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Abstract—We are replicating and improving the architecture of 

the Larrabee project that was developed and ultimately 
abandoned by Intel, where we use the RISC-V ISA instead of x86. 
This allows for us to use an even simpler integer pipeline and 
improve the ratio of CPU logic to floating logic. Just like Larrabee, 
our processor cores are going to be capable of vector operations 
on single-precision floating point numbers, and will use the RISC-
V vector extension to program our cores in C. Our vector cores 
will use independent scratchpad memories, whose contents will be 
managed by code running on the supervisor. 

 
Index Terms—ASIC, CPU, FPGA, FPU, GPU, VPU 

I. INTRODUCTION 
ITH power limitations and a slowdown in Moore’s law, 
computing has moved towards increasingly parallel 

architectures. Graphics processing units (GPUs) are a good 
example of a successful attempt at parallelism, with graphics 
problems providing a large number of completely independent 
operations that can be executed in specialized shader cores on 
the GPU. These cores and the general architecture of a GPU 
emphasizes numerical throughput over decision making, in part 
since multiple shader cores share instruction fetch and decode 
logic, limiting the amount of jumps any single core can 
effectively execute. GPUs provide a lot of their speedup by 
implementing application specific hardware, like texture and 
rasterization units, which are not programmed through 
assembly code but instead given smalls commands and then let 
to run independently on some data. 

    Intel Larrabee was intended as a GPU competitor, as its 
initial marketing and benchmarks were running different video 
games. As an effort to leverage existing designs, but also to 
simplify development for it, Intel decided to use general 
purpose x86 cores instead of purpose-built shaders in Larrabee, 
where there would be less x86 cores than shader cores in a 
comparable GPU, but far more cores than in a CPU of the same 
era. A GPU, along with having customized computing 
hardware, also has very specific pipelining and memory 
hierarchy, while Larrabee would instead give each core equal 
access to main memory. This allowed for user code to allocate 
cores as it saw fit to different applications, with cores 
potentially split up between applications just like memory is 
allocated. 

    To simplify the design of our architecture we are using 
RISC-V instead of x86 as the ISA for each of our cores. We can 

leverage existing compilers for RISC-V to write code for each 
of our cores. Given the simplicity of the RISC-V ISA we can  
 
produce a minimal integer pipeline whose only ISA 
augmentation is floating point and vector processing logic, 
essentially implementing RV32-IFV. 

To demonstrate and debug our architecture we are going to 
be implementing it on two different FPGA boards, with 
different sized FPGAs. The FPGA is a good way to demonstrate 
that the architecture not only runs real code, but that we can 
meet some basic timing requirements and that our logic can 
make efficient use of the resources given to it. Our RISC-V 
processor for this reason will be optimized for targeting an 
FPGA so that the vector coprocessor will be able to run at full 
speed. The FPGA we are targeting also has an ARM CPU 
attached to the FPGA fabric, which is easy to boot Linux on and 
will be our supervisor core, where jobs can be dispatched to the 
vector cores and results read back to potentially be drawn to the 
screen or saved to a file. 

Our goal is to perform at about 50% of each individual 
FPGAs theoretical floating-point performance, by only using 
software running on our vector cores. This reduction from the 
theoretical performance is there to accommodate the FPGA 
design’s clock speed being about half of what the theoretical 
DSP slice speed is, and also any inefficiency of the software 
and memory model of our architecture. This should result in a 
maximum floating throughput target for our architecture of 
0.116 TFLOPs on the Ultra96 and 0.977 TFLOPs on the 
ZCU102. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Wannabee Larrabee 

Authors:  Alexander Gotsis, Electrical and Computer Engineering, Carnegie Mellon University 

        Cyril Agbi, Electrical and Computer Engineering, Carnegie Mellon University 

David Gronlund, Electrical and Computer Engineering, Carnegie Mellon University  

W 



18-500 S19 Design Review, Team A3: 03/04/2019 
 

2 

 
 

II. DESIGN REQUIREMENTS 
Our primary design requirement is to be able to most 

effectively leverage the floating-point resources in the FPGA, 
which through each of our vector cores should be usable 
entirely through software. The platforms we want to benchmark 
our architecture on are two different Xilinx Ultrascale+ 
development boards, which both have the same ARM processor 
attached to the FPGA fabric. This allows us to boot nearly 
identical software on each board, and hopefully demonstrate 
that our architecture can scale by simply providing more cores 
for the user. We are also using two, and if time allows three, 
different benchmarks to show that across different workloads 
our architecture can saturate the math resources in the FPGA. 

