
Wannabee 
Larabee

Alexander Gotsis , Cyril Agbi, and David 
Gronlund - Team A3



Use Case

● Provide the floating point resources of an FPGA…
○ ...while also allowing easier programming for a typical set of floating 

point operations than Verilog
● Intel Larabee 

○ many CPU cores as a GPU, instead of using a specialized graphics 
processing core

● Solve the same use case...
○ general purpose, highly parallelized computing, but instead of using 

an x86 architecture was implementing RISC-V on our cores



Requirements

● Need general purpose, lightweight implementation of RV-32I to serve as 
a vector core

● Each small vector core needs to also have a floating point register file, 
which supports both single precision floating point, as well as the RISC-V 
vector extension

● Either Linux will be running on the ARM cores integrated into the FPGA, 
or on another RISC-V core implementing the supervisor extension

● At least four separate vector cores are memory mapped into the main 
controller core



RISC-V

● Each Vector core will be small, the RV-32I part will only take up 1000 
registers and about 2000 LUTs
○ Preferably hit 200 MHz, and perform about 0.5 MIPS/MHz

● Each vector core will have an FPU supporting addition, subtraction, 
multiplication, division, and square root
○ Match the clock performance of the core, and be able to perform 

floating point operations at about 25% of the maximum floating 
point throughput of that FPGA



Solution Approach

● Our initial supervisor target is the ARM cores on the FPGA we are using, 
but we would like to move to another RISC-V CPU running Linux on the 
FPGA if we have time and room

● We are targeting an Ultra-96 board initially, but we hope to expand to 
another larger FPGA board if possible



Testing, Verification, and Metrics

● Vector Cores
○ running the RISC-V verification suite of compiled code

● ...then 
○ vector extension enabled assembler along with GCC 

■ developed by a graduate student at CMU to test out our 
vector implementation



Testing, Verification, and Metrics

● Floating Throughput 
○ matrix multiplication traditionally used in graphics
○ compare to hypothetical max

● Write a complex floating point program - nonideal
○ complete renderer or the Mandlebrot set fractal
○ verifies our architecture can be targeted by a programmer



Tasks

● Implement the RV-32I core
○ Implement a RISC-V compliant FPU
○ Expand the throughput of the FPU to support vector operations

● Compile example programs for the vector instruction set
● Try building existing RISC-V cores that can boot Linux

○ Start by running Linux on the ARM core and write code to manage 
the vector co-processors

○ If time allows augment the vector core to also boot Linux and be the 
supervisor



Division of Labor

● David
○ Write basic RV-32I core
○ Pipeline floating point algorithms
○ Design FPU super-scalar augmentations to allow for vector operations

● Cyril
○ Implement and verify SystemVerilog for required floating point operations
○ Assist with designing FPU and vector units

● Alex
○ Write drivers for Linux to support managing and using the vector co-processors
○ Work with and integrate compilers for targeting the vector cores



Schedule



Block Diagram



Stretch Goals

● Implement RISC-V core that can also boot Linux

● Transition to a bigger FPGA
○ Preferably use an Ultrascale part as well, would make transitioning easier


