrabee engineering
sample [9]

18-500 S19 Final Report, Team A3: 05/08/2019

8

VI. RESULTS
Our goal is to implement a software driven approach to

highly parallel computing in an FPGA, using common
resources in the fabric, and specifically targeting the
constraints

Fig. 6. FPGA Implementation Usage

While this would seem to indicate that we might be able to
fit in two, maybe three cores if we used 4-wide compute units,
the area consumed on the FPGA paints a different picture.

Fig. 7. FPGA Internal Layout (Our core is in yellow, various debug logic is in
green)

While only 27% of the FPGA is being used according to the
report, this is really indicating that routing congestion is going
to be more of an issue in the final design, as the tools feel the
need to spread everything out, taking over most the FPGA.
The reports also indicated that some routing congestion still
remained, mostly having to do with the vector register file,
which given its large fanout we mostly expected. Despite this,
our pipelining let us maintain a 200 MHz clock frequency at
least, which while less than our original 300 MHz goal, mostly
came from the integer decode pipeline, with the multiplication
normalization being a close second, but far easier to pipeline
in the future. Given that we expected the actual math of the
floating point operation to be our critical path and not the
integer pipeline, we feel that our floating pipelining was
largely successful.
 Our integer core was measured on the Dhrystone benchmark and we are
able to get at least 0.9 DMIPs/MHz even with the double cycle memory we
needed in order to meet timing inside the FPGA. With single cycle memory to
reduce the branch penalty our core was performing at about 1.1 DMIPs/MHz.
Our FPU had different metrics, and we have not tested it across the
benchmarks we originally set out to due to a lack of time to complete them.

18-500 S19 Final Report, Team A3: 05/08/2019

9

VII. SUMMARY
Our goal of this project was to implement a software driven

approach to highly parallel computing in an FPGA, using
common resources in the fabric, and specifically targeting the
constraints of the FPGA to improve our performance. We
wanted to have a custom, FPGA-optimized RISC-V processor
and a vector co-processor for it, along with the necessary
interconnect to attach these vector cores to a supervisor core
running Linux. A variety of different benchmark applications
will then let us determine if our architecture effectively met its
goals or determine what computational resource slowed down
our performance. We aimed to demonstrate that the architecture
proposed by Intel in its Larrabee project was feasible, and is
potentially an even better idea now given the development of
open source, RISC ISA specifications.

 Among things that we learned was how involved it would
be to modify GCC to even assemble different instructions,
completely leaving alone compiler. While we did eventually get
this working it took a lot of time in our schedule that we
ultimately did not have to spend. We also learned about some
more weird disconnects between the Xilinx simulator and the
actual implementation tools, which led to a couple of weeks of
debugging something that was not working inside the FPGA but
worked completely fine in the simulator. Another big issue that
hurt our progress was even being able to use an ILA inside the
design while running code in Linux to test the design at the
same time. We ultimately worked out that JTAG access was
causing the CPU to fault while in the idle state, and the final
solution was simply to use a shell script disabling the CPU idle
states in the first place.

 While we did not succeed in getting our core to run the
benchmarks we set out to at the beginning of the project, we did
succeed in getting our core to run on the FPGA, run basic
floating point operations successfully and print their results, and
then finally run vector operations and extract those results as
well. Our vector unit had a configurable compute width as well
as vector width, and having the ability to configure both let us
try to fit in the FPGA more effectively. If we had had more time
we would have tried to work on potentially sharing complex,
non-DSP logic like dividers and square-root logic, so that we
could have fit more cores into the FPGA. We would have also
tried to get more rigorous tests of the vectorization performance
done, that would have compared it to other floating-point RISC-
V cores, as well as comparing our vector performance to normal
floating point code.

REFERENCES
[1] https://en.wikipedia.org/wiki/Larrabee_(microarchitecture)
[2] https://en.wikipedia.org/wiki/Mandelbrot_set
[3] https://www.scratchapixel.com/lessons/3d-basic-

rendering/introduction-tray-tracing/ray-tracing-practical-example
[4] https://learnopengl.com/Advanced-Lighting/Deferred-Shading
[5] https://www.intel.com/content/www/us/en/products/processors/xeo

n-phi/xeon-phi-processors.html
[6] https://www.scratchapixel.com/lessons/3d-basic-

rendering/introduction-to-ray-tracing/ray-tracing-practical-example
[7] https://en.wikipedia.org/wiki/Deferred_shading

[8] https://www.amazon.com/Intel-Xeon-Phi-7120P-
Coprocessor/dp/B00FKG9R2Q

[9] https://www.vrandfun.com/check-intels-graphics-card-prototype-
larrabee/

https://en.wikipedia.org/wiki/Larrabee_(microarchitecture)
https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-tray-tracing/ray-tracing-practical-example
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-tray-tracing/ray-tracing-practical-example
https://learnopengl.com/Advanced-Lighting/Deferred-Shading
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-ray-tracing/ray-tracing-practical-example
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-ray-tracing/ray-tracing-practical-example
https://en.wikipedia.org/wiki/Deferred_shading
https://www.amazon.com/Intel-Xeon-Phi-7120P-Coprocessor/dp/B00FKG9R2Q
https://www.amazon.com/Intel-Xeon-Phi-7120P-Coprocessor/dp/B00FKG9R2Q
https://www.vrandfun.com/check-intels-graphics-card-prototype-larrabee/
https://www.vrandfun.com/check-intels-graphics-card-prototype-larrabee/

18-500 S19 Final Report, Team A3: 05/08/2019

10

Fig. 8. Main system/interconnect diagram.

18-500 S19 Design Review, Team A3: 03/04/2019

11

Fig. 9. Gantt Chart/Schedule for Project

	I. Introduction
	II. Design Requirements and Benchmarks
	A. Mandelbrot Benchmark

	III. Architecture and/or Principle of Operation
	A. Integer Pipeline
	B. Floating-Point
	C. Vector
	D. Interconnect
	E. Software

	IV. Management
	A. Schedule
	B. Bill of Materials and Tools

	V. Related Work
	VI. Results
	VII. Summary
	References