 

Board/FPGA DSP 
Slices 

Max. 
DSP 
Freq. 

Max. Theoretical 
FLOPs (Multiply) 

Ultra96  
ZCU3EG-1 

360 645 0.232 TFLOPs 

ZCU102  
ZCU9EG-2 

2,520 775 1.953 TFLOPs 

 
For all of our benchmarks we are going to write them in C 

and then first run them on the ARM core alone to simply show 
that they work. Then we will try to make sure that they are being 
accelerated by the NEON FPU next to the ARM core, which 
should hopefully show some improvements in performance. 
Next, we are going to work on porting the code over to our 
architecture, which should first involve managing moving code 
and data around between the cores, and then trying to use our 
custom vector intrinsics to speed up the normal floating-point 
instructions generated by the RISC-V compiler. Should extra 
time allow our plan would then be to also port the benchmark 
over to a comparable GPU and benchmark its performance 
versus our architecture over a metric involving theoretical 
FLOPS throughput for both architectures. Our vector and 
floating-point units will have a performance counter which 
allows them to check how many of each operation they have 
performed, which we can compare to either our clock cycle 
counter or wall time for different benchmarks against an 
equivalent CPU or GPU implementation. 

 
 
 
 
 
 

A. Mandelbrot Benchmark 
    Our first benchmark is hopefully the simplest, which is to 

compute the Mandelbrot fractal pattern on our architecture. 

Ideally, we have the Linux supervisor running on the ARM core 
able to render that to a display in real time, but it would also be 
acceptable to simply save it to memory or a file to later validate 
the result. The reason we chose this algorithm for our first 
benchmark is due to its relative simplicity, with the value 
assigned to each pixel on the screen determined solely by its 
location, which provides a simple way to determine if the 
floating-point resources are saturated without relying on 
memory accesses. The only memory challenge with this 
benchmark is moving the pixel results out of each core as they 
are computed and assigning them to the final rendered image. 

 
Fig. 1. Example rendering of the mandelbrot set. [2] 

B. Ray-Tracing Benchmark 
    Our next benchmark is to implement a simple ray tracer 

using our cores, which should provide a good benchmark of our 
floating performance as well as how efficiently we can move 
data from one shader core to the next. As the ray from the light 
source traces its way across the screen it moves around a lot, 
potentially from one side of the view frustum to the other. If a 
shader core is assigned an individual ray it would have to 
constantly get information for different parts of the scene. 
Likewise, if our software stored information for a section of the 
scene on a core-by-core basis the individual cores would have 
to share rays between them, managed by the supervisor logic. 
Simple ray tracers are also available in 500 lines of C code or 
less, which should hopefully give us a clear reference 
implementation despite the apparent complexity of ray tracing. 

 
Fig. 2. Example ray traced scene with light source and partially transparent 
objects, example written in only 300 lines of code. [6] 
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C. Traditional Rendering Benchmark 

    The last benchmark we would like to implement would be 
a traditional deferred rendering pipeline. This is what GPUs are 
built to do primarily, and they are highly optimized with special 
hardware to do so. It is unlikely that we can compute a scene, 
say the Stanford Bunny with a single light source, as efficiently 
as even the GPU integrated with ARM processor on the FPGA 
development board, but it would be a good point of comparison 
to show that even though our architecture sacrifices some 
abilities since it is general purpose it can still effectively 
perform a traditional workload. This is also the benchmark we 
are least likely to have the time to implement.  

 

 
 

 
 

 
Fig. 3. Example outputs of a deferred shading pipeline, with color, depth, and 
surface normals which can then be composited in parallel, pixel-by-pixel. [7] 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
After the design review we decided to move the Memory 

stage in the integer pipeline to be after the Execute stage instead 
of in parallel with it. This allowed us to not have to duplicate an 
adder from the Execute stage. We also looked at the vector 
instructions and decided to support only floating-point vector 
operations in our first revision instead of combined 
integer/floating-point vector operations. 

    Of particular note, our block diagrams follow the key 
below, which helps to distinguish between individual register 
stages in a design, what those stages do, and if those blocks in 
the diagram consist of multiple stages. The arrows are also 
clearly distinguished, with solid arrows using full flow control, 
and dotted arrows using no flow control. 

