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Abstract—We aimed to replicate the architecture of the 

Larrabee project that was developed and ultimately abandoned by 
Intel, where we use the RISC-V ISA instead of x86. This allows for 
us to use an even simpler integer pipeline and improve the ratio of 
CPU logic to floating logic. Just like Larrabee, our processor cores 
are going to be capable of vector operations on single-precision 
floating-point numbers, and will use the RISC-V vector extension 
to program our cores in C. Our vector cores will use independent 
scratchpad memories, whose contents will be managed by code 
running on the supervisor. 

 
Index Terms—ASIC, CPU, FPGA, FPU, GPU, VPU 

I. INTRODUCTION 
ITH  power limitations and a slowdown in Moore’s 

law, computing has moved towards increasingly parallel 
architectures. Graphics processing units (GPUs) are a good 
example of a successful attempt at parallelism, with graphics 
problems providing a large number of completely independent 
operations that can be executed in specialized shader cores on 
the GPU. These cores and the general architecture of a GPU 
emphasizes numerical throughput over decision making, in part 
since multiple shader cores share instruction fetch and decode 
logic, limiting the amount of jumps any single core can 
effectively execute. GPUs provide a lot of their speedup by 
implementing application specific hardware, like texture and 
rasterization units, which are not programmed through 
assembly code but instead given smalls commands and then let 
to run independently on some data. 

    Intel Larrabee was intended as a GPU competitor, as its 
initial marketing and benchmarks were running different video 
games. As an effort to leverage existing designs, but also to 
simplify development for it, Intel decided to use general 
purpose x86 cores instead of purpose-built shaders in Larrabee, 
where there would be less x86 cores than shader cores in a 
comparable GPU, but far more cores than in a CPU of the same 
era. A GPU, along with having customized computing 
hardware, also has very specific pipelining and memory 
hierarchy, while Larrabee would instead give each core equal 
access to main memory. This allowed for user code to allocate 
cores as it saw fit to different applications, with cores 
potentially split up between applications just like memory is 
allocated. 

    To simplify the design of our architecture we used RISC-
V instead of x86 as the ISA for each of our cores. We can 

leverage existing compilers for RISC-V to write code for each 
of our cores, and given the simplicity of the RISC-V ISA we 
can produce a minimal integer pipeline whose only ISA 
augmentation is floating-point and vector processing logic, 
essentially implementing RV32-IFV. 

To demonstrate and debug our architecture we want to try to 
implement it on two different FPGA boards, with different 
sized FPGAs. The FPGA is a good way to demonstrate that the 
architecture not only runs real code, but that we can meet some 
basic timing requirements and that our logic can make efficient 
use of the resources given to it. Our RISC-V processor for this 
reason will be optimized for targeting an FPGA so that the 
vector coprocessor will be able to run at full speed. The FPGA 
we are targeting also has an ARM CPU attached to the FPGA 
fabric, which is easy to boot Linux on and will be our supervisor 
core, where jobs can be dispatched to the vector cores and 
results read back to potentially be drawn to the screen or saved 
to a file. 

Our goal was to perform at about 50% of each individual 
FPGAs theoretical floating-point performance, by only using 
software running on our vector cores. This reduction from the 
theoretical performance is there to accommodate the FPGA 
design’s clock speed being about half of what the theoretical 
DSP slice speed is, and also any inefficiency of the software 
and memory model of our architecture. This should result in a 
maximum floating throughput target for our architecture of 
0.116 TFLOPs on the Ultra96 and 0.977 TFLOPs on the 
ZCU102. 
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II. DESIGN REQUIREMENTS AND BENCHMARKS 
Our primary design requirement was to be able to most 

effectively leverage the floating-point resources in the FPGA, 
which through each of our vector cores should be usable 
entirely through software. The platforms we wanted to 
benchmark our architecture on are two different Xilinx 
Ultrascale+ development boards, which both have the same 
ARM processor attached to the FPGA fabric. This would allow 
us to boot nearly identical software on each board, and 
hopefully demonstrate that our architecture can scale by simply 
providing more cores for the user. We also wanted to use two, 
and if time allowed three, different benchmarks to show that 
across different workloads our architecture can saturate the 
math resources in the FPGA. 

