Project Status Report #7
David Gronlund

Group A3

4/6/19

This week | focused on improving the performance of the core as well as starting to
integrate in the floating point unit, which require some modifications to the memory architecture
of the core. For the core performance my focus was on improving the branch prediction, not
necessarily in how the predictor works as it was doing fine already, but in allowing the core to
execute instructions from a prediction without waiting for the speculative counter to run down to
zero. This required having two speculative counters which | indexed with the jump flag that |
was already using to indicate that the program counter had been successfully updated. The
speculative counter table is as large as the jump flag can index, which allows the core to be
parameterized in the future rather easily.

The floating point architecture we had laid out was mostly correct, but we realized that
RISC-V does have specific instructions for loading and storing to the floating point register file
directly from memory, which required us to take one of two approaches. The first was to
micro-code the instruction in the decode logic, which was going to be very messy and undo a lot
of the progress we made on the integer pipeline. The second was to provide the floating point
unit with its own interface to memory, which we decided to go for since it required less
modification to our integer core and was going to be made way easier by the memory
interconnect that we already needed to write. On top of this the integer-to-floating point
conversion was made another functional unit, since the old design would have required more
than one write port to the floating point register file.

The memory interconnect was something | also worked on, with both an
address-mapped crossbar as well as a quick packet router written and tested, which allows the
core to talk to peripherals if necessary, but also to have the local scratchpad memory, which is
two ports, accessed at the same time by four separate masters. Those masters are the
instruction requests, the data memory requests, the floating point memory requests, and the
supervisor, which can read and write from any of the scratchpad as well.

basilisk_reg_result_t

Encoder

5‘ Divider/Sqrt ‘
v |
‘ |

basilisk_fpu_command_t Decode
—_—_—

(Register File) Adder —>» Writeback ——>» Rounding

===

Instructions ——> —> Instructions
Memory Merge —> —> Split
Command
’—‘ Supervisor ——> - ——> Supervisor
Data Cache Scratchpad
l ‘ Data —> etz —>» Data

Merge —>| —> Spiit

7‘ basilisk_fpu_result_t Floating N Floating
Bezoces | Point — Point