 
Fig. 4. Legend for processor and floating-point unit design. 
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A. Integer Pipeline 
    One of the biggest issues with FPGA logic is the routing 

delay, which for a long pipeline can far outweigh the delay 
through look-up-tables (LUTs). Tough combinatorial logic in 
an ASIC like a long carry chain are comparatively small 
problems in FPGAs, who have purpose-built carry-chains that 
are a much closer approximation of ASIC performance than the 
routing resources are. For this reason, our CPU pipeline is very 
careful of having dependencies between stages, especially 
avoiding the complete forwarding approach taken in a lot of 
small five-stage processors. This allows the place and route 
algorithm to layout the design with less spatial considerations, 
which significantly improve the tools abilities to find better 
routing.  

We also take special care to only have a single write-port into 
our register file, which allows the FPGA to use special purpose 
distributed RAM resources. Two write ports would force the 
FPGA to use normal registers to implement the register file, 
which would balloon the number of LUTs needed to decode the 
register file. Distributed RAM in the FPGA is also found in the 
FPGA in larger quantities than normal registers on a bit-for-bit 
basis. Given that a RISC-V register file is exactly a kilo-bit, this 
resource saving is super important to make sure we have 
enough integer-pipelines to service our floating-point vector 
logic. 

Given the lack of forwarding a couple of small optimizations 
were then taken to improve instructions-per-clock (IPC) in the 
integer pipeline. First the Execute stage saves its last result 
indefinitely until a new result is produced, which the decode 
logic will instruct the Execute stage to use should the next 
operation be dependent on it. Second the Execute stage 
forwards its result, if it is purely a register-to-register operation, 
past the Memory stage and directly to the Writeback stage. This 
requires that the Writeback stage have logic allowing it to 
accept multiple result streams and can write them to the register 
file in any order. To prevent a shorter latency, later executed 
instruction from pre-empting an earlier one, instructions writing 
to invalid registers are not allowed to execute until the register 
becomes valid again, or the previous invalidation was done 

through the Execute stage, and the next invalidation would be 
through the Execute stage too. 

Given that these cores are not designed to be branching heavy 
and instead focus on math, some shortcuts were taken to 
improve performance and core simplicity at the sacrifice of 
potential IPC. When a conditional branch is encountered, any 
register-to-register instructions are still allowed to be execute 
but come with a flag that will prevent them from being written 
back to the register file until the branch is resolved. Given that 
a block RAM would have to be used in the FPGA for storing 
the branch prediction table, the pipeline currently assumes that 
all branches are not taken, but if FPGA resources remain 
available and time permits then branch prediction can be added 
later. 
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Fig. 5. Integer pipeline implementation. 

 
 
 
 
 
 
 
 

B. Floating-Point 
    We know that the system will need a good floating-point 

unit in order to perform floating-point arithmetic well. Most of 
the improved performance will come from the RISC-V core 
design and the memory optimizations, but we shouldn’t let the 
floating-point unit hinder the performance of the system. We 
aim to have a floating-point unit that can correctly do addition, 
subtraction, multiplication, division, and square root on the 
IEEE 32-bit floating-point format. We also plan to have it 
support 4 different rounding modes: round up, round down, 
round to zero, round to nearest even.  

    To speed up the floating-point unit, we will try to have it 
target the DSP slices on the Ultra96 FPGA. These slices are 
dedicated hardware made to speed up arithmetic operations. 
They are capable of 48-bit addition and 27-bit by 18-bit 
multiplication. Using the DSP slices to do the mantissa 
operations should be faster than any other implementation 
synthesized on the FPGA. Because of the 48-bit addition, this 
should be easy to integrate with our addition, division, and 
square root algorithms. However, we cannot directly do a 24 by 
24-bit multiplication. Our solution to this would be to use two 
DSP slices to perform the mantissa multiplication. The first 
multiplication will be the upper 6 bits of the first operand 
multiplied by the second operand. The result from this will be 
left shifted by 18. The second operation would be the lower 18 
bits of the first operand multiplied by the second operand and 
added with the earlier shifted result. Getting the Vivado tool to 
synthesize our design with as many DSP slices as possible will 
allow for optimal floating-point arithmetic. 