 

Board/FPGA DSP 
Slices 

Max. 
DSP 
Freq. 

Max. Theoretical 
FLOPs (Multiply) 

Ultra96  
ZCU3EG-1 

360 645 0.232 TFLOPs 

ZCU102  
ZCU9EG-2 

2,520 775 1.953 TFLOPs 

 
For all of our benchmarks we wanted to write them in C and 

then run them on the ARM core alone to simply show that they 
work. Then we tried to make sure that they were being 
accelerated by the NEON FPU next to the ARM core, which 
would hopefully show some improvements in performance. 
Next, we wanted to work on porting the code over to our 
architecture, which would first involve managing moving code 
and data around between the cores, and then trying to use our 
custom vector intrinsics to speed up the normal floating-point 
instructions generated by the RISC-V compiler. Had extra time 
allow our plan would then be to also port the benchmark over 
to a comparable GPU and benchmark its performance versus 
our architecture over a metric involving theoretical FLOPS 
throughput for both architectures. Our vector and floating-point 
units have a performance counter which allows them to check 
how many of each operation they have performed, which we 
can compare to either our clock cycle counter or wall time for 
different benchmarks against an equivalent CPU or GPU 
implementation. 

 
 
 
 
 
 
 
 
 

 
 
 
 

A. Mandelbrot Benchmark 
    Our first benchmark is hopefully the simplest, which is to 

compute the Mandelbrot fractal pattern on our architecture. 
Ideally, we have the Linux supervisor on the ARM core able to 
render that to a display in real time, but it would also be 
acceptable to simply save it to memory or a file to later validate 
the result. The reason we chose this algorithm for our first 
benchmark is due to its relative simplicity, with the value 
assigned to each pixel on the screen determined solely by its 
location, which provides a simple way to determine if the 
floating-point resources are saturated without relying on 
memory accesses. The only memory challenge with this 
benchmark is moving the pixel results out of each core as they 
are computed and assigning them to the final rendered image, 
which we could not complete in time. 

 
Fig. 1. Example rendering of the mandelbrot set. [2] 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
After the design review we decided to move the Memory 

stage in the integer pipeline to be after the Execute stage instead 
of in parallel with it. This allowed us to not have to duplicate an 
adder from the Execute stage. We also looked at the vector 
instructions and decided to support only floating-point vector 
operations in our first revision instead of combined 
integer/floating-point vector operations. 

    Of particular note, our block diagrams follow the key 
below, which helps to distinguish between individual register 
stages in a design, what those stages do, and if those blocks in 
the diagram consist of multiple stages. The arrows are also 
clearly distinguished, with solid arrows using full flow control, 
and dotted arrows using no flow control. 

 
Fig. 2. Legend for processor and floating-point unit design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Integer Pipeline 
    One of the biggest issues with FPGA logic is the routing 

delay, which for a long pipeline can far outweigh the delay 
through look-up-tables (LUTs). Tough combinatorial logic in 
an ASIC like a long carry chain are comparatively small 
problems in FPGAs, who have purpose-built carry-chains that 
are a much closer approximation of ASIC performance than the 
routing resources are. For this reason our CPU pipeline is very 
careful of having dependencies between stages, especially 
avoiding the complete forwarding approach taken in a lot of 
small five-stage processors. This allows the place and route 
algorithm to layout the design with less spatial considerations, 
which significantly improve the tools abilities to find better 
routing.  

We also take special care to only have a single write-port into 
our register file, which allows the FPGA to use special purpose 
distributed RAM resources. Two write ports would force the 
FPGA to use normal registers to implement the register file, 
which would balloon the number of LUTs needed to decode the 
register file. Distributed RAM in the FPGA is also found in the 
FPGA in larger quantities than normal registers on a bit-for-bit 
basis. Given that a RISC-V register file is exactly a kilo-bit, this 
resource saving is super important to make sure we have 
enough integer-pipelines to service our floating-point vector 
logic. 