    The operation time for each operation will vary a lot. 
Regardless of the operation, parsing the inputs and normalizing 
are done the same way regardless of the operation. Solving the 
exponent varies based on the operation but should take around 
the same amount of time to complete. Rounding the result is 
done the same for all operations but varies minimally based on 
the type of rounding. The mantissa calculation is the most 
troublesome part of the FPU. Multiplication, division, and 
square root require some type of iteration and will take 
significantly longer to complete. This is the nature of doing 
these operations and the use of multiple DSP slices should 
mitigate the overall time to do the calculation. 
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Fig. 6. Floating-Point Unit Implementation. 

C. Vector 
    Bridging the gap between the FPU and the performance 

requirement we are trying to hit is the vector processing unit. 
Following the design of the Larrabee cores, our vector 
processing unit can work on 16 floating-point numbers at once, 
which requires each register file entry to be 512 bits wide. The 
RISC-V vector specification allows for these vector entries to 
wrap multiple floating-point registers, i.e. the first vector 
register of 16 entries might encompass the first 4 vector 
registers since each vector register is only 4 entries wide. This 
is mostly done to save on the use of vector registers for short 
vector operations, while also allowing for very wide vector 
operations on the same register file. At the expense of area but 
for design simplicity, a full 16-single precision float wide 
register file would only need 16 kilobits of distributed RAM, 
and our smallest FPGA will have nearly 1.8 megabits of it, 
which means a single vector core will only need 1% of the 
available distributed RAM. 

    Each VPU is designed primarily for addition, 
multiplication, and fused multiply-add. Division and square 
roots are also supported by both the VPU and the base FPU but 
have a much higher latency and comparatively less resources 
are allocated to them. A single DSP slice is used per 
multiplication unit and given that each FPU (of which there are 
16 equivalents per VPU) is only ever issued a single operation 
per clock cycle, some of logic like rounding can be shared 
amongst the multiplication, addition, division, and square root 
logic for only a fractional reduction in performance. 

    In a best-case regarding resource usage, we can expect to 
use a single DSP slice for a fused multiply-adder (this unit could 
do either a single multiplication or addition a clock cycle, or a 
fused multiply-add in two clock cycles), which would allow us 
in the same FPGA we selected to build about 360 fused 
multiply-adders. Given our vector width, we could then expect 
to make about 22 VPUs with all the FPGA resources. 

 

D. Interconnect 
    Each of the combined vector cores has a separate interface 

for both instruction and data memory. These interfaces are 
relatively simple request/response memory interfaces that 
connect to two different scratchpad memories. This separation 
is warranted since each core is never going to edit or issue its 
own instructions, instead getting those issued from the 
supervisor. First, given the small size of both memories, this 
allows each core to have somewhere between one to two cycles 
of latency without a cache, reducing logic consumption in the 
FPGA. Each memory also uses the dual-port configuration of 
the block RAM in the FPGA, which means each core owns an 
interface to its memories, and the supervisor owns the other 
port. 

    Instructions can be issued to a group of cores at a time, 
with the write requests being replicated across the group by the 
interconnect logic. This behavior is maskable by the 
interconnect, so a fine-grained group of cores can be issued the 
same behavior all at once. This is useful for instance when 
needing to perform operations like vertex transformations, as 
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all of the cores are executing the same instructions on different 
data. This mirrors the parallelism that GPU shader cores 
implement, but still provides separate instruction memories to 
each core. 

    Each core is managed by polling memory addresses in its 
data memory for status updates, as well as having a small 
interrupt receiver from the core should it execute an undefined 
instruction or try to access memory outside of its scratchpad. 
To recover from this state, the supervisor has access to a reset 
controller for each core, which allows it to put any individual 
core into reset. All cores in fact start in reset and need to be 
brought out of reset when the system starts. A core brought out 
of reset will then proceed to start executing instructions at the 
beginning of its instruction memory. 

    The request/response memory interface used by the 
individual cores is converted to AXI at each core’s data memory 
so that independent memory operations can occur while the 
core is running. This independent AXI slave device can either 
be written to directly by the supervisor through the 
interconnect, or through a DMA engine that is provided per 
group of cores. This DMA engine sits on the same interconnect 
as that group of cores, which gives it faster access times for 
moving data between individual cores in that group, but at the 
expense of latency for moving data from the core to main 
memory. The DMA cores and AXI interconnect are Xilinx IP 
catalog cores but could be rewritten if resource consumption 
becomes an issue and time allows. 

See back for full diagram. 

E. Software 
    The supervisor core that is dispatching data and 

instructions to the vector cores is going to be the ARM core on 
the FPGA development board that is running Linux. This 
allows for much easier access to resources like networking and 
video output on the development board, and potentially even 
using high level languages like Python to manage the operations 
of the individual vector cores. 

    In order to run code on the vector cores it first needs to be 
compiled from C to RISC-V machine code, which there already 
exists a toolchain for. However, an additional complication is 
using our VPU logic from C. The single-data FPU 
implementation can be targeted by the RISC-V compiler, but 
the vector extension is not mainstreamed yet. To solve this, we 
need to add the vector instructions to the RISC-V assembler, 
then use a set of intrinsics to interface that assembly into our C 
code. Luckily, this means we do not have to modify the RISC-
V GCC implementation, and instead just point it at a different 
assembler. In a perfect world a compiler would exist already 
that could infer the use of a vector operation from a similar 
programming construct like a for-loop but given even the state-
of-the-art in compiler research we are mostly left to write vector 
code ourselves. 

    The supervisor code is going to be in charge of managing 
messages from each of the vector cores and understanding any 
exceptions that they generate. We are going to implement a 
small set of software libraries for both the vector cores and 
supervisor to allow for utilities like mailboxes between the two, 

as well as allowing the vector cores to update the supervisor 
when they need common operations like a DMA transaction 
done. 

 

IV. MANAGEMENT 

A. Schedule 
See back for schedule. 

B. Bill of Materials and Tools 
Our project uses two FPGA boards to demonstrate the 

architecture, the Ultra96 and a ZCU102. Both are Xilinx 
Ultrascale+    development boards with an integrated quad-core 
ARM processor to run our supervisor code on. We are using 
Xilinx Vivado to build for the boards as well as simulate a lot 
of our logic. We are also using VCS as a resource for simulating 
some of our logic due to its ready availability in the ECE 
clusters. 

The Ultra96 is a small credit-card sized board which costs 
about $250 and is a small-scale demonstration of our 
architecture. It will help us show that even with a small number 
of vector cores we can accelerate our benchmarks, especially 
for embedded applications. 

The ZCU102 is a much larger and more expensive 
development board, but has the same ARM cores next to the 
FPGA, and we are going to use it to show that our architecture 
can scale. The ZCU102 is otherwise the same FPGA fabric as 
the Ultra96, just bigger, which should help in migrating the 
design when we get to that point. 

    Our software toolchain consists primarily of the RISC-V 
GCC compiler along with our modifications to the assembler. 
The ARM cores will run Linux that we are going to try to boot 
using the PetaLinux kernel provided by Xilinx. 
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V. RELATED WORK 
Given that we are trying to replicate Intel Larrabee but with 

a different ISA, it is the closest related work to our project. 
Some notable differences were that they had actually fabricated 
their architecture into custom silicon and demonstrated it that 
way, while we are limited to presenting our architecture in an 
FPGA and optimizing it for FPGA-specific resources. 

    Intel would later abandon using the architecture they 
developed for graphics and instead upgrade and rebrand it to be 
a general computation accelerator called Xeon-Phi, which 
powers many of the fastest computers in the world. Xeon-Phi 
differs from our architecture in that it is a cache-coherent 
processor amongst its cores and can otherwise boot an operating 
system on its own, without a host computer acting as a 
supervisor, although it is usually run with a supervisor in most 
applications. 

  
Fig. 7. (Top) Xeon-Phi accelerator card, [8] (Bottom) Larrabee engineering 
sample [9] 

 

 

 

 
 
 
 

VI. SUMMARY 
Our goal is to implement a software driven approach to 

highly parallel computing in an FPGA, using common 
resources in the fabric, and specifically targeting the constraints 
of the FPGA to improve our performance. We will have 
implemented a custom, FPGA-optimized RISC-V processor 
and a vector co-processor for it, along with the necessary 
interconnect to attach these vector cores to a supervisor core 
running Linux. A variety of different benchmark applications 
will then let us determine if our architecture effectively met its 
goals or determine what computational resource slowed down 
our performance. We aim to demonstrate that the architecture 
proposed by Intel in its Larrabee project was feasible and is 
potentially an even better idea now given the development of 
open source, RISC ISA specifications. 
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Fig. 8. Main system/interconnect diagram. 
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Fig. 9. Gantt Chart/Schedule for Project
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