Given the lack of complete forwarding a couple of small 
optimizations were then taken to improve instructions-per-
clock (IPC) in the integer pipeline. First the Execute stage saves 
its last result indefinitely until a new result is produced, which 
the decode logic will instruct the Execute stage to use should 
the next operation be dependent on it. Second the Execute stage 
forwards its result, if it is purely a register-to-register operation, 
past the Memory stage and directly to the Writeback stage. This 
requires that the Writeback stage have logic allowing it to 
accept multiple result streams, and can write them to the register 
file in any order. To prevent a shorter latency, later executed 
instruction from pre-empting an earlier one, instructions writing 
to invalid registers are not allowed to execute until the register 
becomes valid again, or the previous invalidation was done 
through the Execute stage, and the next invalidation would be 
through the Execute stage too. 

Given that the branch prediction table needs to be stored in 
the FPGA distributed RAM in order for the fetch stage to be 
single cycle we opted to make it small, but configurable in 
depth. We also allow for forwarding from buses that we found 
to be useful to forward from but that did not dramatically hurt 
timing. This limited and configurable forwarding approach 
further allows us to accommodate complications involved in 
FPGA implementation.  
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Fig. 3. Integer pipeline implementation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Floating-Point 
    The FPU will fully support the RISC-V F-extension. In 

order to do that, we need it to be able to perform all of the 
floating-point operations, as well as interactions with memory 
and the integer registers. It also needs to be well optimized for 
the FPGA. The FPU design is important to the project because 
it is used for the vector extension. Also, the plan is to have it 
designed so that it can easily be integrated with the core. For 
this reason, we need it to use up as few resources as possible 
and be pipelined well so that it doesn’t hurt our timing. 

The FPU has 4 stages: Decode, Execute, Writeback, and 
Rounding. The Decode stage will receive the floating-point 
instruction and prepare the signals for the rest of the stages. One 
thing to note is that our FPU is like our integer pipeline in that 
it does out-of-order execute and in-order writeback. We have 
six execution paths (Addition, Multiplication, Division, Square 
Root, Encode, Decode, Memory). The encode execution path 
handles instructions who use data from an integer register to 
produce an output for a floating-point register (and vice-versa 
for the decoder). The memory path is the same as the one in the 
integer pipeline, but we use it to handle the floating-point load 
and store instructions since they rely on the floating-point 
registers. The Writeback stage selects which output from the 
Execute stage to write to a register (if necessary). Once selected, 
the Rounding stage will round the result if necessary before the 
result is written to the floating point register. 

                As mentioned before, performance of the FPU was 
crucial to the design. We wanted to seamlessly add in our FPU 
to the core such that it would not mess up our timing (don’t want 
our critical path in the FPU). And since we wanted to vectorize 
our core, we needed the FPU to use up as few resources as 
possible. The FPU operations (add, multiply, divide, square 
root) required a lot of logic and time to compute. So, each 
operation path was pipelined into three stages. The first stage 
handles the resolution of the exponent. Then the second stage 
does the operation on the mantissa. And the final stage 
normalizes the result. As an attempt to save space we did 
rounding after the writeback stage since the rounding logic is 
the same for all of the operations. 

For division and square root, the mantissa resolution requires 
a loop that would be expensive and time consuming to do in one 
clock cycle. Also, splitting up the loop into a bunch of pipeline 
stages would be expensive. We resolve this by having the 
results from one iteration of the mantissa resolution loop from 
the end of the stage back into the beginning of the stage for the 
necessary number of iterations (stalling the path as the looping 
occurs). This prevents the division and square root mantissa 
resolution from using up excess resources and hurting our 
timing. 
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Fig. 4. Floating-Point Unit Implementation. 

C. Vector 
    Bridging the gap between the FPU and the performance 

requirement we are trying to hit is the vector processing unit. 
Following the design of the Larrabee cores, our vector 
processing unit can work on 16 floating-point numbers at once, 
which requires each register file entry to be 512 bits wide. The 
RISC-V vector specification allows for these vector entries to 
wrap multiple floating-point registers, i.e. the first vector 
register of 16 entries might encompass the first 4 vector 
registers since each vector register is only 4 entries wide. This 
is mostly done to save on the use of vector registers for short 
vector operations, while also allowing for very wide vector 
operations on the same register file. At the expense of area but 
for design simplicity, a full 16-single precision float wide 
register file would only need 16 kilobits of distributed RAM, 
and our smallest FPGA will have nearly 1.8 megabits of it, 
which means a single vector core will only need 1% of the 
available distributed RAM. However, due to the accessibility 
requirements of distributed RAM inside the FPGA and the 
potential for an instruction to read from three separate registers, 
we actually needed three times this much distributed RAM to 
implement a single vector register file, or about 48 kilobits of 
distributed RAM. 

    Each VPU is designed primarily for addition, 
multiplication, and fused multiply-add. Division and square 
roots are also supported by both the VPU and the base FPU, but 
have a much higher latency and comparatively less resources 
are allocated to them. Two DSP slices are used per 
multiplication unit, and given that each FPU (of which there are 
16 equivalents per VPU) is only ever issued a single operation 
per clock cycle, some of logic like rounding can be shared 
amongst the multiplication, addition, division, and square root 
logic for only a fractional reduction in performance. 

    In a best case regarding resource usage, we can expect to 
use two DSP slices for a fused multiply-adder (this unit could 
do either a single multiplication or addition a clock cycle, or a 
fused multiply-add in two clock cycles), which would allow us 
in the same FPGA we selected to build about 360 fused 
multiply-adders. Given our vector width, we could then expect 
to make about 11 VPUs with all the FPGA resources. 

    However, due to limitations in how other operations get 
mapped to FPGA resources, we wound up being limited 
primarily by the number of LUTs in the FPGA and not our DSP 
slices, but we will discuss this later. 

    We also realized during implementation that the RISC-V 
vector specification was far more complicated than we were 
expecting it to be, mostly involving how vector operations were 
allowed to be strided across the file. We eventually settled on 
not implementing this part of the specification, which was 
feasible since we were generating all of the assembly ourselves. 
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D. Interconnect 
   Each of the combined vector cores has a separate interface 

for both instruction and data memory. These interfaces are 
relatively simple request/response memory interfaces that 
connect to two different scratchpad memories. This separation 
is warranted since each core is never going to edit or issue its 
own instructions, instead getting those issued from the 
supervisor. First, given the small size of both memories, this 
allows each core to have somewhere between one to two cycles 
of latency without a cache, reducing logic consumption in the 
FPGA. Each memory also uses the dual-port configuration of 
the block RAM in the FPGA, but there are four separate entities 
that need access to it, so we implemented a memory multiplexor 
on each port. First, instruction memory and the supervisor get 
access to a single port, since each is probably not going to 
accessing it at the same time, as a core is in idle while it is being 
loaded. The data memory and floating point data memory both 
share the other port, which makes sense from a bandwidth 
standpoint as only a single instruction can be issued a cycle that 
would need to access this memory. 

    Instructions can be issued to a group of cores at a time, 
with the write requests being replicated across the group by the 
interconnect logic. This behavior is maskable by the 
interconnect, so a fine-grained group of cores can be issued the 
same behavior all at once. This is useful for instance when 
needing to perform operations like vertex transformations, as 
all of the cores are executing the same instructions on different 
data. This mirrors the parallelism that GPU shader cores 
implement, but still provides separate instruction memories to 
each core. 

    Each core is managed by polling memory addresses in its 
data memory for status updates, as well as having a small 
interrupt receiver from the core should it execute an undefined 
instruction or try to access memory outside of its scratchpad. 
To recover from this state, the supervisor has access to a reset 
controller for each core, which allows it to put any individual 
core into reset. All cores in fact start in reset, and need to be 
brought out of reset when the system starts. A core brought out 
of reset will then proceed to start executing instructions at the 
beginning of its instruction memory. 

    The request/response memory interface used by the 
individual cores is converted to AXI at each core’s data memory 
so that independent memory operations can occur while the 
core is running. This independent AXI slave device can either 
be written to directly by the supervisor through the 
interconnect, or through a DMA engine that is provided per 
group of cores. This DMA engine sits on the same interconnect 
as that group of cores, which gives it faster access times for 
moving data between individual cores in that group, but at the 
expense of latency for moving data from the core to main 
memory. The DMA cores and AXI interconnect are Xilinx IP 
catalog cores. 

 
Our block diagram that we were using to test out a single 

instance of the core is shown below. In the design we have the 
core, an AXI interconnect to bridge all the blocks together, 
some ILAs in order to debug the logic inside of the FPGA, and 

an AXI FIFO so that we can read out the messages that the 
FPGA is printing out. 

 

 
 

 

E. Software 
    The supervisor core that is dispatching data and 

instructions to the vector cores is going to be the ARM core on 
the FPGA development board that is running Linux. This 
allows for much easier access to resources like networking and 
video output on the development board, and potentially even 
using high level languages like Python to manage the operations 
of the individual vector cores. 

    In order to run code on the vector cores it first needs to be 
compiled from C to RISC-V machine code, which there already 
exists a toolchain for. However, an additional complication is 
using our VPU logic from C. The single-data FPU 
implementation can be targeted by the RISC-V compiler, but 
the vector extension is not mainstreamed yet. To solve this we 
need to add the vector instructions to the RISC-V assembler, 
then use a set of intrinsics to interface that assembly into our C 
code. Luckily, this means we do not have to modify the RISC-
V GCC implementation, and instead just point it at a different 
assembler. In a perfect world a compiler would exist already 
that could infer the use of a vector operation from a similar 
programming construct like a for-loop, but given even the state-
of-the-art in compiler research we are mostly left to write vector 
code ourselves. This allows us to somewhat leverage the unique 
differences in our architecture most effectively, particularly in 
our we load and unload our vector core. 

    We spent a lot of time working on editing gas (the GNU 
assembler), so that GCC would respect the registers that our 
instructions required and still generate the correct code. This 
was much more involved than we expected and required editing 
a lot of different parts of the compiler toolchain. In the end we 
did have a properly functioning assembler that could assemble 
and avoid dependency issues in a whole new set of registers. 

For our integer pipeline, we used ECALL and EBREAK as 
assembly macros, but we leveraged the lessons we learned there 
to handle our overlaid vector-float register file. This required 
our assembly macros to properly indicate to GCC which 
registers were being clobbered and which ones were not. 

    The supervisor code is going to be in charge of managing 
messages from each of the vector cores and understanding any 
exceptions that they generate. We wanted to implement a small 
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set of software libraries for both the vector cores and supervisor 
to allow for utilities like mailboxes between the two, as well as 
allowing the vector cores to update the supervisor when they 
need common operations like a DMA transaction done. 

IV. MANAGEMENT 

A. Schedule 
See back for schedule. 

B. Bill of Materials and Tools 
Our project uses two FPGA boards to demonstrate the 

architecture, the Ultra96 and a ZCU102. Both are Xilinx 
Ultrascale+    development boards with an integrated quad-core 
ARM processor to run our supervisor code on. We are using 
Xilinx Vivado to build for the boards as well as simulate a lot 
of our logic. We are also using VCS as a resource for simulating 
some of our logic due to its ready availability in the ECE 
clusters. 

The Ultra96 is a small credit-card sized board which costs 
about $250 and is a small-scale demonstration of our 
architecture. It will help us show that even with a small number 
of vector cores we can accelerate our benchmarks, especially 
for embedded applications. 

The ZCU102 is a much larger and more expensive 
development board, but has the same ARM cores next to the 
FPGA, and we are using it to show that our architecture can 
scale. The ZCU102 is otherwise the same FPGA fabric as the 
Ultra96, just bigger, which should help in migrating the design 
when we get to that point. 

    Our software toolchain consists primarily of the RISC-V 
GCC compiler along with our modifications to the assembler. 
The ARM cores will run Linux that we are booting using the 
PetaLinux kernel provided by Xilinx, as well as the Pynq 
libraries 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

V. RELATED WORK 
Given that we are trying to replicate Intel Larrabee but with 

a different ISA, it is the closest related work to our project. 
Some notable differences were that they had actually fabricated 
their architecture into custom silicon and demonstrated it that 
way, while we are limited to presenting our architecture in an 
FPGA and optimizing it for FPGA-specific resources. 

    Intel would later abandon using the architecture they 
developed for graphics and instead upgrade and rebrand it to be 
a general computation accelerator called Xeon-Phi, which 
powers many of the fastest computers in the world. Xeon-Phi 
differs from our architecture in that it is a cache-coherent 
processor amongst its cores and can otherwise boot an operating 
system on its own, without a host computer acting as a 
supervisor, although it is usually run with a supervisor in most 
applications. 

    While we were working on our design the vector 
specification changed underneath us a few times, in some large 
ways, so we ultimately had to work with an older and limited 
version of the specification in order to be able to reasonably 
implement it in our FPGA. 

 

  
Fig. 5. (Top) Xeon-Phi accelerator card, [8] (Bottom) Larrabee engineering 
sample [9] 
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VI. RESULTS 
Our goal is to implement a software driven approach to 

highly parallel computing in an FPGA, using common 
resources in the fabric, and specifically targeting the 
constraints 
 

 
Fig. 6. FPGA Implementation Usage 

While this would seem to indicate that we might be able to 
fit in two, maybe three cores if we used 4-wide compute units, 
the area consumed on the FPGA paints a different picture.  

 
Fig. 7. FPGA Internal Layout (Our core is in yellow, various debug logic is in 
green) 

While only 27% of the FPGA is being used according to the 
report, this is really indicating that routing congestion is going 
to be more of an issue in the final design, as the tools feel the 
need to spread everything out, taking over most the FPGA. 
The reports also indicated that some routing congestion still 
remained, mostly having to do with the vector register file, 
which given its large fanout we mostly expected. Despite this, 
our pipelining let us maintain a 200 MHz clock frequency at 
least, which while less than our original 300 MHz goal, mostly 
came from the integer decode pipeline, with the multiplication 
normalization being a close second, but far easier to pipeline 
in the future. Given that we expected the actual math of the 
floating point operation to be our critical path and not the 
integer pipeline, we feel that our floating pipelining was 
largely successful.  
    Our integer core was measured on the Dhrystone benchmark and we are 
able to get at least 0.9 DMIPs/MHz even with the double cycle memory we 
needed in order to meet timing inside the FPGA. With single cycle memory to 
reduce the branch penalty our core was performing at about 1.1 DMIPs/MHz. 
Our FPU had different metrics, and we have not tested it across the 
benchmarks we originally set out to due to a lack of time to complete them.  
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VII. SUMMARY 
Our goal of this project was to implement a software driven 

approach to highly parallel computing in an FPGA, using 
common resources in the fabric, and specifically targeting the 
constraints of the FPGA to improve our performance. We 
wanted to have a custom, FPGA-optimized RISC-V processor 
and a vector co-processor for it, along with the necessary 
interconnect to attach these vector cores to a supervisor core 
running Linux. A variety of different benchmark applications 
will then let us determine if our architecture effectively met its 
goals or determine what computational resource slowed down 
our performance. We aimed to demonstrate that the architecture 
proposed by Intel in its Larrabee project was feasible, and is 
potentially an even better idea now given the development of 
open source, RISC ISA specifications. 

    Among things that we learned was how involved it would 
be to modify GCC to even assemble different instructions, 
completely leaving alone compiler. While we did eventually get 
this working it took a lot of time in our schedule that we 
ultimately did not have to spend. We also learned about some 
more weird disconnects between the Xilinx simulator and the 
actual implementation tools, which led to a couple of weeks of 
debugging something that was not working inside the FPGA but 
worked completely fine in the simulator. Another big issue that 
hurt our progress was even being able to use an ILA inside the 
design while running code in Linux to test the design at the 
same time. We ultimately worked out that JTAG access was 
causing the CPU to fault while in the idle state, and the final 
solution was simply to use a shell script disabling the CPU idle 
states in the first place. 

    While we did not succeed in getting our core to run the 
benchmarks we set out to at the beginning of the project, we did 
succeed in getting our core to run on the FPGA, run basic 
floating point operations successfully and print their results, and 
then finally run vector operations and extract those results as 
well. Our vector unit had a configurable compute width as well 
as vector width, and having the ability to configure both let us 
try to fit in the FPGA more effectively. If we had had more time 
we would have tried to work on potentially sharing complex, 
non-DSP logic like dividers and square-root logic, so that we 
could have fit more cores into the FPGA. We would have also 
tried to get more rigorous tests of the vectorization performance 
done, that would have compared it to other floating-point RISC-
V cores, as well as comparing our vector performance to normal 
floating point code. 
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Fig. 8. Main system/interconnect diagram. 
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Fig. 9. Gantt Chart/Schedule for Project
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